Esempio n. 1
0
def load_dataset():
    # We first define a download function, supporting both Python 2 and 3.
    if sys.version_info[0] == 2:
        from urllib import urlretrieve
    else:
        from urllib.request import urlretrieve

    def check_download(filename,
                       source='http://www.aaalgo.com/picpac/datasets/cifar/'):
        if not os.path.exists(filename):
            print("Downloading %s" % filename)
            urlretrieve(source + filename, filename)

    config = dict(seed=1996,
                  resize_width=32,
                  resize_height=32,
                  batch=batch_size,
                  channels=3,
                  channel_first=False,
                  onehot=nb_classes)
    train_config = dict(
        shuffle=True,
        reshuffle=True,
        split=10,
        split_fold=1,
        stratify=True,
        pert_color1=10,
        pert_color2=10,
        pert_color3=10,
        pert_angle=15,
        pert_min_scale=0.7,
        pert_max_scale=1.2,
    )
    train_config.update(config)

    # We can now download and read the training and test set images and labels.
    check_download('cifar10-train.picpac')
    check_download('cifar10-test.picpac')
    train = picpac.ImageStream('cifar10-train.picpac',
                               loop=True,
                               split_negate=False,
                               perturb=data_augmentation,
                               **train_config)
    val = picpac.ImageStream('cifar10-train.picpac',
                             loop=False,
                             split_negate=True,
                             perturb=False,
                             **train_config)
    test = picpac.ImageStream('cifar10-test.picpac',
                              loop=False,
                              perturb=False,
                              **config)

    return train, val, test
Esempio n. 2
0
def create_picpac_stream (path, is_training):
    assert os.path.exists(path)
    config = {"db": path,
              "loop": is_training,
              "shuffle": is_training,
              "reshuffle": is_training,
              "annotate": [1],
              "channels": 3,
              "stratify": is_training,
              "dtype": "float32",
              "batch": BATCH,
              "colorspace": 'BGR',
              "cache": 0,
              "order": "NCHW",  # specific to caffe
              "transforms": [
                  {"type": "resize", "width": WIDTH, "height": HEIGHT},
                  {"type": "augment.flip", "horizontal": True, "vertical": False, "transpose": False},
                  {"type": "augment.scale", "min":0.8, "max":1.2},
                  {"type": "augment.rotate", "range": 10},
                  {"type": "augment.add", "range":20},
                  {"type": "clip", "width": WIDTH, "height": HEIGHT},
                  {"type": "rasterize"},
                  ]
             }

    if not is_training:
        config['threads'] = 1
    return picpac.ImageStream(config)
Esempio n. 3
0
def create_picpac_stream (db_path, is_training):
    assert os.path.exists(db_path)
    augments = []
    if is_training:
        augments = [
                  {"type": "augment.flip", "horizontal": True, "vertical": True},
                  {"type": "augment.rotate", "min":-10, "max":10},
                  {"type": "augment.scale", "min":0.9, "max":1.1},
                  {"type": "augment.add", "range":20},
                ]
    else:
        augments = []

    config = {"db": db_path,
              "loop": is_training,
              "shuffle": is_training,
              "reshuffle": is_training,
              "annotate": True,
              "channels": FLAGS.channels,
              "stratify": is_training,
              "dtype": "float32",
              "batch": FLAGS.batch,
              "colorspace": COLORSPACE,
              "transforms": augments + [
                  {"type": "clip", "round": FLAGS.stride},
                  {"type": "rasterize"},
                  ]
             }
    if is_training and not FLAGS.mixin is None:
        print("mixin support is incomplete in new picpac.")
    #    assert os.path.exists(FLAGS.mixin)
    #    picpac_config['mixin'] = FLAGS.mixin
    #    picpac_config['mixin_group_delta'] = 1
    #    pass
    return picpac.ImageStream(config)
Esempio n. 4
0
def create_picpac_stream(db_path, is_training):
    assert os.path.exists(db_path)
    augments = []
    shift = 0
    if is_training:
        shift = FLAGS.shift
        if FLAGS.augments:
            with open(FLAGS.augments, 'r') as f:
                augments = json.loads(f.read())
            print("Using augments:")
            print(json.dumps(augments))
        else:
            augments = [
                {
                    "type": "augment.flip",
                    "horizontal": True,
                    "vertical": False
                },
            ]

    config = {
        "db":
        db_path,
        "loop":
        is_training,
        "shuffle":
        is_training,
        "reshuffle":
        is_training,
        "annotate":
        False,
        "channels":
        FLAGS.channels,
        "stratify":
        is_training,
        "dtype":
        "float32",
        "batch":
        FLAGS.batch,
        "cache":
        FLAGS.cache,
        "transforms":
        augments + [
            #{"type": "resize", "size": FLAGS.size},
            {
                "type": "clip",
                "size": FLAGS.size,
                "shift": shift,
                "border_type": "replicate"
            },
        ]
    }
    if is_training and not FLAGS.mixin is None:
        print("mixin support is incomplete in new picpac.")
        assert os.path.exists(FLAGS.mixin)
        config['mixin'] = FLAGS.mixin
        config['mixin_group_reset'] = 0
        config['mixin_group_delta'] = 1
        pass
    return picpac.ImageStream(config)
Esempio n. 5
0
def main(_):
    assert FLAGS.out
    assert FLAGS.db and os.path.exists(FLAGS.db)

    picpac_config = dict(
        seed=2016,
        #loop=True,
        shuffle=True,
        reshuffle=True,
        #resize_width=256,
        #resize_height=256,
        round_div=FLAGS.stride,
        batch=1,
        split=1,
        split_fold=0,
        annotate='json',
        channels=FLAGS.channels,
        stratify=True,
        pert_color1=20,
        pert_angle=20,
        pert_min_scale=0.8,
        pert_max_scale=1.2,
        #pad=False,
        pert_hflip=True,
        pert_vflip=True,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )

    stream = picpac.ImageStream(FLAGS.db,
                                perturb=False,
                                loop=False,
                                **picpac_config)

    gal = Gallery(FLAGS.out)
    cc = 0
    with Model(FLAGS.model, name=FLAGS.name, prob=True) as model:
        for images, _, _ in stream:
            #images *= 600.0/1500
            #images -= 800
            #images *= 3000 /(2000-800)
            _, H, W, _ = images.shape
            if FLAGS.max_size:
                if max(H, W) > FLAGS.max_size:
                    continue
            if FLAGS.patch:
                stch = Stitcher(images, FLAGS.patch)
                probs = stch.stitch(model.apply(stch.split()))
            else:
                probs = model.apply(images)
            cc += 1
            save(gal.next(), images, probs)
            if FLAGS.max and cc >= FLAGS.max:
                break
    gal.flush()
    pass
Esempio n. 6
0
def main(_):
    X = tf.placeholder(tf.float32, shape=(None, None, None, 3), name="images")
    is_training = tf.placeholder(tf.bool, name="is_training")
    anchor_th = tf.constant(FLAGS.anchor_th, tf.float32)
    nms_max = tf.constant(FLAGS.nms_max, tf.int32)
    nms_th = tf.constant(FLAGS.nms_th, tf.float32)
    model = Model(X, anchor_th, nms_max, nms_th, is_training, FLAGS.model,
                  'xxx')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        model.loader(sess)
        if FLAGS.input:
            assert os.path.exists(FLAGS.input)
            image = cv2.imread(FLAGS.input, cv2.IMREAD_COLOR)
            batch = np.expand_dims(image, axis=0).astype(dtype=np.float32)
            boxes, probs = sess.run([model.boxes, model.probs],
                                    feed_dict={
                                        X: batch,
                                        is_training: False
                                    })
            save_prediction_image(FLAGS.input + '.prob.png', image, boxes,
                                  probs)
        if FLAGS.input_db:
            assert os.path.exists(FLAGS.input_db)
            import picpac
            from gallery import Gallery
            picpac_config = {
                "db": FLAGS.input_db,
                "loop": False,
                "shuffle": False,
                "reshuffle": False,
                "annotate": False,
                "channels": 3,
                "stratify": False,
                "dtype": "float32",
                "batch": 1,
                "transforms": []
            }
            stream = picpac.ImageStream(picpac_config)
            gal = Gallery(FLAGS.input_db + '.out')
            C = 0
            for _, images in stream:
                boxes, probs = sess.run([model.boxes, model.probs],
                                        feed_dict={
                                            X: images,
                                            is_training: False
                                        })
                save_prediction_image(gal.next(), images[0], boxes, probs)
                C += 1
                if FLAGS.max and C >= FLAGS.max:
                    break
                pass
            pass
            gal.flush()
    pass
Esempio n. 7
0
def main (_):
    assert FLAGS.out
    assert FLAGS.db and os.path.exists(FLAGS.db)

    picpac_config = dict(seed=2016,
                #loop=True,
                shuffle=True,
                reshuffle=True,
                max_size = 400,
                #resize_width=256,
                #resize_height=256,
                round_div = FLAGS.stride,
                batch=1,
                split=1,
                split_fold=0,
                annotate='json',
                channels=FLAGS.channels,
                stratify=True,
                #pad=False,
                channel_first=False # this is tensorflow specific
                                    # Caffe's dimension order is different.
                )

    stream = picpac.ImageStream(FLAGS.db, perturb=False, loop=False, **picpac_config)


    gal = Gallery(FLAGS.out, score=True)
    cc = 0
    with Model(FLAGS.model, prob=True) as model:
        for images, _, _ in stream:
            #images *= 600.0/1500
            #images -= 800
            #images *= 3000 /(2000-800)
            _, H, W, _ = images.shape
            if FLAGS.max_size:
                if max(H, W) > FLAGS.max_size:
                    continue
            print(images.shape)
            # fcn-cls do not have patch
            # if FLAGS.patch:
                
