Esempio n. 1
0
 def model4(key):
     return func.sample('n', dist.bernoulli(jnp.full((2, 2), 0.5)), key)
Esempio n. 2
0
 def model3(key):
     return func.sample('n', dist.bernoulli(jnp.array(1.)), key)
Esempio n. 3
0
def test_log_prob_bernoulli():
    n1 = dist.bernoulli(jnp.array(0.8))
    log_prob_0 = n1.log_prob(0)
    log_prob_1 = n1.log_prob(1)
    tu.check_close(log_prob_0, -1.609438)
    tu.check_close(log_prob_1, -0.22314353)
Esempio n. 4
0
 def model(key):
     keys = jax.random.split(key)
     n1 = func.sample('n1', dist.bernoulli(jnp.array(0.5)), keys[0])
     n2 = func.sample('n2', dist.binomial(jnp.array(1), n1), keys[1])
     return n2
Esempio n. 5
0
 def model(key):
     keys = jax.random.split(key)
     n1 = func.sample('n1', dist.bernoulli(jnp.array(2.0)), keys[1])
     return n1
Esempio n. 6
0
 def model(key):
     keys = jax.random.split(key, 2)
     n1 = func.sample('n1', dist.beta(jnp.array(0.5), jnp.array(0.5)),
                      keys[0])
     n2 = func.sample('n2', dist.bernoulli(n1), keys[1])
     return n2