Esempio n. 1
0
    def classify(self, command):
        self.setup()
        if self.batch_file is None:
            if self.gpu:
                self.sbatch_header = self.sbatch_gpu_header
            else:
                self.sbatch_header = self.sbatch_cpu_header
        else:
            with open(self.batch_file, 'r') as f:
                self.sbatch_header = f.read()
            self.sbatch_header = self.clean_header(self.sbatch_header)

        header_dict = {
            "REPLACE_NAME": self.job_base_name,
            "REPLACE_LOGFILE": "output.log",
            "REPLACE_WALLTIME": "00:55:00",
            "REPLACE_MEM": "8GB",
            "APPEND": ["#SBATCH --ntasks=1", "#SBATCH --cpus-per-task=4"]
        }
        header_dict = merge_dict(header_dict, self.batch_replace)
        self.update_header(header_dict)

        setup_dict = {
            "job_name": self.job_base_name,
            "conda_env": self.conda_env,
            "path_to_classifier": self.path_to_classifier,
            "command_opts": command
        }

        format_dict = {
            "done_file":
            self.done_file,
            "sbatch_header":
            self.sbatch_header,
            "task_setup":
            self.update_setup(setup_dict, self.task_setup['nearest_neighbour'])
        }

        slurm_script = self.slurm.format(**format_dict)

        new_hash = self.get_hash_from_string(slurm_script)
        if self._check_regenerate(new_hash):
            self.logger.debug("Regenerating")
            shutil.rmtree(self.output_dir, ignore_errors=True)
            mkdirs(self.output_dir)

            slurm_output_file = self.output_dir + "/job.slurm"
            with open(slurm_output_file, "w") as f:
                f.write(slurm_script)
            self.save_new_hash(new_hash)
            self.logger.info(f"Submitting batch job {slurm_output_file}")
            subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir)
        else:
            self.logger.info("Hash check passed, not rerunning")
            self.should_be_done()
        return True
Esempio n. 2
0
    def _run(self):

        # Get the m0diff files for everything
        for b in self.biascor_deps:
            for m in b.output["m0dif_dirs"]:
                self.logger.info(f"Looking at M0diff dir {m}")
                sim_number = 1
                if os.path.basename(m).isdigit():
                    sim_number = int(os.path.basename(m))
                files = [
                    f for f in sorted(os.listdir(m))
                    if f.endswith(".M0DIF") or f.endswith(".M0DIF.gz")
                ]
                for f in files:
                    muopt_num = int(f.split("MUOPT")[-1].split(".")[0])
                    fitopt_num = int(f.split("FITOPT")[-1].split("_")[0])
                    if muopt_num == 0:
                        muopt = "DEFAULT"
                    else:
                        muopt = b.output["muopts"][muopt_num -
                                                   1]  # Because 0 is default

                    if fitopt_num == 0:
                        fitopt = "DEFAULT"
                    else:
                        fitopt = b.output["fitopt_index"][fitopt_num]

                    self.biascor_m0diffs.append(
                        (b.name, sim_number, muopt, muopt_num, fitopt,
                         fitopt_num, os.path.join(m, f)))

        data_fitres_files = [
            os.path.join(l.output["fitres_dirs"][0],
                         l.output["fitopt_map"]["DEFAULT"])
            for l in self.lcfit_deps if l.output["is_data"]
        ]
        data_fitres_output = [
            d.split("/")[-4] + ".csv.gz" for d in data_fitres_files
        ]
        sim_fitres_files = [
            os.path.join(l.output["fitres_dirs"][0],
                         l.output["fitopt_map"]["DEFAULT"])
            for l in self.lcfit_deps if not l.output["is_data"]
        ]
        sim_fitres_output = [
            d.split("/")[-4] + ".csv.gz" for d in sim_fitres_files
        ]
        types = list(
            set([
                a for l in self.lcfit_deps
                for a in l.sim_task.output["types_dict"]["IA"]
            ]))
        input_yml_file = "input.yml"
        output_dict = {
            "COSMOMC": {
                "INPUT_FILES": self.cosmomc_input_files,
                "PARSED_FILES": self.cosmomc_output_files,
                "PARSED_COVOPTS": self.cosmomc_covopts,
                "PARAMS": self.params,
                "SHIFT": self.options.get("SHIFT", False),
                "PRIOR": self.options.get("PRIOR"),
                "NAMES": self.names,
                "CONTOUR_COVOPTS": self.covopts,
                "SINGULAR_BLIND": self.singular_blind,
            },
            "BIASCOR": {
                "WFIT_SUMMARY_INPUT": self.wsummary_files,
                "WFIT_SUMMARY_OUTPUT": "all_biascor.csv",
                "FITRES_INPUT": self.biascor_fitres_input_files,
                "FITRES_PROB_COLS": self.biascor_prob_col_names,
                "FITRES_PARSED": self.biascor_fitres_output_files,
                "M0DIFF_INPUTS": self.biascor_m0diffs,
                "M0DIFF_PARSED": self.biascor_m0diff_output,
                "FITRES_COMBINED": self.biascor_fitres_combined,
            },
            "OUTPUT_NAME": self.name,
            "BLIND": self.blind_params,
            "LCFIT": {
                "DATA_FITRES_INPUT": data_fitres_files,
                "SIM_FITRES_INPUT": sim_fitres_files,
                "DATA_FITRES_PARSED": data_fitres_output,
                "SIM_FITRES_PARSED": sim_fitres_output,
                "IA_TYPES": types,
            },
        }