            #     stch = Stitcher(images, FLAGS.patch)
            #     probs = stch.stitch(model.apply(stch.split()))
            # else:
            #     probs = model.apply(images)
            probs, scores = model.apply(images)
            cc += 1
            save(gal.next(score=scores[0]), images, probs)
            if FLAGS.max and cc >= FLAGS.max:
                break
    gal.flush(rank=True)
    pass
Esempio n. 8
0
File: mxnet.py Progetto: tfwu/picpac
 def __init__(self, path, **kwargs):
     super(ImageStream, self).__init__()
     kwargs['loop'] = False
     kwargs.setdefault('batch', 1)
     self.stream = picpac.ImageStream(path, **kwargs)
     self.batch_size = kwargs['batch']
     self.data = None
     self.label = None
     self.pad = None
     self.peek = self.stream.next()
     self.provide_data = [('data', self.peek[0].shape)]
     self.provide_label = [('softmax_label', self.peek[1].shape)]
     pass
Esempio n. 9
0
File: train.py Progetto: Lingrui/cls
def create_picpac_stream(db_path, is_training):
    assert os.path.exists(db_path)
    augments = []
    shift = 0
    if is_training:
        shift = FLAGS.shift
        augments = [
            {
                "type": "augment.flip",
                "horizontal": True,
                "vertical": False
            },
        ]

    config = {
        "db":
        db_path,
        "loop":
        is_training,
        "shuffle":
        is_training,
        "reshuffle":
        is_training,
        "annotate":
        False,
        "channels":
        FLAGS.channels,
        "stratify":
        is_training,
        "dtype":
        "float32",
        "batch":
        FLAGS.batch,
        "transforms":
        augments + [
            #{"type": "resize", "size": FLAGS.size},
            {
                "type": "clip",
                "size": FLAGS.size,
                "shift": shift,
                "border_type": "replicate"
            },
        ]
    }
    if is_training and not FLAGS.mixin is None:
        print("mixin support is incomplete in new picpac.")
    #    assert os.path.exists(FLAGS.mixin)
    #    picpac_config['mixin'] = FLAGS.mixin
    #    picpac_config['mixin_group_delta'] = 1
    #    pass
    return picpac.ImageStream(config)
Esempio n. 10
0
def main (_):
    assert FLAGS.db and os.path.exists(FLAGS.db)
    assert FLAGS.model and os.path.exists(FLAGS.model + '.meta')

    L = tf.placeholder(tf.float32, shape=(None, None, None, 1))

    mg = meta_graph.read_meta_graph_file(FLAGS.model + '.meta')
    logits, = tf.import_graph_def(mg.graph_def, name='colorize',
                        #input_map={'L:0':L},
                        input_map={'fifo_queue_Dequeue:0':L},
                        return_elements=['logits:0'])
    prob = tf.nn.softmax(logits)
    saver = tf.train.Saver(saver_def=mg.saver_def, name='colorize')

    picpac_config = dict(seed=2016,
                cache=False,
                max_size=200,
                min_size=192,
                crop_width=192,
                crop_height=192,
                shuffle=True,
                reshuffle=True,
                batch=1,
                round_div=FLAGS.stride,
                channels=3,
                stratify=False,
                channel_first=False # this is tensorflow specific
                                    # Caffe's dimension order is different.
                )

    stream = picpac.ImageStream(FLAGS.db, perturb=False, loop=False, **picpac_config)

    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        saver.restore(sess, FLAGS.model)
        gallery = Gallery(FLAGS.output, cols=2, header=['groundtruth', 'prediction'])
        c = 0
        for images, _, _ in stream:
            if FLAGS.max and (c >= FLAGS.max):
                break
            l, ab, w = _pic2pic.encode_lab(images.copy(), FLAGS.downsize)
            ab_p, = sess.run([prob], feed_dict={L: l})
            y_p = decode_lab(l, ab_p, T=FLAGS.T)
            cv2.imwrite(gallery.next(), images[0])
            cv2.imwrite(gallery.next(), y_p[0])
            c += 1
            print('%d/%d' % (c, FLAGS.max))
            pass
        gallery.flush()
        pass
    pass
Esempio n. 11
0
def main(_):
    X = tf.placeholder(tf.float32, shape=(None, None, None, 1), name="images")
    model = Model(X, FLAGS.model, 'xxx')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        model.loader(sess)
        # 模型至此导入完毕
        # 注意如果要读入图片预测,需要进行下述预处理
        # 1. 转成灰度图, 比如用cv2.imread(..., cv2.IMREAD_GRAYSCALE)
        # 2. resize成固定大小,和train.sh中的参数匹配
        # 3. 比如灰度图是image, 那么对应的batch = image[np.newaxis, :, :, np.newaxis], 就可以送入tf.session预测了

        gal = Gallery('output', cols=2, ext='.jpg')
        CC = 0
        stream = picpac.ImageStream({
            'db':
            FLAGS.db,
            'loop':
            False,
            'channels':
            1,
            'threads':
            1,
            'shuffle':
            False,
            'transforms': [{
                "type": "resize",
                "width": FLAGS.width,
                "height": FLAGS.height
            }]
        })
        for meta, batch in stream:
            if CC > FLAGS.max:
                break
            print(meta.ids)
            image = batch[0]
            logits = sess.run(model.logits, feed_dict={X: batch})
            # 把logits转换成字符串
            label = logits2text(logits)
            '''END INFERENCE'''
            save_prediction_image(gal, image, label)
            CC += 1
        gal.flush()
    pass
Esempio n. 12
0
def create_picpac_stream (db_path, is_training):
    assert os.path.exists(db_path)
    augments = []
    if is_training:
        if FLAGS.augments:
            with open(FLAGS.augments, 'r') as f:
                augments = json.loads(f.read())
            print("Using augments:")
            print(json.dumps(augments))
        else:
            augments = [
                  #{"type": "augment.flip", "horizontal": True, "vertical": False},
                  {"type": "augment.rotate", "min":-10, "max":10},
                  {"type": "augment.scale", "min":0.9, "max":1.1},
                  {"type": "augment.add", "range":20},
                ]
    else:
        augments = []

    picpac_config = {"db": db_path,
              "loop": is_training,
              "shuffle": is_training,
              "reshuffle": is_training,
              "annotate": True,
              "channels": FLAGS.channels,
              "stratify": is_training,
              "dtype": "float32",
              "batch": FLAGS.batch,
              "colorspace": COLORSPACE,
              "cache": FLAGS.cache,
              "transforms": augments + [
                  {"type": "clip", "round": FLAGS.backbone_stride},
                  {"type": "anchors.dense.box", 'downsize': FLAGS.anchor_stride},
                  {"type": "box_feature"},
                  {"type": "rasterize", "use_tag": True, "dtype": "float32"}
                  ]
             }
    if is_training and not FLAGS.mixin is None:
        #print("mixin support is incomplete in new picpac.")
        assert os.path.exists(FLAGS.mixin)
        picpac_config['mixin'] = FLAGS.mixin
        picpac_config['mixin_group_reset'] = 0
        picpac_config['mixin_group_delta'] = 1
    return picpac.ImageStream(picpac_config)
Esempio n. 13
0
File: neon.py Progetto: tfwu/picpac
 def __init__(self, path, **kwargs):
     super(ImageStream, self).__init__()
     kwargs.setdefault('batch', 1)
     kwargs.setdefault('loop', True)
     self.stream = picpac.ImageStream(path, **kwargs)
     self.batch_size = kwargs['batch']
     self.nclass = kwargs['onehot']
     self.loop = kwargs['loop']
     self.ndata = self.stream.size()
     self.peek = self.stream.next()
     self.shape = tuple(self.peek[0].shape[1:])
     self.xdim = reduce(mul, self.shape)
     yshape = tuple(self.peek[1].shape[1:])
     if self.nclass:
         assert len(yshape) == 1
     self.ydim = reduce(mul, yshape)
     self.Xbuf = self.be.iobuf(self.xdim)
     self.Ybuf = self.be.iobuf(self.ydim)
     pass
Esempio n. 14
0
def create_picpac_stream(path, is_training, extra_config):

    assert os.path.exists(path)
    print("CACHE:", FLAGS.cache)
    # check db size, warn not to cache if file is big
    statinfo = os.stat(path)
    if statinfo.st_size > 0x40000000 and FLAGS.cache:
        print_red(
            "DB is probably too big too be cached, consider adding --cache 0")

    config = {
        "db": path,
        "loop": is_training,
        "shuffle": is_training,
        "reshuffle": is_training,
        "annotate": [],
        "channels": FLAGS.channels,
        "stratify": is_training,
        "dtype": "float32",
        "batch": FLAGS.batch,
        "colorspace": FLAGS.colorspace,
        "cache": FLAGS.cache,
        "transforms": []
    }

    if is_training:
        config[
            "dump"] = FLAGS.picpac_dump  # dump 20 training samples for debugging and see
    else:
        config['threads'] = 1

    if is_training and not FLAGS.mixin is None:
        print("mixin support is incomplete in new picpac.")
        assert os.path.exists(FLAGS.mixin)
        config['mixin'] = FLAGS.mixin
        config['mixin_group_reset'] = 0
        config['mixin_group_delta'] = 1
        pass
    config.update(extra_config)
    return picpac.ImageStream(config)
Esempio n. 15
0
def main(_):
    picpac_config = dict(
        seed=2016,
        shuffle=True,
        batch=1,
        annotate='json',
        channels=1,
        perturb=False,
        loop=False,
        stratify=True,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )
    tr_stream = picpac.ImageStream(FLAGS.db, **picpac_config)
    gal = Gallery('sample', ext='.gif')
    cc = 0
    for image, label, _ in tr_stream:
        cc += 1
        visualize(gal.next(), image[0], label[0, :, :, 0])
        if cc >= FLAGS.classes - 1:
            break
        pass
    gal.flush()
Esempio n. 16
0
def main(_):
    logging.basicConfig(level=FLAGS.verbose)
    try:
        os.makedirs(FLAGS.model)
    except:
        pass
    assert FLAGS.pos and os.path.exists(FLAGS.pos)
    assert FLAGS.neg and os.path.exists(FLAGS.neg)

    X = tf.placeholder(tf.float32,
                       shape=(None, None, None, FLAGS.channels),
                       name="images")
    Y_fcn = tf.placeholder(tf.float32, shape=(None, None, None, 1))
    Y_cls = tf.placeholder(tf.float32, shape=(None, ))

    with slim.arg_scope([slim.conv2d, slim.conv2d_transpose, slim.max_pool2d],
                        padding=FLAGS.padding):
        logits_fcn, logits_cls, stride = getattr(fcn_cls_nets, FLAGS.net)(X)
    loss_fcn = fcn_loss(logits_fcn, Y_fcn)
    loss_cls, accuracy_cls = cls_loss(logits_cls, Y_cls)

