def test_generator_processor_threads(tmpdir, bees_video, filelists_path, pipeline_config): repo = Repository(str(tmpdir)) pipelines = [ Pipeline([Image, Timestamp], [PipelineResult], **pipeline_config) for _ in range(3) ] gen_processor = GeneratorProcessor(pipelines, lambda: BBBinaryRepoSink(repo, camId=0)) gen = video_generator(bees_video, ts_format="2015", path_filelists=filelists_path) gen_processor(gen) fnames = list(repo.iter_fnames()) assert len(fnames) == 1 num_frames = 0 for fname in repo.iter_fnames(): with open(fname, "rb") as f: fc = FrameContainer.read(f) num_frames += len(list(fc.frames)) assert num_frames == 3
def test_generator_processor_video(tmpdir, bees_video, filelists_path, pipeline_config): repo = Repository(str(tmpdir)) pipeline = Pipeline([Image, Timestamp], [PipelineResult], **pipeline_config) gen_processor = GeneratorProcessor(pipeline, lambda: BBBinaryRepoSink(repo, camId=0)) gen = video_generator(bees_video, ts_format="2015", path_filelists=filelists_path) gen_processor(gen) fnames = list(repo.iter_fnames()) assert len(fnames) == 1 last_ts = 0 num_frames = 0 for fname in repo.iter_fnames(): print("{}: {}".format(fname, os.path.getsize(fname))) with open(fname, "rb") as f: fc = FrameContainer.read(f) num_frames += len(list(fc.frames)) assert fc.dataSources[0].filename == os.path.basename(bees_video) assert last_ts < fc.fromTimestamp last_ts = fc.fromTimestamp assert num_frames == 3
def test_video_generator_2015(bees_video, filelists_path): gen = video_generator(bees_video, ts_format="2015", path_filelists=filelists_path) results = list(gen) assert len(results) == 3 prev_ts = 0.0 for _, _, ts in results: assert ts > prev_ts prev_ts = ts
def test_video_generator_2016(bees_video_2016): gen = video_generator(bees_video_2016, ts_format="2016", path_filelists=None) results = list(gen) assert len(results) == 4 prev_ts = 0.0 for _, _, ts in results: assert ts > prev_ts prev_ts = ts
def test_video_generator_2015(bees_video, filelists_path): gen = video_generator(bees_video, ts_format='2015', path_filelists=filelists_path) results = list(gen) assert (len(results) == 3) prev_ts = 0. for _, _, ts in results: assert (ts > prev_ts) prev_ts = ts
def test_video_generator_2016(bees_video_2016): gen = video_generator(bees_video_2016, ts_format='2016', path_filelists=None) results = list(gen) assert (len(results) == 4) prev_ts = 0. for _, _, ts in results: assert (ts > prev_ts) prev_ts = ts
def process_video(args): config = get_auto_config() logger.info('Initializing {} pipeline(s)'.format(args.num_threads)) plines = [Pipeline([Image, Timestamp], [PipelineResult], **config) for _ in range(args.num_threads)] logger.info('Loading bb_binary repository {}'.format(args.repo_output_path)) repo = Repository(args.repo_output_path) camId, _, _ = parse_video_fname(args.video_path) logger.info('Parsed camId = {}'.format(camId)) gen_processor = GeneratorProcessor(plines, lambda: BBBinaryRepoSink(repo, camId=camId)) logger.info('Processing video frames from {}'.format(args.video_path)) gen_processor(video_generator(args.video_path, args.timestamp_format, args.text_root_path))
def test_generator_processor_threads(tmpdir, bees_video, filelists_path, pipeline_config): repo = Repository(str(tmpdir)) pipelines = [Pipeline([Image, Timestamp], [PipelineResult], **pipeline_config) for _ in range(3)] gen_processor = GeneratorProcessor( pipelines, lambda: BBBinaryRepoSink(repo, camId=0)) gen = video_generator(bees_video, ts_format='2015', path_filelists=filelists_path) gen_processor(gen) fnames = list(repo.iter_fnames()) assert len(fnames) == 1 num_frames = 0 for fname in repo.iter_fnames(): with open(fname, 'rb') as f: fc = FrameContainer.read(f) num_frames += len(list(fc.frames)) assert(num_frames == 3)
def process_video(video_path, repo_output_path, ts_format, text_root_path, rank): info = lambda msg: logger.info('Process {}: {}'.format(rank, msg)) import theano from pipeline import Pipeline from pipeline.cmdline import logger from pipeline.pipeline import GeneratorProcessor, get_auto_config from pipeline.io import BBBinaryRepoSink, video_generator from pipeline.objects import PipelineResult, Image, Timestamp from bb_binary import Repository, parse_video_fname repo_output_path = os.path.join(repo_output_path, 'process_{}'.format(rank)) info('Theano compile dir: {}'.format(theano.config.base_compiledir)) info('Output dir: {}'.format(repo_output_path)) config = get_auto_config() info('Initializing pipeline') pipeline = Pipeline([Image, Timestamp], [PipelineResult], **config) info('Loading bb_binary repository {}'.format(repo_output_path)) repo = Repository(repo_output_path) camId, _, _ = parse_video_fname(video_path) info('Parsed camId = {}'.format(camId)) gen_processor = GeneratorProcessor( pipeline, lambda: BBBinaryRepoSink(repo, camId=camId)) log_callback = lambda frame_idx: info('Processing frame {} from {}'.format( frame_idx, video_path)) ffmpeg_stderr_fd = open('process_{}_ffmpeg_stderr.log'.format(rank), 'w') info('Processing video frames from {}'.format(video_path)) gen_processor( video_generator(video_path, ts_format, text_root_path, log_callback, ffmpeg_stderr_fd))