        if self.batch_file is None:
            if self.gpu:
                self.sbatch_header = self.sbatch_gpu_header
            else:
                self.sbatch_header = self.sbatch_cpu_header
        else:
            with open(self.batch_file, 'r') as f:
                self.sbatch_header = f.read()
            self.sbatch_header = self.clean_header(self.sbatch_header)

        header_dict = {
            "REPLACE_NAME": self.job_name,
            "REPLACE_WALLTIME": "1:00:00",
            "REPLACE_LOGFILE": self.logfile,
            "REPLACE_MEM": "20GB",
            "APPEND": ["#SBATCH --ntasks=1", "#SBATCH --cpus-per-task=1"]
        }
        header_dict = merge_dict(header_dict, self.batch_replace)
        self.update_header(header_dict)
        setup_dict = {"output_dir": self.output_dir}

        format_dict = {
            "sbatch_header": self.sbatch_header,
            "task_setup": self.update_setup(setup_dict,
                                            self.task_setup['analyse']),
            "input_yml": input_yml_file
        }
        final_slurm = self.get_slurm_raw().format(**format_dict)

        new_hash = self.get_hash_from_string(final_slurm +
                                             json.dumps(output_dict))

        if self._check_regenerate(new_hash):
            self.logger.debug("Regenerating and launching task")
            shutil.rmtree(self.output_dir, ignore_errors=True)
            mkdirs(self.output_dir)
            self.save_new_hash(new_hash)
            for c in self.path_to_codes:
                shutil.copy(c, self.output_dir)
            input_yml_path = os.path.join(self.output_dir, input_yml_file)
            with open(input_yml_path, "w") as f:
                json.dump(output_dict, f, indent=2)
                self.logger.debug(
                    f"Input yml file written out to {input_yml_path}")

            slurm_output_file = os.path.join(self.output_dir, "slurm.job")
            with open(slurm_output_file, "w") as f:
                f.write(final_slurm)
            self.logger.info(f"Submitting batch job for analyse chains")
            subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir)
        else:
            self.logger.info("Hash check passed, not rerunning")
        return True
Esempio n. 3
0
    def classify(self, training):
        model = self.options.get("MODEL")
        model_path = ""
        if not training:
            assert model is not None, "If TRAIN is not specified, you have to point to a model to use"
            if not os.path.exists(get_output_loc(model)):
                for t in self.dependencies:
                    if model == t.name:
                        self.logger.debug(
                            f"Found task dependency {t.name} with model file {t.output['model_filename']}"
                        )
                        model = t.output["model_filename"]
            model_path = get_output_loc(model)
            self.logger.debug(f"Looking for model in {model_path}")
            assert os.path.exists(model_path), f"Cannot find {model_path}"