    #tf.summary.scalar("loss", loss)
    loss_total = tf.identity(loss_fcn + FLAGS.W * loss_cls, name='loss')

    metrics = [loss_total, loss_fcn, loss_cls, accuracy_cls]
    metric_names = [x.name[:-2] for x in metrics]

    rate = FLAGS.learning_rate
    if FLAGS.opt == 'adam':
        rate /= 100
    global_step = tf.Variable(0, name='global_step', trainable=False)
    if FLAGS.decay:
        rate = tf.train.exponential_decay(rate,
                                          global_step,
                                          FLAGS.decay_steps,
                                          FLAGS.decay_rate,
                                          staircase=True)
    if FLAGS.opt == 'adam':
        optimizer = tf.train.AdamOptimizer(rate)
    elif FLAGS.opt == 'mom':
        optimizer = tf.train.MomentumOptimizer(rate, FLAGS.momentum)
    else:
        optimizer = tf.train.GradientDescentOptimizer(rate)
        pass

    train_op = optimizer.minimize(loss_total, global_step=global_step)

    picpac_config_cls = dict(
        seed=2016,
        shuffle=True,
        reshuffle=True,
        #max_size = 300,
        #resize_width=256,
        #resize_height=256,
        split=FLAGS.split,
        split_fold=FLAGS.split_fold,
        batch=1,
        pert_angle=15,
        pert_hflip=True,
        pert_vflip=False,
        pert_color1=20,
        pert_color2=20,
        pert_color3=20,
        pert_min_scale=0.8,
        pert_max_scale=1.2,
        channels=FLAGS.channels,
        #mixin = FLAGS.mixin,
        stratify=True,
        #pad=False,
        channel_first=False,  # this is tensorflow specific
    )
    picpac_config_fcn = dict(
        annotate='json',
        round_div=stride,
    )
    picpac_config_fcn.update(picpac_config_cls)

    tr_stream0 = picpac.ImageStream(FLAGS.neg,
                                    split_negate=False,
                                    perturb=True,
                                    loop=True,
                                    **picpac_config_fcn)
    tr_stream1 = picpac.ImageStream(FLAGS.pos,
                                    split_negate=False,
                                    perturb=True,
                                    loop=True,
                                    **picpac_config_fcn)
    te_streams = []
    if FLAGS.test_epochs > 0:
        # testing stream, "negate" inverts the image selection specified by split & split_fold
        # so different images are used for training and testing
        if FLAGS.test_db:
            if FLAGS.split > 1:
                print(
                    "Cannot use cross-validation & evaluation db at the same time"
                )
                print("If --test-db is specified, do not set --split")
                raise Exception("bad parameters")
            te_streams.append((0,
                               picpac.ImageStream(FLAGS.test_db,
                                                  perturb=False,
                                                  loop=False,
                                                  **picpac_config_cls)))
        elif FLAGS.split > 1:
            te_streams.append((0,
                               picpac.ImageStream(FLAGS.neg,
                                                  split_negate=True,
                                                  perturb=False,
                                                  loop=False,
                                                  **picpac_config_cls)))
            te_streams.append((1,
                               picpac.ImageStream(FLAGS.pos,
                                                  split_negate=True,
                                                  perturb=False,
                                                  loop=False,
                                                  **picpac_config_cls)))
            pass
        pass

    init = tf.global_variables_initializer()

    saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep)
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.3

    with tf.Session(config=config) as sess:
        sess.run(init)
        if FLAGS.resume:
            saver.restore(sess, FLAGS.resume)
        step = 0
        epoch = 0
        global_start_time = time.time()
        while step < FLAGS.max_steps:
            start_time = time.time()
            avg = np.array([0] * len(metrics), dtype=np.float32)
            for _ in tqdm(range(FLAGS.epoch_steps), leave=False):
                # train FCN
                images, labels, _ = tr_stream0.next()
                #print('xxx', images.shape)
                feed_dict = {X: images, Y_fcn: labels, Y_cls: [0]}
                mm, _ = sess.run([metrics, train_op], feed_dict=feed_dict)
                avg += np.array(mm)

                images, labels, _ = tr_stream1.next()
                #print('xxx', images.shape)
                feed_dict = {X: images, Y_fcn: labels, Y_cls: [1]}
                mm, _ = sess.run([metrics, train_op], feed_dict=feed_dict)
                avg += np.array(mm)

                step += 1
                pass
            avg /= FLAGS.epoch_steps * 2
            stop_time = time.time()
            txt = ', '.join(
                ['%s=%.4f' % (a, b) for a, b in zip(metric_names, list(avg))])
            print('step %d: elapsed=%.4f time=%.4f, %s' %
                  (step, (stop_time - global_start_time),
                   (stop_time - start_time), txt))
            epoch += 1
            if epoch and (epoch % FLAGS.ckpt_epochs == 0):
                ckpt_path = '%s/%d' % (FLAGS.model, step)
                start_time = time.time()
                saver.save(sess, ckpt_path)
                stop_time = time.time()
                print('epoch %d step %d, saving to %s in %.4fs.' %
                      (epoch, step, ckpt_path, stop_time - start_time))
            if epoch and (epoch % FLAGS.test_epochs
                          == 0) and len(te_streams) > 0:
                cmatrix = np.zeros((2, 2))
                total = 0
                acc_sum = 0
                for delta, te_stream in te_streams:
                    te_stream.reset()
                    for images, labels, _ in te_stream:
                        total += 1
                        labels += delta

                        feed_dict = {X: images, Y_cls: labels}

                        acc, ll = sess.run([accuracy_cls, logits_cls],
                                           feed_dict=feed_dict)
                        acc_sum += acc

                        cmatrix[int(labels),
                                np.where(ll == np.max(ll))[1]] += np.divide(
                                    float(1),
                                    np.size(np.where(ll == np.max(ll))[1]))
                        pass
                rowsum = np.sum(cmatrix, axis=1)
                colsum = np.sum(cmatrix, axis=0)
                #print(total)
                #print(np.tile(rowsum,(FLAGS.classes,1)).transpose())
                #print(np.tile(colsum,(FLAGS.classes,1)))
                print('row---label; colum ---predict')
                print(total)
                print('evaluation: accuracy = %.4f' % (acc_sum / total))
                print('accuracy from confusion matrix = %.4f' %
                      np.divide(np.trace(cmatrix), float(total)))
                print('absolute confusion matrix:')
                print(cmatrix)
                #print('confusion matrix divided by total:')
                #print(np.divide(cmatrix,float(total)))
                print('confusion matrix divided by col sum:')
                print(np.divide(cmatrix, np.tile(colsum, (2, 1))))
                print('confusion matrix divided by row sum:')
                print(np.divide(cmatrix, np.tile(rowsum, (2, 1)).transpose()))
            pass
        pass
    pass
Esempio n. 17
0
def main(_):
    logging.basicConfig(level=FLAGS.verbose)
    try:
        os.makedirs(FLAGS.model)
    except:
        pass
    assert FLAGS.db and os.path.exists(FLAGS.db)

    rate = tf.constant(FLAGS.learning_rate)
    global_step = tf.Variable(0, name='global_step', trainable=False)
    if FLAGS.decay:
        rate = tf.train.exponential_decay(rate,
                                          global_step,
                                          FLAGS.decay_steps,
                                          FLAGS.decay_rate,
                                          staircase=True)
        tf.summary.scalar('learning_rate', rate)
    optimizer = tf.train.AdamOptimizer(rate)

    enc_GRAY = tf.placeholder(tf.float32,
                              shape=(None, None, None, 1))  # inference input
    enc_GTCOLOR = tf.placeholder(tf.float32, shape=(None, None, None,
                                                    3))  # inference output
    enc_W = tf.placeholder(tf.float32, shape=(None, None, None,
                                              1))  # inference per-pixel weight

    queue = tf.FIFOQueue(128, (tf.float32, tf.float32, tf.float32))
    enc = queue.enqueue((enc_GRAY, enc_GTCOLOR, enc_W))
    GRAY, GTCOLOR, W = queue.dequeue()
    GRAY.set_shape(enc_GRAY.get_shape())
    # we need to name this so as to map the variable for prediction
    GRAY = tf.identity(GRAY, name='gray')
    GTCOLOR.set_shape(enc_GTCOLOR.get_shape())
    W.set_shape(enc_W.get_shape())

    COLOR, stride, downsize = generator(GRAY)
    COLOR = tf.identity(COLOR, name='color')
    #tf.summary.image('low_res', BGR2RGB(X), max_outputs=3)
    #tf.summary.image('hi_res', BGR2RGB(Y), max_outputs=3)
    #tf.summary.image('predict', BGR2RGB(G), max_outputs=3)
    tf.summary.image('input', BGR2RGB(GTCOLOR), max_outputs=5)
    tf.summary.image('output', BGR2RGB(COLOR), max_outputs=5)

    # X and G need to go through the same feature extracting network
    # so we concatenate them first and then split the results
    L, H = feature_extractor(tf.concat([GTCOLOR, COLOR], axis=0))

    L1, L2 = tf.split(L, 2)  # low-level feature,    2 is prediction
    H1, H2 = tf.split(H, 2)  # high-level feature,   2 is prediction

    loss_perceptual = tf.reduce_mean(tf.square(L1 - L2), name='pe')

    sub = tf.shape(COLOR) - tf.constant([0, 1, 1, 0], dtype=tf.int32)
    G0 = tf.slice(COLOR, [0, 0, 0, 0], sub)
    Gx = tf.slice(COLOR, [0, 0, 1, 0], sub)
    Gy = tf.slice(COLOR, [0, 1, 0, 0], sub)

    loss_smooth = tf.identity(
        tf.reduce_mean(tf.pow(tf.square(G0 - Gx) + tf.square(G0 - Gy), 1.25)) /
        529357.9139706489,
        name='sm')

    D_real = tf.reduce_mean(tf.nn.softplus(H1), name='dr')
    D_fake = tf.reduce_mean(softminus(H2), name='df')

    loss_adversary = tf.identity(1.0 - D_fake, name='ad')

    loss_G = tf.identity(loss_perceptual * FLAGS.perceptual_weight +
                         loss_smooth * FLAGS.smoothness_weight +
                         loss_adversary * FLAGS.adversary_weight,
                         name='lg')

    loss_D = tf.identity(D_fake - D_real, name='ld')

    phases = []
    var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "G")
    phases.append(('generate',
                   optimizer.minimize(loss_G,
                                      global_step=global_step,
                                      var_list=var_list),
                   [loss_G, loss_perceptual, loss_smooth,
                    loss_adversary], [GTCOLOR, COLOR]))

    var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "D")
    phases.append(
        ('discriminate',
         optimizer.minimize(loss_D, global_step=global_step,
                            var_list=var_list), [loss_D, D_real, D_fake], []))

    metric_names = []
    for _, _, metrics, _ in phases:
        metric_names.extend([x.name[:-2] for x in metrics])

    init = tf.global_variables_initializer()

    saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep)

    summaries = tf.summary.merge_all()
    if FLAGS.resume is None:
        if FLAGS.log[0] != '/':
            subprocess.check_call("rm -rf %s" % FLAGS.log, shell=True)
    log = tf.summary.FileWriter(FLAGS.log,
                                tf.get_default_graph(),
                                flush_secs=20)

    tf.get_default_graph().finalize()

    picpac_config = dict(
        seed=2016,
        cache=False,
        max_size=200,
        min_size=192,
        crop_width=176,
        crop_height=176,
        shuffle=True,
        reshuffle=True,
        batch=FLAGS.batch,
        round_div=stride,
        channels=3,
        stratify=False,
        pert_min_scale=0.97,  #0.92,
        pert_max_scale=1.5,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )

    stream = picpac.ImageStream(FLAGS.db,
                                perturb=True,
                                loop=True,
                                **picpac_config)

    sess_config = tf.ConfigProto()

    with tf.Session(config=sess_config) as sess:
        coord = tf.train.Coordinator()
        sess.run(init)
        if FLAGS.resume:
            saver.restore(sess, FLAGS.resume)

        def encode_sample():
            while not coord.should_stop():
                images, _, _ = stream.next()
                gray, color, w = _pic2pic.encode_bgr(images, downsize)
                #print("GRAY:", gray.shape)
                #print("COLOR:", color.shape)
                sess.run([enc],
                         feed_dict={
                             enc_GRAY: gray,
                             enc_GTCOLOR: color,
                             enc_W: w
                         })
            pass

