Esempio n. 1
0
def main(return_outputs=False):
    """Main; call as script with `return_outputs=False` or interactively with
    `return_outputs=True`"""
    from pisa.utils.plotter import Plotter
    args = parse_args()
    set_verbosity(args.v)
    plot_formats = []
    if args.pdf:
        plot_formats.append('pdf')
    if args.png:
        plot_formats.append('png')

    distribution_maker = DistributionMaker(pipelines=args.pipeline)  # pylint: disable=redefined-outer-name
    if args.select is not None:
        distribution_maker.select_params(args.select)

    outputs = distribution_maker.get_outputs(return_sum=args.return_sum)  # pylint: disable=redefined-outer-name
    if args.outdir:
        # TODO: unique filename: append hash (or hash per pipeline config)
        fname = 'distribution_maker_outputs.json.bz2'
        mkdir(args.outdir)
        fpath = expand(os.path.join(args.outdir, fname))
        to_file(outputs, fpath)

    if args.outdir and plot_formats:
        my_plotter = Plotter(outdir=args.outdir,
                             fmt=plot_formats,
                             log=False,
                             annotate=False)
        for num, output in enumerate(outputs):
            my_plotter.plot_2d_array(output, fname='dist_output_%d' % num)

    if return_outputs:
        return distribution_maker, outputs
Esempio n. 2
0
def main(return_outputs=False):
    """Main; call as script with `return_outputs=False` or interactively with
    `return_outputs=True`"""
    from pisa.utils.plotter import Plotter
    args = parse_args()
    set_verbosity(args.v)
    plot_formats = []
    if args.pdf:
        plot_formats.append('pdf')
    if args.png:
        plot_formats.append('png')
        
    detectors = Detectors(args.pipeline,shared_params=args.shared_params)
    Names = detectors.det_names
    if args.select is not None:
        detectors.select_params(args.select)

    outputs = detectors.get_outputs(return_sum=args.return_sum)

    #outputs = outputs[0].fluctuate(
     #               method='poisson', random_state=get_random_state([0, 0, 0]))

    if args.outdir:
        # TODO: unique filename: append hash (or hash per pipeline config)
        fname = 'detectors_outputs.json.bz2'
        mkdir(args.outdir)
        fpath = expand(os.path.join(args.outdir, fname))
        to_file(outputs, fpath)

    if args.outdir and plot_formats:
        my_plotter = Plotter(
            outdir=args.outdir,
            fmt=plot_formats, log=False,
            annotate=False
        )
        for num, output in enumerate(outputs):
            if args.return_sum:
                my_plotter.plot_2d_array(
                    output,
                    fname=Names[num]
                )
            else:
                for out in output:
                    my_plotter.plot_2d_array(
                        out,
                        fname=Names[num]
                    )

    if return_outputs:
        return detectors, outputs
Esempio n. 3
0
def main(return_outputs=False):
    """Run unit tests if `pipeline.py` is called as a script."""
    from pisa.utils.plotter import Plotter

    args = parse_args()
    set_verbosity(args.v)

    # Even if user specifies an integer on command line, it comes in as a
    # string. Try to convert to int (e.g. if `'1'` is passed to indicate the
    # second stage), and -- if successful -- use this as `args.only_stage`.
    # Otherwise, the string value passed will be used (e.g. `'osc'` could be
    # passed).
    try:
        only_stage_int = int(args.only_stage)
    except (ValueError, TypeError):
        pass
    else:
        args.only_stage = only_stage_int

    if args.outdir:
        mkdir(args.outdir)
    else:
        if args.pdf or args.png:
            raise ValueError("No --outdir provided, so cannot save images.")