        types = self.get_types()
        if types is None:
            types = OrderedDict({
                "1": "Ia",
                "0": "unknown",
                "2": "SNIax",
                "3": "SNIa-pec",
                "20": "SNIIP",
                "21": "SNIIL",
                "22": "SNIIn",
                "29": "SNII",
                "32": "SNIb",
                "33": "SNIc",
                "39": "SNIbc",
                "41": "SLSN-I",
                "42": "SLSN-II",
                "43": "SLSN-R",
                "80": "AGN",
                "81": "galaxy",
                "98": "None",
                "99": "pending",
                "101": "Ia",
                "120": "SNII",
                "130": "SNIbc",
            })
        else:
            has_ia = False
            has_cc = False
            self.logger.debug(f"Input types set to {types}")
            for key, value in types.items():
                if value.upper() == "IA":
                    has_ia = True
                elif value.upper() in ["II", "IBC"]:
                    has_cc = True
            if not has_ia:
                self.logger.debug("No Ia type found, injecting type")
                types[1] = "Ia"
                types = dict(
                    sorted(types.items(),
                           key=lambda x: -1 if x[0] == 1 else x[0]))
                self.logger.debug(f"Inject types with Ias are {types}")
            if not has_cc:
                self.logger.debug("No cc type found, injecting type")
                types[29] = "II"
        str_types = json.dumps(types)
        self.logger.debug(f"Types set to {str_types}")

        sim_dep = self.get_simulation_dependency()
        light_curve_dir = sim_dep.output["photometry_dirs"][self.index]
        self.raw_dir = light_curve_dir
        fit = self.get_fit_dependency()
        fit_dir = f"" if fit is None else f"--fits_dir {fit['fitres_dirs'][self.index]}"
        cyclic = "--cyclic" if self.variant in ["vanilla", "variational"
                                                ] and self.cyclic else ""
        batch_size = f"--batch_size {self.batch_size}"
        num_layers = f"--num_layers {self.num_layers}"
        hidden_dim = f"--hidden_dim {self.hidden_dim}"
        variant = f"--model {self.variant}"
        if self.variant == "bayesian":
            variant += " --num_inference_samples 20"

        clump = sim_dep.output.get("clump_file")
        if clump is None:
            clump_txt = ""
        else:
            clump_txt = f"--photo_window_files {clump}"

        if self.batch_file is None:
            if self.gpu:
                self.sbatch_header = self.sbatch_gpu_header
            else:
                self.sbatch_header = self.sbatch_cpu_header
        else:
            with open(self.batch_file, 'r') as f:
                self.sbatch_header = f.read()
            self.sbatch_header = self.clean_header(self.sbatch_header)

        if self.has_yml:
            self.update_yml()
            setup_file = "supernnova_yml"
        else:
            setup_file = "supernnova"

        header_dict = {
            "REPLACE_NAME": self.job_base_name,
            "REPLACE_WALLTIME": "23:00:00",
            "REPLACE_LOGFILE": "output.log",
            "REPLACE_MEM": "32GB",
            "APPEND": ["#SBATCH --ntasks=1", "#SBATCH --cpus-per-task=1"]
        }
        header_dict = merge_dict(header_dict, self.batch_replace)
        self.update_header(header_dict)

        setup_dict = {
            "conda_env":
            self.conda_env,
            "dump_dir":
            self.dump_dir,
            "photometry_dir":
            light_curve_dir,
            "fit_dir":
            fit_dir,
            "path_to_classifier":
            self.path_to_classifier,
            "job_name":
            self.job_base_name,
            "command":
            "--train_rnn" if training else "--validate_rnn",
            "sntypes":
            str_types,
            "variant":
            variant,
            "cyclic":
            cyclic,
            "model":
            "" if training else f"--model_files {model_path}",
            "phot":
            "",
            "test_or_train":
            "" if training else "--data_testing",
            "redshift":
            "--redshift " + self.redshift,
            "norm":
            "--norm " + self.norm,
            "done_file":
            self.done_file,
            "clump":
            clump_txt,
            "done_file2":
            self.done_file2,
            "partition":
            "gpu2" if self.gpu else "broadwl",
            "gres":
            "#SBATCH --gres=gpu:1" if self.gpu else "",
            "cuda":
            "--use_cuda" if self.gpu else "",
            "clean_command":
            f"rm -rf {self.dump_dir}/processed" if self.clean else "",
            "seed":
            f"--seed {self.seed}" if self.seed else "",
            "batch_size":
            batch_size,
            "num_layers":
            num_layers,
            "hidden_dim":
            hidden_dim,
            "data_yml":
            self.output_data_yml,
            "classification_yml":
            self.output_classification_yml,
            "classification_command":
            "train_rnn" if training else "validate_rnn"
        }

        format_dict = {
            "sbatch_header":
            self.sbatch_header,
            "task_setup":
            self.update_setup(setup_dict, self.task_setup[setup_file])
        }