        # create encoding threads
        threads = [
            threading.Thread(target=encode_sample, args=())
            for _ in range(FLAGS.encoding_threads)
        ]
        for t in threads:
            t.start()

        step = 0
        epoch = 0
        global_start_time = time.time()
        while step < FLAGS.max_steps:
            start_time = time.time()
            avg = np.array([0] * len(metric_names), dtype=np.float32)
            for _ in tqdm(range(FLAGS.epoch_steps), leave=False):
                forward_dict = {}
                m_off = 0
                for _, train, metrics, forward in phases:
                    feed_dict = {}
                    feed_dict.update(forward_dict)
                    _, m, f = sess.run([train, metrics, forward],
                                       feed_dict=feed_dict)
                    forward_dict = dict(zip(forward, f))
                    m_off_n = m_off + len(metrics)
                    avg[m_off:m_off_n] += m
                    m_off = m_off_n
                    pass
                step += 1
                pass
            images, _, _ = stream.next()
            images = images[:5, :, :, :]
            gray, gtcolor, _ = _pic2pic.encode_bgr(images, downsize)
            color = sess.run(COLOR, feed_dict={GRAY: gray})
            full = np.zeros(images.shape, dtype=np.float32)
            _, H, W, _ = images.shape
            color /= 255.0
            gray /= 255.0
            for i in range(images.shape[0]):
                lab = cv2.cvtColor(cv2.cvtColor(gray[i], cv2.COLOR_GRAY2BGR),
                                   cv2.COLOR_BGR2LAB)
                full[i, :, :, :1] = lab[:, :, :1]
                one = cv2.resize(color[i], (W, H))
                lab = cv2.cvtColor(one, cv2.COLOR_BGR2LAB)
                full[i, :, :, 1:] = lab[:, :, 1:]
                cv2.cvtColor(full[i], cv2.COLOR_LAB2BGR, full[i])
                pass
            s, = sess.run([summaries],
                          feed_dict={
                              COLOR: full,
                              GTCOLOR: images
                          })
            log.add_summary(s, step)
            avg /= FLAGS.epoch_steps
            stop_time = time.time()
            epoch += 1
            saved = ''
            if epoch % FLAGS.ckpt_epochs == 0:
                saver.save(sess, '%s/%d' % (FLAGS.model, step))
                saved = ' saved'

            txt = ', '.join(
                ['%s=%.4f' % (a, b) for a, b in zip(metric_names, list(avg))])
            print('step=%d elapsed=%.4f/%.4f  %s%s' %
                  (step, (stop_time - start_time),
                   (stop_time - global_start_time), txt, saved))
            pass
        pass
        coord.request_stop()
        coord.join(threads)
        log.close()
    pass
Esempio n. 18
0
def main(_):
    logging.basicConfig(level=FLAGS.verbose)
    try:
        os.makedirs(FLAGS.model)
    except:
        pass
    assert FLAGS.A and os.path.exists(FLAGS.A)
    assert FLAGS.B and os.path.exists(FLAGS.B)

    A = tf.placeholder(tf.float32,
                       shape=(None, None, None, FLAGS.channels),
                       name="A")
    B = tf.placeholder(tf.float32,
                       shape=(None, None, None, FLAGS.channels),
                       name="B")

    rate = tf.constant(FLAGS.learning_rate)
    if FLAGS.opt == 'adam':
        rate /= 100
    global_step = tf.Variable(0, name='global_step', trainable=False)
    if FLAGS.decay:
        rate = tf.train.exponential_decay(rate,
                                          global_step,
                                          FLAGS.decay_steps,
                                          FLAGS.decay_rate,
                                          staircase=True)
        tf.summary.scalar('learning_rate', rate)
    if FLAGS.opt == 'adam':
        optimizer = tf.train.AdamOptimizer(rate)
    elif FLAGS.opt == 'mom':
        optimizer = tf.train.MomentumOptimizer(rate, FLAGS.momentum)
    else:
        optimizer = tf.train.GradientDescentOptimizer(rate)
        pass

    phases = build_graph(A, B, optimizer, optimizer, global_step)

    metric_names = []
    for _, _, metrics, _, _ in phases:
        metric_names.extend([x.name[:-2] for x in metrics])

    summaries = tf.constant(1)
    summary_writer = None
    if FLAGS.log:
        summaries = tf.summary.merge_all()
        assert not summaries is None
        summary_writer = tf.summary.FileWriter(FLAGS.log,
                                               tf.get_default_graph(),
                                               flush_secs=20)

    saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep)

    init = tf.global_variables_initializer()
    tf.get_default_graph().finalize()

    graph = tf.get_default_graph()
    graph.finalize()
    graph_def = graph.as_graph_def()
    for node in graph_def.node:
        if node.name[0] == 'D':
            #print(node.name)
            pass

    picpac_config = dict(
        seed=2016,
        shuffle=True,
        reshuffle=True,
        batch=1,
        split=1,
        split_fold=0,
        round_div=FLAGS.stride,
        channels=FLAGS.channels,
        stratify=True,
        pert_color1=20,
        pert_angle=20,
        pert_min_scale=0.9,
        pert_max_scale=1.5,
        pert_hflip=True,
        pert_vflip=True,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )

    streamA = picpac.ImageStream(FLAGS.A,
                                 perturb=True,
                                 loop=True,
                                 **picpac_config)
    streamB = picpac.ImageStream(FLAGS.B,
                                 perturb=True,
                                 loop=True,
                                 **picpac_config)

    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True

    with tf.Session(config=sess_config) as sess:
        sess.run(init)
        if FLAGS.resume:
            saver.restore(sess, FLAGS.resume)
        step = 0
        epoch = 0
        global_start_time = time.time()
        while step < FLAGS.max_steps:
            start_time = time.time()
            avg = np.array([0] * len(metric_names), dtype=np.float32)
            for _ in tqdm(range(FLAGS.epoch_steps), leave=False):
                a, _, _ = streamA.next()
                b, _, _ = streamB.next()
                forward_dict = {}
                m_off = 0
                for _, train, metrics, forward, show in phases:
                    feed_dict = {A: a, B: b}
                    feed_dict.update(forward_dict)
                    _, m, f, ss = sess.run([train, metrics, forward, show],
                                           feed_dict=feed_dict)
                    forward_dict = dict(zip(forward, f))
                    m_off_n = m_off + len(metrics)
                    avg[m_off:m_off_n] += m
                    m_off = m_off_n
                    pass
                step += 1
                pass
            avg /= FLAGS.epoch_steps
            stop_time = time.time()
            txt = ', '.join(
                ['%s=%.4f' % (a, b) for a, b in zip(metric_names, list(avg))])
            print('step %d: elapsed=%.4f time=%.4f %s' %
                  (step, (stop_time - global_start_time),
                   (stop_time - start_time), txt))
            if summary_writer:
                s, = sess.run([summaries], feed_dict=feed_dict)
                summary_writer.add_summary(s, step)
            epoch += 1
            if epoch and (epoch % FLAGS.ckpt_epochs == 0):
                ckpt_path = '%s/%d' % (FLAGS.model, step)
                start_time = time.time()
                saver.save(sess, ckpt_path)
                stop_time = time.time()
                print('epoch %d step %d, saving to %s in %.4fs.' %
                      (epoch, step, ckpt_path, stop_time - start_time))
            pass
        pass
    if summary_writer:
        summary_writer.close()
    pass
Esempio n. 19
0
def run_training(start_time):
    picpac_config = dict(
        seed=2016,
        #loop=True,
        shuffle=True,
        reshuffle=True,
        # max_size = 400,
        resize_width=FLAGS.img_size,
        resize_height=FLAGS.img_size,
        batch=FLAGS.batch_size,
        pert_angle=5,
        pert_hflip=True,
        pert_vflip=False,
        channels=3,
        # mixin = None
        # mixin_group_delta=1,
        # stratify=True,
        #pad=False,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )
    if FLAGS.train_db:
        tr_stream = picpac.ImageStream(FLAGS.train_db,
                                       perturb=False,
                                       loop=True,
                                       **picpac_config)
        tr_val_stream = picpac.ImageStream(FLAGS.train_db,
                                           perturb=False,
                                           loop=False,
                                           **picpac_config)
    else:
        return
    if FLAGS.test_db:
        te_stream = picpac.ImageStream(FLAGS.test_db,
                                       perturb=False,
                                       loop=False,
                                       **picpac_config)
    # use VGG model
    slim = tf.contrib.slim
    # Tell TensorFlow that the model will be built into the default Graph.
    with tf.Graph().as_default():
        # Input images and labels.
        images_placeholder = tf.placeholder(tf.float32,
                                            shape=(FLAGS.batch_size,
                                                   FLAGS.img_size,
                                                   FLAGS.img_size, 3),
                                            name='images')
        labels_placeholder = tf.placeholder(tf.float32,
                                            shape=(FLAGS.batch_size, ),
                                            name='labels')

        # model inference, loss and accuracy
        predictions, _ = inference(images_placeholder, FLAGS.num_classes,
                                   FLAGS.net)
        loss, accuracy = fcn_loss(predictions, labels_placeholder)

        # Prediction results in a batch.
        top_k_op = tf.nn.in_top_k(predictions,
                                  tf.to_int32(labels_placeholder),
                                  1,
                                  name="accuracy")

        tf.summary.scalar('xentropy_mean', loss)
        tf.summary.scalar('accuracy_mean', accuracy)