    # Most basic parsing of the pipeline config (parsing only to this level
    # allows for simple strings to be specified as args for updating)
    bcp = PISAConfigParser()
    bcp.read(args.pipeline)

    # Update the config with any args specified on command line
    if args.arg is not None:
        for arg_list in args.arg:
            if len(arg_list) < 2:
                raise ValueError(
                    'Args must be formatted as: "section arg=val". Got "%s"'
                    " instead." % " ".join(arg_list))
            section = arg_list[0]
            remainder = " ".join(arg_list[1:])
            eq_split = remainder.split("=")
            newarg = eq_split[0].strip()
            value = ("=".join(eq_split[1:])).strip()
            logging.debug('Setting config section "%s" arg "%s" = "%s"',
                          section, newarg, value)
            try:
                bcp.set(section, newarg, value)
            except NoSectionError:
                logging.error(
                    'Invalid section "%s" specified. Must be one of %s',
                    section,
                    bcp.sections(),
                )
                raise

    # Instantiate the pipeline
    pipeline = Pipeline(bcp)  # pylint: disable=redefined-outer-name

    if args.select is not None:
        pipeline.select_params(args.select, error_on_missing=True)

    if args.only_stage is None:
        stop_idx = args.stop_after_stage
        try:
            stop_idx = int(stop_idx)
        except (TypeError, ValueError):
            pass
        if isinstance(stop_idx, str):
            stop_idx = pipeline.index(stop_idx)
        outputs = pipeline.get_outputs(idx=stop_idx)  # pylint: disable=redefined-outer-name
        if stop_idx is not None:
            stop_idx += 1
        indices = slice(0, stop_idx)
    else:
        assert args.stop_after_stage is None
        idx = pipeline.index(args.only_stage)
        stage = pipeline[idx]
        indices = slice(idx, idx + 1)

        # Create dummy inputs if necessary
        inputs = None
        if hasattr(stage, "input_binning"):
            logging.warning(
                "Stage requires input, so building dummy"
                " inputs of random numbers, with random state set to the input"
                " index according to alphabetical ordering of input names and"
                " filled in alphabetical ordering of dimension names.")
            input_maps = []
            tmp = deepcopy(stage.input_binning)
            alphabetical_binning = tmp.reorder_dimensions(sorted(tmp.names))
            for input_num, input_name in enumerate(sorted(stage.input_names)):
                # Create a new map with all 3's; name according to the input
                hist = np.full(shape=alphabetical_binning.shape,
                               fill_value=3.0)
                input_map = Map(name=input_name,
                                binning=alphabetical_binning,
                                hist=hist)

                # Apply Poisson fluctuations to randomize the values in the map
                input_map.fluctuate(method="poisson", random_state=input_num)

                # Reorder dimensions according to user's original binning spec
                input_map.reorder_dimensions(stage.input_binning)
                input_maps.append(input_map)
            inputs = MapSet(maps=input_maps, name="ones", hash=1)

        outputs = stage.run(inputs=inputs)

    for stage in pipeline[indices]:
        if not args.outdir:
            break
        stg_svc = stage.stage_name + "__" + stage.service_name
        fbase = os.path.join(args.outdir, stg_svc)
        if args.intermediate or stage == pipeline[indices][-1]:
            stage.outputs.to_json(fbase + "__output.json.bz2")

        # also only plot if args intermediate or last stage
        if args.intermediate or stage == pipeline[indices][-1]:
            formats = OrderedDict(png=args.png, pdf=args.pdf)
            if isinstance(stage.outputs, Data):
                # TODO(shivesh): plots made here will use the most recent
                # "pisa_weight" column and so all stages will have identical plots
                # (one workaround is to turn on "memcache_deepcopy")
                # TODO(shivesh): intermediate stages have no output binning
                if stage.output_binning is None:
                    logging.debug("Skipping plot of intermediate stage %s",
                                  stage)
                    continue
                outputs = stage.outputs.histogram_set(
                    binning=stage.output_binning,
                    nu_weights_col="pisa_weight",
                    mu_weights_col="pisa_weight",
                    noise_weights_col="pisa_weight",
                    mapset_name=stg_svc,
                    errors=True,
                )

            try:
                for fmt, enabled in formats.items():
                    if not enabled:
                        continue
                    my_plotter = Plotter(
                        stamp="Event rate",
                        outdir=args.outdir,
                        fmt=fmt,
                        log=False,
                        annotate=args.annotate,
                    )
                    my_plotter.ratio = True
                    my_plotter.plot_2d_array(outputs,
                                             fname=stg_svc + "__output",
                                             cmap="RdBu")
            except ValueError as exc:
                logging.error(
                    "Failed to save plot to format %s. See exception"
                    " message below",
                    fmt,
                )
                traceback.format_exc()
                logging.exception(exc)
                logging.warning("I can't go on, I'll go on.")

