Esempio n. 1
0
    def test_se3(self):
        R, p, m = self.R, self.p, self.m
        X = np.vstack([np.hstack([R, skew(p) * R]), np.hstack([zero([3, 3]), R])])
        self.assertApprox(m.action, X)
        M = np.vstack([np.hstack([R, p]), np.matrix('0 0 0 1', np.double)])
        self.assertApprox(m.homogeneous, M)
        m2 = se3.SE3.Random()
        self.assertApprox((m * m2).homogeneous, m.homogeneous * m2.homogeneous)
        self.assertApprox((~m).homogeneous, npl.inv(m.homogeneous))

        p = rand(3)
        self.assertApprox(m * p, m.rotation * p + m.translation)
        self.assertApprox(m.actInv(p), m.rotation.T * p - m.rotation.T * m.translation)

        p = np.vstack([p, 1])
        self.assertApprox(m * p, m.homogeneous * p)
        self.assertApprox(m.actInv(p), npl.inv(m.homogeneous) * p)

        p = rand(6)
        self.assertApprox(m * p, m.action * p)
        self.assertApprox(m.actInv(p), npl.inv(m.action) * p)

        p = rand(5)
        with self.assertRaises(ValueError):
            m * p
        with self.assertRaises(ValueError):
            m.actInv(p)
        with self.assertRaises(ValueError):
            m.actInv('42')
Esempio n. 2
0
    def test_se3(self):
        R, p, m = self.R, self.p, self.m
        X = np.vstack(
            [np.hstack([R, pin.skew(p).dot(R)]),
             np.hstack([zero([3, 3]), R])])
        self.assertApprox(m.action, X)
        M = np.vstack([
            np.hstack([R, np.expand_dims(p, 1)]),
            np.array([[0., 0., 0., 1.]])
        ])
        self.assertApprox(m.homogeneous, M)
        m2 = pin.SE3.Random()
        self.assertApprox((m * m2).homogeneous,
                          m.homogeneous.dot(m2.homogeneous))
        self.assertApprox((~m).homogeneous, npl.inv(m.homogeneous))

        p = rand(3)
        self.assertApprox(m * p, m.rotation.dot(p) + m.translation)
        self.assertApprox(
            m.actInv(p),
            m.rotation.T.dot(p) - m.rotation.T.dot(m.translation))

        # Currently, the different cases do not throw the same exception type.
        # To have a more robust test, only Exception is checked.
        # In the comments, the most specific actual exception class at the time of writing
        p = rand(5)
        with self.assertRaises(Exception):  # RuntimeError
            m * p
        with self.assertRaises(Exception):  # RuntimeError
            m.actInv(p)
        with self.assertRaises(
                Exception
        ):  # Boost.Python.ArgumentError (subclass of TypeError)
            m.actInv('42')
Esempio n. 3
0
    def test_se3(self):
        R, p, m = self.R, self.p, self.m
        X = np.vstack(
            [np.hstack([R, skew(p) * R]),
             np.hstack([zero([3, 3]), R])])
        self.assertApprox(m.action, X)
        M = np.vstack([np.hstack([R, p]), np.matrix('0 0 0 1', np.double)])
        self.assertApprox(m.homogeneous, M)
        m2 = se3.SE3.Random()
        self.assertApprox((m * m2).homogeneous, m.homogeneous * m2.homogeneous)
        self.assertApprox((~m).homogeneous, npl.inv(m.homogeneous))

        p = rand(3)
        self.assertApprox(m * p, m.rotation * p + m.translation)
        self.assertApprox(m.actInv(p),
                          m.rotation.T * p - m.rotation.T * m.translation)

        p = np.vstack([p, 1])
        self.assertApprox(m * p, m.homogeneous * p)
        self.assertApprox(m.actInv(p), npl.inv(m.homogeneous) * p)

        p = rand(6)
        self.assertApprox(m * p, m.action * p)
        self.assertApprox(m.actInv(p), npl.inv(m.action) * p)

        p = rand(5)
        with self.assertRaises(ValueError):
            m * p
        with self.assertRaises(ValueError):
            m.actInv(p)
        with self.assertRaises(ValueError):
            m.actInv('42')
Esempio n. 4
0
    def test_se3(self):
        R, p, m = self.R, self.p, self.m
        X = np.vstack([np.hstack([R, skew(p) * R]), np.hstack([zero([3, 3]), R])])
        self.assertApprox(m.action, X)
        M = np.vstack([np.hstack([R, p]), np.matrix([0., 0., 0., 1.], np.double)])
        self.assertApprox(m.homogeneous, M)
        m2 = pin.SE3.Random()
        self.assertApprox((m * m2).homogeneous, m.homogeneous * m2.homogeneous)
        self.assertApprox((~m).homogeneous, npl.inv(m.homogeneous))

        p = rand(3)
        self.assertApprox(m * p, m.rotation * p + m.translation)
        self.assertApprox(m.actInv(p), m.rotation.T * p - m.rotation.T * m.translation)

        ## not supported
        # p = np.vstack([p, 1])
        # self.assertApprox(m * p, m.homogeneous * p)
        # self.assertApprox(m.actInv(p), npl.inv(m.homogeneous) * p)

        ## not supported
        # p = rand(6)
        # self.assertApprox(m * p, m.action * p)
        # self.assertApprox(m.actInv(p), npl.inv(m.action) * p)

        # Currently, the different cases do not throw the same exception type.
        # To have a more robust test, only Exception is checked.
        # In the comments, the most specific actual exception class at the time of writing
        p = rand(5)
        with self.assertRaises(Exception): # RuntimeError
            m * p
        with self.assertRaises(Exception): # RuntimeError
            m.actInv(p)
        with self.assertRaises(Exception): # Boost.Python.ArgumentError (subclass of TypeError)
            m.actInv('42')
Esempio n. 5
0
    def test_se3(self):
        R, p, m = self.R, self.p, self.m
        X = np.vstack(
            [np.hstack([R, skew(p) * R]),
             np.hstack([zero([3, 3]), R])])
        self.assertApprox(m.action, X)
        M = np.vstack(
            [np.hstack([R, p]),
             np.matrix([0., 0., 0., 1.], np.double)])
        self.assertApprox(m.homogeneous, M)
        m2 = se3.SE3.Random()
        self.assertApprox((m * m2).homogeneous, m.homogeneous * m2.homogeneous)
        self.assertApprox((~m).homogeneous, npl.inv(m.homogeneous))

        p = rand(3)
        self.assertApprox(m * p, m.rotation * p + m.translation)
        self.assertApprox(m.actInv(p),
                          m.rotation.T * p - m.rotation.T * m.translation)

        ## not supported
        # p = np.vstack([p, 1])
        # self.assertApprox(m * p, m.homogeneous * p)
        # self.assertApprox(m.actInv(p), npl.inv(m.homogeneous) * p)

        ## not supported
        # p = rand(6)
        # self.assertApprox(m * p, m.action * p)
        # self.assertApprox(m.actInv(p), npl.inv(m.action) * p)

        # Currently, the different cases do not throw the same exception type.
        # To have a more robust test, only Exception is checked.
        # In the comments, the most specific actual exception class at the time of writing
        p = rand(5)
        with self.assertRaises(Exception):  # RuntimeError
            m * p
        with self.assertRaises(Exception):  # RuntimeError
            m.actInv(p)
        with self.assertRaises(
                Exception
        ):  # Boost.Python.ArgumentError (subclass of TypeError)
            m.actInv('42')