        # Specify the optimization scheme:
        optimizer = tf.train.GradientDescentOptimizer(
            learning_rate=FLAGS.learning_rate)
        # create_train_op that ensures that when we evaluate it to get the loss,
        # the update_ops are done and the gradient updates are computed.
        train_op = optimizer.minimize(loss)
        tf.summary.scalar('learning_rate', FLAGS.learning_rate)
        tf.summary.scalar('batch_size', FLAGS.batch_size)

        # tf.summary only track the changes of a tensor.
        # Our accuracy is given by a scaler number.
        # So create two tf.Variable objects to summarize evaluation results
        # initial evaluation accuracy to 0.5
        eval_tr = tf.Variable(0.5, name="eval_validationdata")
        eval_te = tf.Variable(0.5, name="eval_trainingdata")
        eval_s1 = tf.summary.scalar('eval_validationdata', eval_te)
        eval_s2 = tf.summary.scalar('eval_trainingdata', eval_tr)

        # The op for initializing the variables.
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        # Create a saver for writing training checkpoints.
        saver = tf.train.Saver(max_to_keep=1000)
        # Build the summary Tensor based on the TF collection of Summaries
        summary_op = tf.summary.merge_all()
        # Instantiate a SummaryWriter to output summaries and the Graph
        summary_writer = tf.summary.FileWriter(FLAGS.log_dir,
                                               tf.get_default_graph())

        config = tf.ConfigProto()
        # config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = 0.3

        loss_sum = 0
        acc_sum = 0
        batch_sum = 0

        with tf.Session(config=config) as sess:
            sess.run(init_op)
            # Start input enqueue threads.
            # coord = tf.train.Coordinator()
            # threads = tf.train.start_queue_runners(coord=coord)

            for step in xrange(FLAGS.max_steps + 1):
                # Get value of a batch of training images and labels
                images, labels, pad = tr_stream.next()

                feed_dict = {
                    images_placeholder: images,
                    labels_placeholder: labels
                }
                # start training
                _, loss_value, acc_value = sess.run([train_op, loss, accuracy],
                                                    feed_dict=feed_dict)
                loss_sum += loss_value * FLAGS.batch_size
                acc_sum += acc_value * FLAGS.batch_size
                batch_sum += FLAGS.batch_size
                # Print an overview fairly often.
                if step % 100 == 0:
                    duration = time.time() - start_time
                    print('Step %d: loss = %.4f, accuracy = %.4f (%.3f sec)' %
                          (step, loss_sum / batch_sum, acc_sum / batch_sum,
                           duration))

                    summary_str = sess.run(summary_op, feed_dict=feed_dict)
                    summary_writer.add_summary(summary_str, step)
                    summary_writer.flush()

                    loss_sum = 0
                    acc_sum = 0
                    batch_sum = 0

                # Save a checkpoint and evaluate the model periodically
                if step != 0:
                    if step % FLAGS.save_steps == 0 or step == FLAGS.max_steps:
                        checkpoint_file = os.path.join(FLAGS.log_dir,
                                                       'model.ckpt')
                        saver.save(sess, checkpoint_file, global_step=step)

                        # Evaluate against the training set
                        tr_val_stream.reset()
                        batch_sum2 = 0
                        acc_sum2 = 0
                        loss_sum2 = 0
                        for images, labels, pad in tr_val_stream:
                            bs = FLAGS.batch_size - pad
                            if pad > 0:
                                np.resize(images, (bs, ) + images.shape[1:])
                                np.resize(labels, (bs, ))
                            feed_dict = {
                                images_placeholder: images,
                                labels_placeholder: labels
                            }
                            loss_value, acc_value = sess.run(
                                [loss, accuracy], feed_dict=feed_dict)
                            batch_sum2 += bs
                            loss_sum2 += loss_value * bs
                            acc_sum2 += acc_value * bs
                            pass
                        print(
                            'Step %d: training loss = %.4f, accuracy = %.4f (%.f sec)'
                            % (step, loss_sum2 / batch_sum2, acc_sum2 /
                               batch_sum2, time.time() - start_time))

                        # Evaluate against the validation set
                        te_stream.reset()
                        batch_sum3 = 0
                        acc_sum3 = 0
                        loss_sum3 = 0
                        for images, labels, pad in te_stream:
                            bs = FLAGS.batch_size - pad
                            if pad > 0:
                                np.resize(images, (bs, ) + images.shape[1:])
                                np.resize(labels, (bs, ))
                            feed_dict = {
                                images_placeholder: images,
                                labels_placeholder: labels
                            }
                            loss_value, acc_value = sess.run(
                                [loss, accuracy], feed_dict=feed_dict)
                            batch_sum3 += bs
                            loss_sum3 += loss_value * bs
                            acc_sum3 += acc_value * bs
                            pass
                        print(
                            'Step %d: validation loss = %.4f, accuracy = %.4f (%.f sec)'
                            % (step, loss_sum3 / batch_sum3, acc_sum3 /
                               batch_sum3, time.time() - start_time))

                        # update validation results
                        sess.run(eval_tr.assign(acc_sum2 / batch_sum2))
                        sess.run(eval_te.assign(acc_sum3 / batch_sum3))
                        # print(eval_tr.eval())
                        # print(eval_te.eval())
                        merged_str = sess.run(tf.summary.merge(
                            [eval_s1, eval_s2]),
                                              feed_dict=feed_dict)
                        summary_writer.add_summary(merged_str, step)
                        summary_writer.flush()

            print('Done training for %d steps.' % (FLAGS.max_steps))
Esempio n. 20
0
def main(_):
    X = tf.placeholder(tf.float32,
                       shape=(None, None, None, FLAGS.channels),
                       name="images")
    model = Model(X, FLAGS.model, 'xxx')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        model.loader(sess)

        gal = Gallery('output', cols=2, ext='.jpg')
        CC = 0
        if FLAGS.list:
            with open(FLAGS.list, 'r') as f:
                for path in f:
                    if CC > FLAGS.max:
                        break
                    path = path.strip()
                    print(path)
                    if FLAGS.channels == 3:
                        image = cv2.imread(path, cv2.IMREAD_COLOR)
                    elif FLAGS.channels == 1:
                        image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
                        image = np.expand_dims(image, axis=3)
                    else:
                        assert False
                    H, W = image.shape[:2]

                    if max(H, W) > FLAGS.max_size:
                        f = FLAGS.max_size / max(H, W)
                        image = cv2.resize(image, None, fx=f, fy=f)
                        H, W = image.shape[:2]
                    '''BEGIN INFERENCE'''
                    # clip edge
                    H = H // FLAGS.clip_stride * FLAGS.clip_stride
                    W = W // FLAGS.clip_stride * FLAGS.clip_stride
                    image = image[:H, :W].astype(np.float32)
                    # change from BGR to RGB
                    if FLAGS.channels == 3 and FLAGS.colorspace == 'RGB':
                        image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                        batch = np.expand_dims(image_rgb, axis=0)
                    else:
                        batch = np.expand_dims(image, axis=0)
                    prob = sess.run(model.prob, feed_dict={X: batch})
                    '''END INFERENCE'''
                    save_prediction_image(gal, image, prob[0])
                    CC += 1
        if FLAGS.db:
            stream = picpac.ImageStream({
                'db':
                FLAGS.db,
                'loop':
                False,
                'channels':
                FLAGS.channels,
                'colorspace':
                FLAGS.colorspace,
                'threads':
                1,
                'shuffle':
                False,
                'transforms': [{
                    "type": "resize",
                    "max_size": FLAGS.max_size
                }, {
                    "type": "clip",
                    "round": FLAGS.clip_stride
                }]
            })
            for meta, batch in stream:
                if CC > FLAGS.max:
                    break
                print(meta.ids)
                image = batch[0]
                if FLAGS.channels == 3 and FLAGS.colorspace == 'RGB':
                    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
                prob = sess.run(model.prob, feed_dict={X: batch})
                '''END INFERENCE'''
                save_prediction_image(gal, image, prob[0])
                CC += 1
        gal.flush()
    pass
Esempio n. 21
0
def eval():
    picpac_config = dict(
        seed=2016,
        shuffle=False,
        reshuffle=False,
        # max_size = 400,
        # resize_width=FLAGS.img_size,
        # resize_height=FLAGS.img_size,
        batch=1,
        pert_angle=5,
        pert_hflip=True,
        pert_vflip=False,
        channels=3,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )
    te_stream = picpac.ImageStream(FLAGS.test_db,
                                   perturb=False,
                                   loop=False,
                                   **picpac_config)
    with tf.Graph().as_default():
        images_placeholder = tf.placeholder(tf.float32,
                                            shape=(1, None, None, 3),
                                            name='images')
        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=(1, ),
                                            name='labels')

        resized_images = tf.image.resize_images(images_placeholder,
                                                size=(FLAGS.img_size,
                                                      FLAGS.img_size))
        # inference model
        logits, _ = inference(resized_images,
                              FLAGS.num_classes,
                              FLAGS.net,
                              is_training=False)
        scores = tf.nn.softmax(logits, dim=-1, name=None)
        # Calculate predictions
        top_k_op = tf.nn.in_top_k(predictions=logits,
                                  targets=labels_placeholder,
                                  k=FLAGS.num_classes - 1,
                                  name="accuracy")

        checkpoint_file = os.path.join(FLAGS.checkpoint_dir,
                                       'model.ckpt-' + FLAGS.ckpt_step)
        saver = tf.train.Saver()

        with tf.Session() as sess:
            saver.restore(sess, checkpoint_file)
            htmlf = open(os.path.join(FLAGS.outdir, FLAGS.html), 'w')
            num = 0
            true_count = 0
            for images, labels, pad in te_stream:

                predictions, correct = sess.run([scores, top_k_op],
                                                feed_dict={
                                                    images_placeholder: images,
                                                    labels_placeholder: labels
                                                })
                print('image %s score: %s, correct: %s' %
                      (num, predictions, np.sum(correct)))
                # save images
                path = os.path.join(FLAGS.outdir, FLAGS.imagedir,
                                    str(num) + '.jpg')
                cv2.imwrite(path, images[0])
                # wirte to html
                htmlf.write(
                    "<div style='float:left; width:400;height:350;'><img src={} width='300'><br>score={}<br>groundtruth={}<br>prediction={}</div>\n"
                    .format(os.path.join(FLAGS.imagedir,
                                         str(num) + '.jpg'), predictions[0][1],
                            labels[0], correct[0]))

                num += 1
                true_count += np.sum(correct)
            # Compute precisions
            precision = true_count / num
            print('precision = {}'.format(precision))