def process_video(args): config = get_auto_config() logger.info('Initializing {} pipeline(s)'.format(args.num_threads)) plines = [ Pipeline([Image, Timestamp], [PipelineResult], **config) for _ in range(args.num_threads) ] logger.info('Loading bb_binary repository {}'.format( args.repo_output_path)) repo = Repository(args.repo_output_path) camId, _, _ = parse_video_fname(args.video_path) logger.info('Parsed camId = {}'.format(camId)) gen_processor = GeneratorProcessor( plines, lambda: BBBinaryRepoSink(repo, camId=camId)) logger.info('Processing video frames from {}'.format(args.video_path)) gen_processor( video_generator(args.video_path, args.timestamp_format, args.text_root_path))
def process_video(video_path, repo_output_path, ts_format, text_root_path, rank): info = lambda msg: logger.info(f"Process {rank}: {msg}") import theano from pipeline import Pipeline from pipeline.cmdline import logger from pipeline.pipeline import GeneratorProcessor, get_auto_config from pipeline.io import BBBinaryRepoSink, video_generator from pipeline.objects import PipelineResult, Image, Timestamp from bb_binary import Repository, parse_video_fname repo_output_path = os.path.join(repo_output_path, f"process_{rank}") info(f"Theano compile dir: {theano.config.base_compiledir}") info(f"Output dir: {repo_output_path}") config = get_auto_config() info("Initializing pipeline") pipeline = Pipeline([Image, Timestamp], [PipelineResult], **config) info(f"Loading bb_binary repository {repo_output_path}") repo = Repository(repo_output_path) camId, _, _ = parse_video_fname(video_path) info(f"Parsed camId = {camId}") gen_processor = GeneratorProcessor( pipeline, lambda: BBBinaryRepoSink(repo, camId=camId)) log_callback = lambda frame_idx: info( f"Processing frame {frame_idx} from {video_path}") ffmpeg_stderr_fd = open(f"process_{rank}_ffmpeg_stderr.log", "w") info(f"Processing video frames from {video_path}") gen_processor( video_generator(video_path, ts_format, text_root_path, log_callback, ffmpeg_stderr_fd))
def test_generator_processor_video(tmpdir, bees_video, filelists_path, pipeline_config): repo = Repository(str(tmpdir)) pipeline = Pipeline([Image, Timestamp], [PipelineResult], **pipeline_config) gen_processor = GeneratorProcessor( pipeline, lambda: BBBinaryRepoSink(repo, camId=0)) gen = video_generator(bees_video, ts_format='2015', path_filelists=filelists_path) gen_processor(gen) fnames = list(repo.iter_fnames()) assert len(fnames) == 1 last_ts = 0 num_frames = 0 for fname in repo.iter_fnames(): print("{}: {}".format(fname, os.path.getsize(fname))) with open(fname, 'rb') as f: fc = FrameContainer.read(f) num_frames += len(list(fc.frames)) assert fc.dataSources[0].filename == os.path.basename(bees_video) assert last_ts < fc.fromTimestamp last_ts = fc.fromTimestamp assert(num_frames == 3)
def process_video(video_path, repo_output_path, ts_format, text_root_path, rank): info = lambda msg: logger.info('Process {}: {}'.format(rank, msg)) import theano from pipeline import Pipeline from pipeline.cmdline import logger from pipeline.pipeline import GeneratorProcessor, get_auto_config from pipeline.io import BBBinaryRepoSink, video_generator from pipeline.objects import PipelineResult, Image, Timestamp from bb_binary import Repository, parse_video_fname repo_output_path = os.path.join(repo_output_path, 'process_{}'.format(rank)) info('Theano compile dir: {}'.format(theano.config.base_compiledir)) info('Output dir: {}'.format(repo_output_path)) config = get_auto_config() info('Initializing pipeline') pipeline = Pipeline([Image, Timestamp], [PipelineResult], **config) info('Loading bb_binary repository {}'.format(repo_output_path)) repo = Repository(repo_output_path) camId, _, _ = parse_video_fname(video_path) info('Parsed camId = {}'.format(camId)) gen_processor = GeneratorProcessor(pipeline, lambda: BBBinaryRepoSink(repo, camId=camId)) log_callback = lambda frame_idx: info('Processing frame {} from {}'.format(frame_idx, video_path)) ffmpeg_stderr_fd = open('process_{}_ffmpeg_stderr.log'.format(rank), 'w') info('Processing video frames from {}'.format(video_path)) gen_processor(video_generator(video_path, ts_format, text_root_path, log_callback, ffmpeg_stderr_fd))