    if return_outputs:
        return pipeline, outputs
Esempio n. 4
0
def main():
    args = parse_args()
    set_verbosity(args.v)

    if args.plot:
        import matplotlib as mpl
        mpl.use('pdf')
        import matplotlib.pyplot as plt
        from pisa.utils.plotter import Plotter

    cfg = from_file(args.fit_settings)
    sys_list = cfg.get('general', 'sys_list').replace(' ', '').split(',')
    stop_idx = cfg.getint('general', 'stop_after_stage')


    for sys in sys_list:
        # Parse info for given systematic
        nominal = cfg.getfloat(sys, 'nominal')
        degree = cfg.getint(sys, 'degree')
        force_through_nominal = cfg.getboolean(sys, 'force_through_nominal')
        runs = eval(cfg.get(sys, 'runs'))
        #print "runs ", runs
        smooth = cfg.get(sys, 'smooth')

        x_values = np.array(sorted(runs))

        # Build fit function
        if force_through_nominal:
            function = "lambda x, *p: np.polynomial.polynomial.polyval(x, [1.] + list(p))"
        else:
            function = "lambda x, *p: np.polynomial.polynomial.polyval(x, list(p))"
            # Add free parameter for constant term
            degree += 1
        fit_fun = eval(function)

        # Instantiate template maker
        template_maker = Pipeline(args.template_settings)

        if not args.set_param == '':
            for one_set_param in args.set_param:
                p_name, value = one_set_param.split("=")
                #print "p_name,value= ", p_name, " ", value
                value = parse_quantity(value)
                value = value.n * value.units
                param = template_maker.params[p_name]
                #print "old ", p_name, "value = ", param.value
                param.value = value
                #print "new ", p_name, "value = ", param.value
                template_maker.update_params(param)

        inputs = {}
        map_names = None
        # Get sys templates
        for run in runs:
            for key, val in cfg.items('%s:%s'%(sys, run)):
                if key.startswith('param.'):
                    _, pname = key.split('.')
                    param = template_maker.params[pname]
                    try:
                        value = parse_quantity(val)
                        param.value = value.n * value.units
                    except ValueError:
                        value = parse_string_literal(val)
                        param.value = value
                    param.set_nominal_to_current_value()
                    template_maker.update_params(param)
            # Retreive maps
            template = template_maker.get_outputs(idx=stop_idx)
            if map_names is None: map_names = [m.name for m in template]
            inputs[run] = {}
            for m in template:
                inputs[run][m.name] = m.hist

        # Numpy acrobatics:
        arrays = {}
        for name in map_names:
            arrays[name] = []
            for x in x_values:
                arrays[name].append(
                    inputs[x][name] / unp.nominal_values(inputs[nominal][name])
                )
            a = np.array(arrays[name])
            arrays[name] = np.rollaxis(a, 0, len(a.shape))

        # Shift to get deltas
        x_values -= nominal

        # Binning object (assuming they're all the same)
        binning = template.maps[0].binning

        shape = [d.num_bins for d in binning] + [degree]
        shape_small = [d.num_bins for d in binning]

        outputs = {}
        errors = {}
        for name in map_names:
            # Now actualy perform some fits
            outputs[name] = np.ones(shape)
            errors[name] = np.ones(shape)


            for idx in np.ndindex(*shape_small):
                y_values = unp.nominal_values(arrays[name][idx])
                y_sigma = unp.std_devs(arrays[name][idx])
                if np.any(y_sigma):
                    popt, pcov = curve_fit(fit_fun, x_values, y_values,
                                           sigma=y_sigma, p0=np.ones(degree))
                else:
                    popt, pcov = curve_fit(fit_fun, x_values, y_values,
                                           p0=np.ones(degree))
                perr = np.sqrt(np.diag(pcov))
                for k, p in enumerate(popt):
                    outputs[name][idx][k] = p
                    errors[name][idx][k] = perr[k]