            htmlf.write('<br>total accuracy = {0:.5}\n'.format(precision))
            htmlf.close()
Esempio n. 22
0
def main(_):
    X = tf.placeholder(tf.float32, shape=(None, None, None, 3), name="images")
    anchor_th = tf.constant(FLAGS.anchor_th, tf.float32)
    nms_max = tf.constant(FLAGS.nms_max, tf.int32)
    nms_th = tf.constant(FLAGS.nms_th, tf.float32)
    model = Model(X, anchor_th, nms_max, nms_th, FLAGS.model, 'xxx')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        model.loader(sess)
        if FLAGS.input:
            assert os.path.exists(FLAGS.input)
            image = cv2.imread(FLAGS.input, cv2.IMREAD_COLOR)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            batch = np.expand_dims(image, axis=0).astype(dtype=np.float32)
            preds = sess.run(model.predictions, feed_dict={X: batch})
            save_prediction_image(FLAGS.input + '.prob.png', image, preds)
        if FLAGS.input_db:
            assert os.path.exists(FLAGS.input_db)
            import picpac
            from gallery import Gallery
            picpac_config = {
                "db":
                FLAGS.input_db,
                "loop":
                False,
                "shuffle":
                False,
                "reshuffle":
                False,
                "annotate":
                False,
                "channels":
                3,
                "stratify":
                False,
                "dtype":
                "float32",
                "colorspace":
                "RGB",
                "batch":
                1,
                "transforms": [
                    {
                        "type": "resize",
                        "max_size": FLAGS.max_size,
                        "min_size": FLAGS.min_size
                    },
                    {
                        "type": "clip",
                        "round": FLAGS.stride
                    },
                ]
            }
            stream = picpac.ImageStream(picpac_config)
            gal = Gallery('output')
            C = 0
            for _, images in stream:
                preds = sess.run(model.predictions, feed_dict={X: images})
                save_prediction_image(gal.next(), images[0], preds)

                C += 1
                if FLAGS.max and C >= FLAGS.max:
                    break
                pass
            pass
            gal.flush()
    pass
Esempio n. 23
0
def main(_):
    logging.basicConfig(level=FLAGS.verbose)
    try:
        os.makedirs(FLAGS.model)
    except:
        pass
    assert FLAGS.db and os.path.exists(FLAGS.db)

    X = tf.placeholder(tf.float32,
                       shape=(None, None, None, FLAGS.channels),
                       name="images")
    Y = tf.placeholder(tf.float32, shape=(None, None, None, 1), name="labels")

    with slim.arg_scope([slim.conv2d, slim.conv2d_transpose, slim.max_pool2d],
                        padding='SAME'):
        logits, stride = getattr(nets, FLAGS.net)(X, num_classes=FLAGS.classes)
    loss, metrics = fcn_loss(logits, Y)
    #tf.summary.scalar("loss", loss)
    metric_names = [x.name[:-2] for x in metrics]
    for x in metrics:
        tf.summary.scalar(x.name.replace(':', '_'), x)

    rate = FLAGS.learning_rate
    if FLAGS.opt == 'adam':
        rate /= 100
    global_step = tf.Variable(0, name='global_step', trainable=False)
    if FLAGS.decay:
        rate = tf.train.exponential_decay(rate,
                                          global_step,
                                          FLAGS.decay_steps,
                                          FLAGS.decay_rate,
                                          staircase=True)
        tf.summary.scalar('learning_rate', rate)
    if FLAGS.opt == 'adam':
        optimizer = tf.train.AdamOptimizer(rate)
    elif FLAGS.opt == 'mom':
        optimizer = tf.train.MomentumOptimizer(rate, FLAGS.momentum)
    else:
        optimizer = tf.train.GradientDescentOptimizer(rate)
        pass

    train_op = optimizer.minimize(loss, global_step=global_step)
    summary_writer = None
    train_summaries = tf.constant(1)
    #val_summaries = tf.constant(1)
    if FLAGS.log:
        train_summaries = tf.summary.merge_all()
        assert not train_summaries is None
        if not train_summaries is None:
            summary_writer = tf.summary.FileWriter(FLAGS.log,
                                                   tf.get_default_graph(),
                                                   flush_secs=20)
        #assert train_summaries
        #val_summaries = tf.summary.merge_all(key='val_summaries')

    picpac_config = dict(
        seed=2016,
        shuffle=True,
        reshuffle=True,
        batch=1,
        split=1,
        split_fold=0,
        round_div=stride,
        annotate='json',
        channels=FLAGS.channels,
        stratify=True,
        pert_color1=20,
        pert_angle=180,
        pert_min_scale=0.8,
        pert_max_scale=1.2,
        pert_hflip=True,
        pert_vflip=True,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )
    if not FLAGS.mixin is None:
        picpac_config['mixin'] = FLAGS.mixin
        picpac_config['mixin_group_delta'] = 1

    tr_stream = picpac.ImageStream(FLAGS.db,
                                   perturb=True,
                                   loop=True,
                                   **picpac_config)
    val_stream = None
    if FLAGS.val:
        assert os.path.exists(FLAGS.val)
        val_stream = picpac.ImageStream(FLAGS.val,
                                        perturb=False,
                                        loop=False,
                                        **picpac_config)

    init = tf.global_variables_initializer()

    saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    # check if padding have been properly setup
    # this should be ensured if all layers are added via slim
    graph = tf.get_default_graph()
    graph.finalize()
    graph_def = graph.as_graph_def()

    with tf.Session(config=config) as sess:
        sess.run(init)
        if FLAGS.resume:
            saver.restore(sess, FLAGS.resume)
        step = 0
        epoch = 0
        global_start_time = time.time()
        while step < FLAGS.max_steps:
            start_time = time.time()
            avg = np.array([0] * len(metrics), dtype=np.float32)
            for _ in tqdm(range(FLAGS.epoch_steps), leave=False):
                images, labels, _ = tr_stream.next()
                feed_dict = {X: images, Y: labels}
                mm, _, summaries = sess.run(
                    [metrics, train_op, train_summaries], feed_dict=feed_dict)
                avg += np.array(mm)
                step += 1
                pass
            avg /= FLAGS.epoch_steps
            stop_time = time.time()
            txt = ', '.join(
                ['%s=%.4f' % (a, b) for a, b in zip(metric_names, list(avg))])
            print('step %d: elapsed=%.4f time=%.4f, %s' %
                  (step, (stop_time - global_start_time),
                   (stop_time - start_time), txt))
            if summary_writer:
                summary_writer.add_summary(summaries, step)
            epoch += 1
            if epoch and (epoch % FLAGS.ckpt_epochs == 0):
                ckpt_path = '%s/%d' % (FLAGS.model, step)
                start_time = time.time()
                saver.save(sess, ckpt_path)
                stop_time = time.time()
                print('epoch %d step %d, saving to %s in %.4fs.' %
                      (epoch, step, ckpt_path, stop_time - start_time))
            if epoch and (epoch % FLAGS.val_epochs == 0) and val_stream:
                val_stream.reset()
                avg = np.array([0] * len(metrics), dtype=np.float32)
                cc = 0
                for images, labels, _ in val_stream:
                    _, H, W, _ = images.shape
                    if FLAGS.max_size:
                        if max(H, W) > FLAGS.max_size:
                            continue
                    if FLAGS.padding == 'SAME' and FLAGS.clip:
                        images = clip(images, stride)
                        labels = clip(labels, stride)
                    feed_dict = {X: images, Y: labels}
                    #print("XXX", images.shape)
                    mm, = sess.run([metrics], feed_dict=feed_dict)
                    avg += np.array(mm)
                    cc += 1
                avg /= cc
                txt = ', '.join([
                    '%s=%.4f' % (a, b) for a, b in zip(metric_names, list(avg))
                ])
                print('epoch %d step %d, validation %s' % (epoch, step, txt))

            pass
        pass
    if summary_writer:
        summary_writer.close()
    pass
Esempio n. 24
0
def main (_):

    try:
        os.makedirs(FLAGS.model)
    except:
        pass

    X = tf.placeholder(tf.float32, shape=(None, None, None, FLAGS.channels), name="images")
    # ground truth labels
    Y = tf.placeholder(tf.float32, shape=(None, ), name="labels")
    is_training = tf.placeholder(tf.bool, name="is_training")


    # load network
    logits = getattr(nets, FLAGS.net)(X, is_training, FLAGS.classes)

    loss, metrics = fcn_loss(logits, Y)

    metric_names = [x.name[:-2] for x in metrics]

    global_step = tf.Variable(0, name='global_step', trainable=False)
    rate = FLAGS.learning_rate
    rate = tf.train.exponential_decay(rate, global_step, FLAGS.decay_steps, FLAGS.decay_rate, staircase=True)
    optimizer = tf.train.AdamOptimizer(rate)

    train_op = optimizer.minimize(loss, global_step=global_step)
    init = tf.global_variables_initializer()
    saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep)

    picpac_config = dict(seed=2017,
                cache=True,                 # set to False for large datasets
                shuffle=True,
                reshuffle=True,
                batch=FLAGS.batch,
                channels=FLAGS.channels,    # 3 by default
                stratify=True,
                pert_colorspace='SAME',     # do not change colorspace
                                            # which typically means BGR
                                            # or HSV or Lab
                pert_color1=20,
                pert_color2=20,
                pert_color3=20,
                pert_angle=20,
                pert_min_scale=0.9,
                pert_max_scale=1.2,
                pert_hflip=True,
                pert_vflip=True,
                channel_first=False # this is tensorflow specific
                                    # Caffe's dimension order is different.
                )
    if not FLAGS.mixin is None:
        assert os.path.exists(FLAGS.mixin)
        picpac_config['mixin'] = FLAGS.mixin
        picpac_config['mixin_group_delta'] = 1
        pass
    # do we want to apply below to validation images?
    if not FLAGS.resize_width is None:
        config['resize_width'] = FLAGS.resize_width
    if not FLAGS.resize_height is None:
        config['resize_height'] = FLAGS.resize_height
    if not FLAGS.max_size is None:
        config['max_size'] = FLAGS.max_size

    # load training db
    assert FLAGS.db and os.path.exists(FLAGS.db)
    stream = picpac.ImageStream(FLAGS.db, perturb=True, loop=True, **picpac_config)

