Esempio n. 1
0
    def save_to_file(self, dict, name):
        file_path = Extension.get_data_dir(self.config) / ("%s.pkl" % name)

        try:
            with file_path.open("wb") as f:
                pickle.dump(dict, f, pickle.HIGHEST_PROTOCOL)
                pickle.close()
        except Exception:
            return False
Esempio n. 2
0
File: core.py Progetto: dtorres/Iris
    def save_to_file(self, dict, name):
        file_path = Path(self.config["iris"]["data_dir"]) / ("%s.pkl" % name)

        try:
            with file_path.open("wb") as f:
                pickle.dump(dict, f, pickle.HIGHEST_PROTOCOL)
                pickle.close()
        except Exception:
            return False
Esempio n. 3
0
def train(trainingDataFolder, featureFile, labelFile):

    y_train = genfromtxt(labelFile)
    y_train1 = np.zeros(y_train.shape, dtype=np.int32)
    for items in range(y_train.shape[0]):
        y_train1[items] = y_train[items]
    x_train1 = genfromtxt(featureFile, delimiter=',')

    # Create a svm Classifier
    # clf = svm.SVC(kernel='linear')  # Linear Kernel
    clf = svm.SVC(C=1.0,
                  cache_size=200,
                  class_weight=None,
                  coef0=0.0,
                  decision_function_shape='ovr',
                  degree=1,
                  gamma='auto',
                  kernel='linear',
                  max_iter=-1,
                  probability=False,
                  random_state=None,
                  shrinking=True,
                  tol=0.0001,
                  verbose=False)

    X_train, X_test, y_train, y_test = train_test_split(x_train1,
                                                        y_train1,
                                                        test_size=0.3,
                                                        random_state=109)

    clf.fit(x_train1, y_train1)
    y_pred = clf.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)

    y_pred1 = clf.predict(x_train1)
    accuracy = accuracy_score(y_train1, y_pred1)

    featuresTestfile = trainingDataFolder + '/featuresTest.csv'
    x_test = genfromtxt(featuresTestfile, delimiter=',')
    y_pred = np.zeros(x_test.shape[0], dtype=np.int32)

    # Predict the response for test dataset
    y_pred = clf.predict(x_test)

    # Save model file
    modelFile = trainingDataFolder + '/SVMModel.bin'
    pickle.dump(clf, open(modelFile, 'wb'))
    pickle.close()

    modelFile1 = trainingDataFolder + '/SVMModel1.bin'
    joblib.dump(clf, open(modelFile1, 'wb'))

    return modelFile1
"""

#call functions of the file and this file only for ruleGeneration
#the use of a hash table superdict which was created in gen_powerset.py which has the support of all frequent candidates has been made to find support in O(1) time.
#we also use the fact that all subsets of a frequent candidate shall be frequent to avoid hitting the data set 

import pickle
import copy

pkl_file = open("../pkl_files/superdict.pkl","rb")
superdict = pickle.load(pkl_file)
item = []
pkl_file.close()
pkl_file = open("../pkl_files/redundant_item.pkl","rb")
redundant_item = pickle.load(pkl_file)
pickle.close()
pkl_file = open("../pkl_files/hash_table.pkl","rb")
hash_table = pickle.load(pkl_file)
pkl_file.close()
#it is a recurssive functions which takes in lv1 rules as input and generate rules for rest of generations
def generateAllRules(x,y,used,item):
	x = list(x)
	y = list(y)
	if len(x) > 1:
		inum = 0
		for i in x:
			x_made = []
			x_made = x[:]
			y_made = y[:]
			y_made.append(x[inum])
			y_made.sort()
Esempio n. 5
0
    def createMonthlyDataFile(self):

        path = "/home/prashant/pythonGeneratedFiles/"
        year = "2015"

        powerIndex = 10
        for m in range(1, 13):
            totalEnergy = 0
            temp = datetime(1900, 1, 1, 0, 0, 0)
            duration = datetime(1900, 1, 1, 0, 0, 0)
            peak = 0

            mFile = year
            if m < 10:
                mFile = mFile + "-0" + str(m)
            else:
                mFile = mFile + "-" + str(m)

            fm = open(mFile + ".csv", "w")
            fm.write("Total energy,Peak,Duration\n")
            print "Creating Month :", m, " File..............."
            if m == 1 or m == 3 or m == 5 or m == 7 or m == 8 or m == 10 or m == 12:
                dateMax = 31
            elif m == 2:
                dateMax = 28
            else:
                dateMax = 30

            for d in range(1, dateMax + 1):
                fileName = year

                if m < 10:
                    fileName = fileName + "-0" + str(m) + "-"
                else:
                    fileName = fileName + "-" + str(m) + "-"
                if d < 10:
                    fileName = fileName + "0" + str(d)
                else:
                    fileName = fileName + str(d)
                if os.path.exists(path + fileName + ".csv"):

                    fp = open(path + fileName + ".csv", "r")
                    print fp.readline().split(",")

                    startTime = datetime.strptime(fp.readline().split(",")[0],
                                                  "%H:%M")
                    for fileData in fp:
                        singleData = fileData.split(",")
                        if int(singleData[powerIndex]) > peak:
                            peak = singleData[powerIndex]

                    endTime = datetime.strptime(singleData[0], "%H:%M")
                    temp = endTime - startTime
                    duration = duration + temp
                    fp.close()
                    totalEnergy = totalEnergy + int(singleData[11])
            print "Month :" + str(m) + "-" + year
            print "Total Energy=", totalEnergy
            print "Duration :", duration
            print "Peak :", peak
            fm.write(str(totalEnergy))
            fm.write(",")
            fm.write(str(peak))
            fm.write(",")
            fm.write(str(duration))
            fm.close()