                # TODO(philippeller): the below block of code will fail

                # Maybe plot
                #if args.plot:
                #    fig_num = i + nx * j
                #    if fig_num == 0:
                #        fig = plt.figure(num=1, figsize=( 4*nx, 4*ny))
                #    subplot_idx = nx*(ny-1-j)+ i + 1
                #    plt.subplot(ny, nx, subplot_idx)
                #    #plt.snameter(x_values, y_values, color=plt_colors[name])
                #    plt.gca().errorbar(x_values, y_values, yerr=y_sigma,
                #                       fmt='o', color=plt_colors[name],
                #                       ecolor=plt_colors[name],
                #                       mec=plt_colors[name])
                #    # Plot nominal point again in black
                #    plt.snameter([0.0], [1.0], color='k')
                #    f_values = fit_fun(x_values, *popt)
                #    fun_plot, = plt.plot(x_values, f_values,
                #            color=plt_colors[name])
                #    plt.ylim(np.min(unp.nominal_values(arrays[name]))*0.9,
                #             np.max(unp.nominal_values(arrays[name]))*1.1)
                #    if i > 0:
                #        plt.setp(plt.gca().get_yticklabels(), visible=False)
                #    if j > 0:
                #        plt.setp(plt.gca().get_xticklabels(), visible=False)

        if smooth == 'gauss':
            for name in map_names:
                for d in range(degree):
                    outputs[name][...,d] = gaussian_filter(outputs[name][...,d],sigma=1)

        if smooth == 'gauss_pid':
            for name in map_names:
                split_idx = binning.names.index('pid')
                tot = len(binning)-1
                for d in range(degree):
                    for p in range(len(binning['pid'])):
                        outputs[name][...,p,d] = gaussian_filter(
                            np.swapaxes(outputs[name], split_idx, tot)[...,p,d],
                            sigma=1
                        )
                outputs[name] = np.swapaxes(outputs[name], split_idx, tot)

        # Save the raw ones anyway
        outputs['pname'] = sys
        outputs['nominal'] = nominal
        outputs['function'] = function
        outputs['map_names'] = map_names
        outputs['binning_hash'] = binning.hash
        to_file(outputs, '%s/%s_sysfits_%s_%s.json'%(args.out_dir, sys,
                                                     args.tag, smooth))

        if args.plot:
            for d in range(degree):
                maps = []
                for name in map_names:
                    maps.append(Map(name='%s_raw'%name, hist=outputs[name][...,d],
                                    binning=binning))
                maps = MapSet(maps)
                my_plotter = Plotter(
                    stamp='',
                    outdir=args.out_dir,
                    fmt='pdf',
                    log=False,
                    label=''
                )
                my_plotter.plot_2d_array(
                    maps,
                    fname='%s_%s_%s_%s'%(sys, args.tag, d, smooth),
                )
Esempio n. 5
0
def test_kde_histogramdd():
    """Unit tests for kde_histogramdd"""
    from argparse import ArgumentParser
    from shutil import rmtree
    from tempfile import mkdtemp
    from pisa import ureg
    from pisa.core.map import Map, MapSet
    from pisa.utils.log import logging, set_verbosity
    from pisa.utils.plotter import Plotter

    parser = ArgumentParser()
    parser.add_argument("-v",
                        action="count",
                        default=None,
                        help="set verbosity level")
    args = parser.parse_args()
    set_verbosity(args.v)

    temp_dir = mkdtemp()

    try:
        my_plotter = Plotter(
            stamp="",
            outdir=temp_dir,
            fmt="pdf",
            log=False,
            annotate=False,
            symmetric=False,
            ratio=True,
        )

        b1 = OneDimBinning(name="coszen",
                           num_bins=20,
                           is_lin=True,
                           domain=[-1, 1],
                           tex=r"\cos(\theta)")
        b2 = OneDimBinning(name="energy",
                           num_bins=10,
                           is_log=True,
                           domain=[1, 80] * ureg.GeV,
                           tex=r"E")
        b3 = OneDimBinning(name="pid",
                           num_bins=2,
                           bin_edges=[0, 1, 2],
                           tex=r"pid")
        binning = b1 * b2 * b3