    # load validation db
    val_stream = None
    if FLAGS.val_db:
        assert os.path.exists(FLAGS.val_db)
        val_stream = picpac.ImageStream(FLAGS.val_db, perturb=False, loop=False, **picpac_config)


    config = tf.ConfigProto()
    config.gpu_options.allow_growth=True

    with tf.Session(config=config) as sess:
        sess.run(init)
        if FLAGS.resume:
            saver.restore(sess, FLAGS.resume)
        step = 0
        epoch = 0
        global_start_time = time.time()
        while step < FLAGS.max_steps:
            start_time = time.time()
            avg = np.array([0] * len(metrics), dtype=np.float32)
            for _ in tqdm(range(FLAGS.epoch_steps), leave=False):
                images, labels, _ = stream.next()
                feed_dict = {X: images, Y: labels, is_training: True}
                mm, _, = sess.run([metrics, train_op, ], feed_dict=feed_dict)
                avg += np.array(mm)
                pass
            step += FLAGS.epoch_steps
            avg /= FLAGS.epoch_steps
            stop_time = time.time()
            txt = ', '.join(['%s=%.4f' % (a, b) for a, b in zip(metric_names, list(avg))])
            print('step %d: elapsed=%.4f time=%.4f, %s'
                    % (step, (stop_time - global_start_time), (stop_time - start_time), txt))
            epoch += 1

            # validation
            if epoch and (epoch % FLAGS.val_epochs == 0) and not val_stream is None:
                # evaluation
                val_stream.reset()
                avg = np.array([0] * len(metrics), dtype=np.float32)
                C = 0
                for images, labels, _ in val_stream:
                    feed_dict = {X: images, Y: labels, is_training: False}
                    mm = sess.run(metrics, feed_dict=feed_dict)
                    avg += np.array(mm)
                    C += 1
                    pass
                avg /= C
                txt = ', '.join(['%s=%.4f' % (a, b) for a, b in zip(metric_names, list(avg))])
                print('step %d, validation: %s' % (step, txt))

            # model saving
            if epoch and (epoch % FLAGS.ckpt_epochs == 0):
                ckpt_path = '%s/%d' % (FLAGS.model, step)
                saver.save(sess, ckpt_path)
                print('step %d, saving to %s.' % (step, ckpt_path))
            pass
        pass
    pass
Esempio n. 25
0
def main(_):
    X = tf.placeholder(tf.float32,
                       shape=(None, None, None, FLAGS.channels),
                       name="images")
    is_training = tf.placeholder(tf.bool, name="is_training")
    model = Model(X, is_training, FLAGS.model, 'xxx')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        model.loader(sess)
        if FLAGS.input:
            assert False
            '''
            assert os.path.exists(FLAGS.input)
            image = cv2.imread(FLAGS.input, cv2.IMREAD_COLOR)
            batch = np.expand_dims(image, axis=0).astype(dtype=np.float32)
            boxes, probs = sess.run([model.boxes, model.probs], feed_dict={X: batch, is_training: False})
            save_prediction_image(FLAGS.input + '.prob.png', image, boxes, probs)
            '''
        if FLAGS.input_db:
            assert os.path.exists(FLAGS.input_db)
            from gallery import Gallery
            picpac_config = {
                "db":
                FLAGS.input_db,
                "loop":
                False,
                "shuffle":
                False,
                "reshuffle":
                False,
                "annotate":
                False,
                "channels":
                FLAGS.channels,
                "colorspace":
                "RGB",
                "stratify":
                False,
                "dtype":
                "float32",
                "batch":
                1,
                "annotate": [1],
                "transforms": [
                    {
                        "type": "resize",
                        "max_size": FLAGS.max_size
                    },
                    {
                        "type": "clip",
                        "round": FLAGS.backbone_stride
                    },
                    {
                        "type": "keypoints.basic",
                        'downsize': 1,
                        'classes': 1,
                        'radius': 25
                    },
                    {
                        "type": "drop"
                    },  # remove original annotation 
                ]
            }
            stream = picpac.ImageStream(picpac_config)
            gal = Gallery('out')
            C = 0
            for meta, images, _, label, _ in stream:
                shape = list(images.shape)
                shape[1] //= FLAGS.stride
                shape[2] //= FLAGS.stride
                shape[3] = 1
                prob, offsets = sess.run([model.prob, model.offsets],
                                         feed_dict={
                                             X: images,
                                             is_training: False
                                         })
                kp = cpp.predict_basic_keypoints(prob[0], offsets[0],
                                                 FLAGS.stride, 0.1)
                print(images.shape, prob.shape, offsets.shape, kp)
                save_prediction_image(gal.next(), images[0], kp,
                                      label[0, :, :, 0], prob[0, :, :, 0])
                C += 1
                if FLAGS.max and C >= FLAGS.max:
                    break
                pass
            pass
            gal.flush()
    pass
Esempio n. 26
0
def create_picpac_stream(db_path, is_training):
    assert os.path.exists(db_path)
    augments = []
    if is_training and FLAGS.augments:
        with open(FLAGS.augments, 'r') as f:
            augments = json.loads(f.read())
        print("Using augments:")
        print(json.dumps(augments))
        pass

    print("CACHE:", FLAGS.cache)
    statinfo = os.stat(db_path)
    if statinfo.st_size > 0x40000000 and FLAGS.cache:
        print_red(
            "DB is probably too big too be cached, consider adding --cache 0")

    picpac_config = {
        "db":
        db_path,
        "loop":
        is_training,
        "shuffle":
        is_training,
        "reshuffle":
        is_training,
        "annotate": [1],
        "channels":
        FLAGS.channels,
        "stratify":
        is_training,
        "dtype":
        "float32",
        "batch":
        FLAGS.batch,
        "colorspace":
        "RGB",
        "cache":
        FLAGS.cache,
        "transforms":
        augments + [
            {
                "type": "resize",
                "max_size": FLAGS.max_size
            },
            {
                "type": "clip",
                "round": FLAGS.backbone_stride
            },
            {
                "type": "anchors.dense.box",
                'downsize': FLAGS.anchor_stride
            },
            {
                "type": "box_feature"
            },
            {
                "type": "rasterize"
            },
        ]
    }
    if is_training and not FLAGS.mixin is None:
        #print("mixin support is incomplete in new picpac.")
        assert os.path.exists(FLAGS.mixin)
        picpac_config['mixin'] = FLAGS.mixin
        picpac_config['mixin_group_reset'] = 0
        picpac_config['mixin_group_delta'] = 1
    return picpac.ImageStream(picpac_config)
Esempio n. 27
0
def run_training():
    try:
        os.makedirs(FLAGS.model)
    except:
        pass
    config = dict(
        seed=1996,
        shuffle=True,
        reshuffle=True,
        #resize_width=FLAGS.resize,
        #resize_height=FLAGS.resize,
        batch=FLAGS.batch,
        split=FLAGS.split,
        split_fold=FLAGS.split_fold,
        channels=FLAGS.channels,
        stratify=True,
        #mixin="db0",
        #mixin_group_delta=0,
        pert_color1=10,
        pert_color2=10,
        pert_color3=10,
        #pert_angle=10,
        pert_min_scale=0.8,
        pert_max_scale=1.2,
        #pad=False,
        #pert_hflip=True,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )
    # training stream
    tr_stream = picpac.ImageStream(FLAGS.db,
                                   split_negate=False,
                                   perturb=False,
                                   loop=True,
                                   **config)
    te_stream = None
    if FLAGS.test_steps > 0:
        # testing stream, "negate" inverts the image selection specified by split & split_fold
        # so different images are used for training and testing
        if FLAGS.test_db:
            if FLAGS.split > 1:
                print(
                    "Cannot use cross-validation & evaluation db at the same time"
                )
                print("If --test-db is specified, do not set --split")
                raise Exception("bad parameters")
            te_stream = picpac.ImageStream(FLAGS.test_db,
                                           perturb=False,
                                           loop=False,
                                           **config)
        elif FLAGS.split > 1:
            te_stream = picpac.ImageStream(FLAGS.db,
                                           split_negate=True,
                                           perturb=False,
                                           loop=False,
                                           **config)
            pass
        pass

    with tf.Graph().as_default():
        X = tf.placeholder(tf.float32,
                           shape=(FLAGS.batch, None, None, FLAGS.channels),
                           name="images")
        Y_ = tf.placeholder(tf.float32, shape=(FLAGS.batch, ), name="labels")
        logits = inference(X, FLAGS.classes)

        loss, accuracy = fcn_loss(logits, Y_)
        train_op = training(loss, FLAGS.learning_rate)
        #summary_op = tf.merge_all_summaries()
        #summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, tf.get_default_graph())

        init = tf.global_variables_initializer()

        #graph_txt = tf.get_default_graph().as_graph_def().SerializeToString()
        #with open(os.path.join(FLAGS.train_dir, "graph"), "w") as f:
        #    f.write(graph_txt)
        #    pass

        saver = tf.train.Saver()

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        #run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        #run_metadata = tf.RunMetadata()
        loss_sum = 0
        accuracy_sum = 0
        batch_sum = 0
        with tf.Session(config=config) as sess:
            sess.run(init)
            for step in xrange(FLAGS.max_steps):
                images, labels, pad = tr_stream.next()
                #print(images.shape, labels.shape)
                feed_dict = {X: images, Y_: labels}
                #l_v, s_v = sess.run([logits, score], feed_dict=feed_dict)
                #print(images.shape, s_v.shape, l_v.shape)
                #_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
                _, loss_value, accuracy_value, ll = sess.run(
                    [train_op, loss, accuracy, logits], feed_dict=feed_dict)
                #print('XXX', labels[0], accuracy_value, ll[0])
                loss_sum += loss_value * FLAGS.batch
                accuracy_sum += accuracy_value * FLAGS.batch
                batch_sum += FLAGS.batch
                if (step + 1) % 1000 == 0:
                    #tl = timeline.Timeline(run_metadata.step_stats)
                    #ctf = tl.generate_chrome_trace_format()
                    #with open('timeline.json', 'w') as f:
                    #    f.write(ctf)

                    print(datetime.datetime.now())
                    print('step %d: loss = %.4f, accuracy = %.4f' %
                          (step + 1, loss_sum / batch_sum,
                           accuracy_sum / batch_sum))
                    loss_sum = 0
                    accuracy_sum = 0
                    batch_sum = 0
                    #summary_str = sess.run(summary_op, feed_dict=feed_dict)
                    #summary_writer.add_summary(summary_str, step)
                    #summary_writer.flush()
                if te_stream and (step + 1) % FLAGS.test_steps == 0:
                    # evaluation
                    te_stream.reset()
                    cmatrix = np.zeros((FLAGS.classes, FLAGS.classes))
                    total = 0
                    batch_sum2 = 0
                    loss_sum2 = 0
                    accuracy_sum2 = 0
                    for images, labels, pad in te_stream:
                        bs = FLAGS.batch - pad
                        total += 1
                        if pad > 0:
                            numpy.resize(images, (bs, ) + images.shape[1:])
                            numpy.resize(labels, (bs, ))

                        feed_dict = {X: images, Y_: labels}

                        loss_value, accuracy_value, ll = sess.run(
                            [loss, accuracy, logits], feed_dict=feed_dict)