        slurm_output_file = self.output_dir + "/job.slurm"
        self.logger.info(
            f"Running SuperNNova, slurm job outputting to {slurm_output_file}")
        slurm_text = self.slurm.format(**format_dict)

        new_hash = self.get_hash_from_string(slurm_text)

        if not self._check_regenerate(new_hash):
            self.should_be_done()
        else:
            self.logger.info("Rerunning. Cleaning output_dir")
            shutil.rmtree(self.output_dir, ignore_errors=True)
            mkdirs(self.output_dir)
            if self.has_yml:
                with open(self.output_data_yml, 'w') as f:
                    f.write(self.data_yml)
                with open(self.output_classification_yml, 'w') as f:
                    f.write(self.classification_yml)

            self.save_new_hash(new_hash)

            with open(slurm_output_file, "w") as f:
                f.write(slurm_text)

            self.logger.info(
                f"Submitting batch job to {'train' if training else 'predict using'} SuperNNova"
            )
            subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir)

        return True
Esempio n. 4
0
    def _run(self):

        val_p = self.options.get("PHOTFLAG_DETECT")
        val_c = self.options.get("CUTWIN_SNR_NODETECT")
        photflag = f"PHOTFLAG_DETECT = {val_p}" if val_p else ""
        cutwin = f"CUTWIN_SNR_NODETECT = {val_c}" if val_c else ""
        command_string = self.clump_command.format(
            genversion=self.genversion,
            data_path=self.data_path,
            opt_setpkmjd=self.opt_setpkmjd,
            photflag=photflag,
            cutwin_snr_nodetect=cutwin,
            photflag_mskrej=self.photflag_mskrej)

        if self.batch_file is None:
            if self.gpu:
                self.sbatch_header = self.sbatch_gpu_header
            else:
                self.sbatch_header = self.sbatch_cpu_header
        else:
            with open(self.batch_file, 'r') as f:
                self.sbatch_header = f.read()
            self.sbatch_header = self.clean_header(self.sbatch_header)

        header_dict = {
            "REPLACE_NAME": self.job_name,
            "REPLACE_WALLTIME": "0:20:00",
            "REPLACE_LOGFILE": self.logfile,
            "REPLACE_MEM": "2GB",
            "APPEND": ["#SBATCH --ntasks=1", "#SBATCH --cpus-per-task=1"]
        }
        header_dict = merge_dict(header_dict, self.batch_replace)
        self.update_header(header_dict)
        setup_dict = {
            "path_to_task": self.path_to_task,
            "done_file": self.done_file
        }
        format_dict = {
            "sbatch_header":
            self.sbatch_header,
            "task_setup":
            self.update_setup(setup_dict, self.task_setup['dataprep'])
        }
        #format_dict = {"job_name": self.job_name, "log_file": self.logfile, "path_to_task": self.path_to_task, "done_file": self.done_file}
        final_slurm = self.slurm.format(**format_dict)

        new_hash = self.get_hash_from_string(command_string + final_slurm)

        if self._check_regenerate(new_hash):
            self.logger.debug("Regenerating and launching task")
            shutil.rmtree(self.output_dir, ignore_errors=True)
            mkdirs(self.output_dir)
            self.save_new_hash(new_hash)
            slurm_output_file = os.path.join(self.output_dir, "slurm.job")
            clump_file = os.path.join(self.output_dir, "clump.nml")
            with open(slurm_output_file, "w") as f:
                f.write(final_slurm)
            with open(clump_file, "w") as f:
                f.write(command_string)

            self.logger.info(f"Submitting batch job for data prep")
            subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir)
        else:
            self.should_be_done()
            self.logger.info("Hash check passed, not rerunning")
        return True
Esempio n. 5
0
    def _run(self):

        if self.static:
            self.logger.info(
                "CMB only constraints detected, copying static files")

            cosmomc_static_loc = get_data_loc(self.static_path +
                                              self.ini_prefix)
            if cosmomc_static_loc is None:
                self.logger.error(
                    "Seems like we can't find the static chains...")
                return False
            else:

                new_hash = self.get_hash_from_string(cosmomc_static_loc)

                if self._check_regenerate(new_hash):
                    self.logger.debug("Regenerating and copying static chains")
                    shutil.rmtree(self.chain_dir, ignore_errors=True)
                    shutil.copytree(cosmomc_static_loc, self.chain_dir)
                    for done_file in self.done_files:
                        df = os.path.join(self.output_dir, done_file)
                        with open(df, "w") as f:
                            f.write("SUCCESS")
                    self.save_new_hash(new_hash)

                else:
                    self.should_be_done()
                    self.logger.info("Hash check passed, not rerunning")
        else:
            ini_filecontents = self.get_ini_file()
            if ini_filecontents is None:
                return False

        if self.batch_file is None:
            if self.gpu:
                self.sbatch_header = self.sbatch_gpu_header
            else:
                self.sbatch_header = self.sbatch_cpu_header
        else:
            with open(self.batch_file, 'r') as f:
                self.sbatch_header = f.read()
            self.sbatch_header = self.clean_header(self.sbatch_header)

        header_dict = {
            "REPLACE_NAME":
            self.job_name,
            "REPLACE_WALLTIME":
            "34:00:00",
            "REPLACE_LOGFILE":
            self.logfile,
            "REPLACE_MEM":
            "2GB",
            "APPEND": [
                f"#SBATCH --ntasks={self.ntasks}",
                f"#SBATCH --array=1-{len(self.ini_files)}",
                "#SBATCH --cpus-per-task=1"
            ]
        }
        header_dict = merge_dict(header_dict, self.batch_replace)
        self.update_header(header_dict)

        setup_dict = {
            "done_files": " ".join(self.done_files),
            "path_to_cosmomc": self.path_to_cosmomc,
            "output_dir": self.output_dir,
            "ini_files": " ".join(self.ini_files),
            "num_jobs": len(self.ini_files),
            "num_walkers": self.num_walkers,
        }

        format_dict = {
            "sbatch_header": self.sbatch_header,
            "task_setup": self.update_setup(setup_dict,
                                            self.task_setup['cosmomc'])
        }
        final_slurm = self.slurm.format(**format_dict)

        new_hash = self.get_hash_from_string(final_slurm +
                                             " ".join(ini_filecontents))

        if self._check_regenerate(new_hash):
            self.logger.debug("Regenerating and launching task")
            shutil.rmtree(self.output_dir, ignore_errors=True)
            mkdirs(self.output_dir)
            self.save_new_hash(new_hash)
            slurm_output_file = os.path.join(self.output_dir, "slurm.job")
            with open(slurm_output_file, "w") as f:
                f.write(final_slurm)
            for file, content in zip(self.ini_files, ini_filecontents):
                filepath = os.path.join(self.output_dir, file)
                with open(filepath, "w") as f:
                    f.write(content)
            mkdirs(self.chain_dir)

            needed_dirs = [
                "data", "paramnames", "camb", "batch1", "batch2", "batch3"
            ]
            for d in needed_dirs:
                self.logger.debug(f"Creating symlink to {d} dir")
                original_data_dir = os.path.join(self.path_to_cosmomc, d)
                new_data_dir = os.path.join(self.output_dir, d)
                os.symlink(original_data_dir,
                           new_data_dir,
                           target_is_directory=True)

            self.logger.info(f"Submitting batch job for data prep")
            subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir)
        else:
            self.should_be_done()
            self.logger.info("Hash check passed, not rerunning")
        return True
Esempio n. 6
0
    def _run(self):
        sys_scale = self.calculate_input()

        if self.batch_file is None:
            if self.gpu:
                self.sbatch_header = self.sbatch_gpu_header
            else:
                self.sbatch_header = self.sbatch_cpu_header
        else:
            with open(self.batch_file, 'r') as f:
                self.sbatch_header = f.read()
            self.sbatch_header = self.clean_header(self.sbatch_header)

        header_dict = {
            "REPLACE_NAME": self.job_name,
            "REPLACE_WALLTIME": "02:30:00",
            "REPLACE_LOGFILE": self.logfile,
            "REPLACE_MEM": str(self.batch_mem),
            "APPEND": ["#SBATCH --ntasks-per-node=1"]
        }
        header_dict = merge_dict(header_dict, self.batch_replace)
        self.update_header(header_dict)
        self.logger.debug(
            f"Binned: {self.binned}, Rebinned x1: {self.rebinned_x1}, Rebinned c: {self.rebinned_c}"
        )
        setup_dict = {
            "path_to_code": self.path_to_code,
            "input_file": self.input_file,
            "output_dir": self.output_dir,
            "unbinned": "" if self.binned else "-u",
            "nbin_x1": self.rebinned_x1,
            "nbin_c": self.rebinned_c,
            "subtract_vpec": "" if not self.subtract_vpec else "-s",
        }
        format_dict = {
            "sbatch_header":
            self.sbatch_header,
            "task_setup":
            self.update_setup(setup_dict, self.task_setup['create_cov']),
            "done_file":
            self.done_file,
        }
        final_slurm = self.slurm.format(**format_dict)