                        batch_sum2 += bs
                        cmatrix[int(labels),
                                np.where(ll == np.max(ll))[1]] += np.divide(
                                    float(1),
                                    np.size(np.where(ll == np.max(ll))[1]))
                        loss_sum2 += loss_value * bs
                        #print(int(labels))
                        #print(cmatrix)
                        #print(np.size(np.where(ll == np.max(ll))[1]))
                        #print(ll)
                        accuracy_sum2 += accuracy_value * bs

                        pass
                    rowsum = np.sum(cmatrix, axis=1)
                    colsum = np.sum(cmatrix, axis=0)
                    #print(total)
                    #print(np.tile(rowsum,(FLAGS.classes,1)).transpose())
                    #print(np.tile(colsum,(FLAGS.classes,1)))
                    print('row---label; colum ---predict')
                    print(total)
                    print('evaluation: loss = %.4f, accuracy = %.4f' %
                          (loss_sum2 / batch_sum2, accuracy_sum2 / batch_sum2))
                    print('accuracy from confusion matrix = %.4f' %
                          np.divide(np.trace(cmatrix), float(total)))
                    print('absolute confusion matrix:')
                    print(cmatrix)
                    #print('confusion matrix divided by total:')
                    #print(np.divide(cmatrix,float(total)))
                    print('confusion matrix divided by col sum:')
                    print(np.divide(cmatrix, np.tile(colsum, (5, 1))))
                    print('confusion matrix divided by row sum:')
                    print(
                        np.divide(cmatrix,
                                  np.tile(rowsum, (5, 1)).transpose()))
                    print('Weighted kappa quadratic scores:')
                    print(quadratic_kappa(cmatrix))
                if (step + 1) % FLAGS.save_steps == 0 or (
                        step + 1) == FLAGS.max_steps:
                    ckpt_path = '%s/%d' % (FLAGS.model, (step + 1))
                    saver.save(sess, ckpt_path)
                pass
            pass
        pass
    pass
Esempio n. 28
0
def main(_):
    X = tf.placeholder(tf.float32, shape=(None, None, None, FLAGS.channels))
    model = Model(X, FLAGS.model, 'xxx')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    stream = picpac.ImageStream({
        'db':
        'scratch/val.db',
        'cache':
        False,
        'loop':
        False,
        'channels':
        FLAGS.channels,
        'shuffle':
        False,
        'batch':
        1,
        'raw': [1],
        'colorspace':
        'RGB',
        'transforms': [
            {
                "type": "resize",
                "max_size": FLAGS.max_size
            },
            {
                "type": "clip",
                "width": FLAGS.fix_size,
                "height": FLAGS.fix_size
            },
        ]
    })

    with tf.Session(config=config) as sess:
        model.loader(sess)
        lookup = {}
        C = 0
        for meta, batch in tqdm(stream, total=stream.size()):
            path = meta.raw[0][0].decode('ascii')
            probs = sess.run(model.probs, feed_dict={X: batch})
            case = '/'.join(path.split('/')[:-1]) + '/'
            if not case in lookup:
                lookup[case] = [0, np.zeros((14, ), dtype=np.float32)]
                pass
            case = lookup[case]
            case[0] = case[0] + 1
            case[1] += probs[0]
            C += 1
            if FLAGS.max > 0 and C >= FLAGS.max:
                break
            pass
        with open('predict.csv', 'w') as f, \
             open('predict.csv.full', 'w') as f2:

            for k, v in lookup.items():
                probs = np.reshape(v[1] / v[0], (7, 2))
                prob = np.sum(probs[:, 1])
                if prob > 0.5:
                    l = 1
                else:
                    l = 0
                f.write('%s,%d\n' % (k, l))
                f2.write('%s,%g\n' % (k, prob))
                pass
    pass
Esempio n. 29
0
def run_training ():
    seed = 1996
    config = dict(seed=seed,
                loop=True,
                shuffle=True,
                reshuffle=True,
                #resize_width=256,
                #resize_height=256,
                batch=1,
                split=1,
                split_fold=0,
                annotate='json',
                channels=FLAGS.channels,
                stratify=False,
                #mixin="db0",
                #mixin_group_delta=0,
                #pert_color1=10,
                #pert_angle=5,
                #pert_min_scale=0.8,
                #pert_max_scale=1.2,
                #pad=False,
                #pert_hflip=True,
                channel_first=False # this is tensorflow specific
                                    # Caffe's dimension order is different.
                )
    db='db'
    tr_stream = picpac.ImageStream(db, negate=False, perturb=True, **config)

    with tf.Graph().as_default():
        X = tf.placeholder(tf.float32, shape=(BATCH, None, None, FLAGS.channels), name="images")
        Y_ = tf.placeholder(tf.int32, shape=(BATCH, None, None, 1), name="labels")
        logits, score, params = inference(X)
        loss = fcn_loss(logits, Y_)
        train_op = training(loss, FLAGS.learning_rate)
        summary_op = tf.merge_all_summaries()
        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, tf.get_default_graph())

        init = tf.initialize_all_variables()

        graph_txt = tf.get_default_graph().as_graph_def().SerializeToString()
        with open(os.path.join(FLAGS.train_dir, "graph"), "w") as f:
            f.write(graph_txt)
            pass

        saver = tf.train.Saver()

        with tf.Session() as sess:
            sess.run(init)
            for step in xrange(FLAGS.max_steps):
                images, labels, pad = tr_stream.next()
                #print(images.shape, labels.shape)
                feed_dict = {X: images,
                             Y_: labels}
                #l_v, s_v = sess.run([logits, score], feed_dict=feed_dict)
                #print(images.shape, s_v.shape, l_v.shape)
                _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
                if step % 100 == 0:
                    print('step %d: loss = %.4f' % (step, loss_value))
                    summary_str = sess.run(summary_op, feed_dict=feed_dict)
                    summary_writer.add_summary(summary_str, step)
                    summary_writer.flush()
                if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                    saver.save(sess, os.path.join(FLAGS.train_dir, "model"), global_step=step)
                pass
            pass
        pass
    pass
Esempio n. 30
0
def run_training():
    config = dict(
        seed=1996,
        shuffle=True,
        reshuffle=True,
        resize_width=FLAGS.resize,
        resize_height=FLAGS.resize,
        batch=FLAGS.batch,
        split=FLAGS.split,
        split_fold=FLAGS.split_fold,
        channels=FLAGS.channels,
        stratify=True,
        pert_color1=10,
        pert_color2=10,
        pert_color3=10,
        pert_angle=10,
        pert_min_scale=0.8,
        pert_max_scale=1.2,
        #pad=False,
        #pert_hflip=True,
        channel_first=False  # this is tensorflow specific
        # Caffe's dimension order is different.
    )
    # training stream
    tr_stream = picpac.ImageStream(FLAGS.db,
                                   split_negate=False,
                                   perturb=True,
                                   loop=True,
                                   **config)
    te_stream = None
    if FLAGS.test_steps > 0:
        # testing stream, "negate" inverts the image selection specified by split & split_fold
        # so different images are used for training and testing
        if FLAGS.test_db:
            if FLAGS.split > 1:
                print(
                    "Cannot use cross-validation & evaluation db at the same time"
                )
                print("If --test-db is specified, do not set --split")
                raise Exception("bad parameters")
            te_stream = picpac.ImageStream(FLAGS.test_db,
                                           perturb=False,
                                           loop=False,
                                           **config)
        elif FLAGS.split > 1:
            te_stream = picpac.ImageStream(FLAGS.db,
                                           split_negate=True,
                                           perturb=False,
                                           loop=False,
                                           **config)
            pass
        pass

    with tf.Graph().as_default():
        shape = (FLAGS.batch, FLAGS.resize, FLAGS.resize / FLAGS.branches,
                 FLAGS.channels)
        Xs = [
            tf.placeholder(tf.float32, shape=shape, name="input%d" % i)
            for i in range(FLAGS.branches)
        ]
        Y = tf.placeholder(tf.float32, shape=(FLAGS.batch, ), name="labels")

        if FLAGS.disable:
            logits = multipod(
                [X for i, X in enumerate(Xs) if i != FLAGS.disable],
                FLAGS.classes)
        else:
            logits = multipod(Xs, FLAGS.classes)

        loss, accuracy = fcn_loss(logits, Y)
        train_op = training(loss, FLAGS.learning_rate)

        init = tf.global_variables_initializer()

        saver = tf.train.Saver()

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True

        loss_sum = 0
        accuracy_sum = 0
        batch_sum = 0
        with tf.Session(config=config) as sess:
            sess.run(init)
            for step in xrange(FLAGS.max_steps):
                images, labels, pad = tr_stream.next()
                #print(images.shape, labels.shape)
                feed_dict = make_feed_dict(Xs, Y, images, labels)

                _, loss_value, accuracy_value = sess.run(
                    [train_op, loss, accuracy], feed_dict=feed_dict)
                loss_sum += loss_value * FLAGS.batch
                accuracy_sum += accuracy_value * FLAGS.batch
                batch_sum += FLAGS.batch
                if step % 100 == 0:
                    #tl = timeline.Timeline(run_metadata.step_stats)
                    #ctf = tl.generate_chrome_trace_format()
                    #with open('timeline.json', 'w') as f:
                    #    f.write(ctf)

                    print(datetime.datetime.now())
                    print(
                        'step %d: loss = %.4f, accuracy = %.4f' %
                        (step, loss_sum / batch_sum, accuracy_sum / batch_sum))
                    loss_sum = 0
                    accuracy_sum = 0
                    batch_sum = 0
                if te_stream and step % FLAGS.test_steps == 0:
                    # evaluation
                    te_stream.reset()
                    batch_sum2 = 0
                    loss_sum2 = 0
                    accuracy_sum2 = 0
                    for images, labels, pad in te_stream:
                        bs = FLAGS.batch - pad
                        if pad > 0:
                            numpy.resize(images, (bs, ) + images.shape[1:])
                            numpy.resize(labels, (bs, ))
                        feed_dict = make_feed_dict(Xs, Y, images, labels)
                        _, loss_value, accuracy_value = sess.run(
                            [train_op, loss, accuracy], feed_dict=feed_dict)
                        batch_sum2 += bs
                        loss_sum2 += loss_value * bs
                        accuracy_sum2 += accuracy_value * bs
                        pass
                    print('evaluation: loss = %.4f, accuracy = %.4f' %
                          (loss_sum2 / batch_sum2, accuracy_sum2 / batch_sum2))
                if (step + 1) % FLAGS.save_steps == 0 or (
                        step + 1) == FLAGS.max_steps:
                    saver.save(sess,
                               os.path.join(FLAGS.train_dir, "model"),
                               global_step=step)
                pass
            pass
        pass
    pass