        final_output_for_hash = self.get_output_string() + yaml.safe_dump(
            sys_scale, width=2048) + final_slurm

        new_hash = self.get_hash_from_string(final_output_for_hash)

        if self._check_regenerate(new_hash):
            self.logger.debug("Regenerating and launching task")
            shutil.rmtree(self.output_dir, ignore_errors=True)
            mkdirs(self.output_dir)
            mkdirs(self.config_dir)
            self.save_new_hash(new_hash)
            # Write sys scales and the main input file
            with open(self.sys_file_out, "w") as f:
                f.write(yaml.safe_dump(sys_scale, width=2048))

            with open(self.input_file, "w") as f:
                f.write(self.get_output_string())
            # Write out slurm job script
            slurm_output_file = os.path.join(self.output_dir, "slurm.job")
            with open(slurm_output_file, "w") as f:
                f.write(final_slurm)

            self.logger.info(f"Submitting batch job for create covariance")
            subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir)
        else:
            self.should_be_done()
            self.logger.info("Hash check passed, not rerunning")
        return True
Esempio n. 7
0
    def classify(self, mode):
        header_dict = {
                "REPLACE_NAME": self.job_base_name,
                "REPLACE_LOGFILE": "output.log",
                "REPLACE_WALLTIME": "15:00:00", # TODO: scale based on number of heatmaps
                "REPLACE_MEM": "8GB",
                # "APPEND": ["#SBATCH --ntasks=1", "#SBATCH --cpus-per-task=8"]
                }
        header_dict = merge_dict(header_dict, self.batch_replace)
        if self.batch_file is None:
            if self.gpu:
                self.sbatch_header = self.sbatch_gpu_header
            else:
                self.sbatch_header = self.sbatch_cpu_header
        else:
            with open(self.batch_file, 'r') as f:
                self.sbatch_header = f.read()
            self.sbatch_header = self.clean_header(self.sbatch_header)

        self.update_header(header_dict)

        setup_dict = {
                "conda_env": self.conda_env,
                "path_to_classifier": self.path_to_classifier,
                "heatmaps_path": self.heatmaps_path,
                "config_path": self.config_path,
                "done_file": self.done_file,
                }

        format_dict = {
                "sbatch_header": self.sbatch_header,
                "task_setup": self.update_setup(setup_dict, self.task_setup['scone'])
                }
        slurm_output_file = self.output_dir + "/job.slurm"
        self.logger.info(f"Running SCONE, slurm job outputting to {slurm_output_file}")
        slurm_script = self.slurm.format(**format_dict)

        new_hash = self.get_hash_from_string(slurm_script)

        # check success of intermediate steps and don't redo them if successful
        heatmaps_created = self._heatmap_creation_success() and self.keep_heatmaps

        failed = False
        if os.path.exists(self.done_file):
            self.logger.debug(f"Found done file at {self.done_file}")
            with open(self.done_file) as f:
                if "FAILURE" in f.read().upper():
                    failed = True

        if self._check_regenerate(new_hash) or failed:
            self.logger.debug("Regenerating")
            if not heatmaps_created:
                shutil.rmtree(self.output_dir, ignore_errors=True)
                mkdirs(self.output_dir)
            else:
                for f in [f.path for f in os.scandir(self.output_dir) if f.is_file()]:
                    os.remove(f)

            sim_dep = self.get_simulation_dependency()
            sim_dirs = sim_dep.output["photometry_dirs"]

            lcdata_paths = self._get_lcdata_paths(sim_dirs)
            metadata_paths = [path.replace("PHOT", "HEAD") for path in lcdata_paths]
            self._write_config_file(metadata_paths, lcdata_paths, mode, self.config_path) # TODO: what if they don't want to train on all sims?

            with open(slurm_output_file, "w") as f:
                f.write(slurm_script)
            self.save_new_hash(new_hash)
            self.logger.info(f"Submitting batch job {slurm_output_file}")
            subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir)
        else:
            self.logger.info("Hash check passed, not rerunning")
            self.should_be_done()
        return True