        # now let's generate some toy data

        N = 100000
        cz = np.random.normal(1, 1.2, N)
        # cut away coszen outside -1, 1
        cz = cz[(cz >= -1) & (cz <= 1)]
        e = np.random.normal(30, 20, len(cz))
        pid = np.random.uniform(0, 2, len(cz))
        data = np.array([cz, e, pid]).T

        # make numpy histogram for validation
        bins = [unp.nominal_values(b.bin_edges) for b in binning]
        raw_hist, _ = np.histogramdd(data, bins=bins)

        # get KDE'ed histo
        hist = kde_histogramdd(
            data,
            binning,
            bw_method="silverman",
            coszen_name="coszen",
            oversample=10,
            use_cuda=True,
            stack_pid=True,
        )

        # put into mapsets and plot
        m1 = Map(name="KDE", hist=hist, binning=binning)
        m2 = Map(name="raw", hist=raw_hist, binning=binning)
        with np.errstate(divide="ignore", invalid="ignore"):
            m3 = m2 / m1
        m3.name = "hist/KDE"
        m3.tex = m3.name
        m4 = m1 - m2
        m4.name = "KDE - hist"
        m4.tex = m4.name
        ms = MapSet([m1, m2, m3, m4])
        my_plotter.plot_2d_array(ms, fname="test_kde", cmap="summer")
    except:
        rmtree(temp_dir)
        raise
    else:
        logging.warning("Inspect and manually clean up output(s) saved to %s" %
                        temp_dir)
Esempio n. 6
0
def compare(outdir,
            ref,
            ref_label,
            test,
            test_label,
            asymm_max=None,
            asymm_min=None,
            combine=None,
            diff_max=None,
            diff_min=None,
            fract_diff_max=None,
            fract_diff_min=None,
            json=False,
            pdf=False,
            png=False,
            ref_abs=False,
            ref_param_selections=None,
            sum=None,
            test_abs=False,
            test_param_selections=None):
    """Compare two entities. The result each entity specification is
    formatted into a MapSet and stored to disk, so that e.g. re-running
    a DistributionMaker is unnecessary to reproduce the results.

    Parameters
    ----------
    outdir : string
        Store output plots to this directory

    ref : string or array of strings
        Pipeline settings config file that generates reference output,
        or a stored map or map set. Multiple pipelines, maps, or map sets are
        supported

    ref_abs : bool
        Use the absolute value of the reference plot for comparisons

    ref_label : string
        Label for reference

    ref_param-selections : string
        Param selections to apply to ref pipeline config(s). Not
        applicable if ref specifies stored map or map sets

    test : string or array of strings
        Pipeline settings config file that generates test output, or a
        stored map or map set. Multiple pipelines, maps, or map sets are
        supported

    test_abs : bool
        Use the absolute value of the test plot for comparisons

    test_label : string
        Label for test

    test_param_selections : None or string
        Param selections to apply to test pipeline config(s). Not
        applicable if test specifies stored map or map sets

    combine : None or string or array of strings
        Combine by wildcard string, where string globbing (a la command
        line) uses asterisk for any number of wildcard characters. Use
        single quotes such that asterisks do not get expanded by the
        shell. Multiple combine strings supported

    sum : None or int
        Sum over (and hence remove) the specified axis or axes. I.e.,
        project the map onto remaining (unspecified) axis or axes

    json : bool
        Save output maps in compressed json (json.bz2) format

    pdf : bool
        Save plots in PDF format. If neither this nor png is
        specified, no plots are produced

    png : bool
        Save plots in PNG format. If neither this nor pdf is specfied,
        no plots are produced

    diff_min : None or float
        Difference plot vmin; if you specify only one of diff_min or
        diff_max, symmetric limits are automatically used (min = -max)

    diff_max : None or float
        Difference plot max; if you specify only one of diff_min or
        diff_max, symmetric limits are automatically used (min = -max)

    fract_diff_min : None or float
        Fractional difference plot vmin; if you specify only one of
        fract_diff_min or fract_diff_max, symmetric limits are
        automatically used (min = -max)

    fract_diff_max : None or float
        Fractional difference plot max; if you specify only one of
        fract_diff_min or fract_diff_max, symmetric limits are
        automatically used (min = -max)

    asymm_min : None or float
        Asymmetry plot vmin; if you specify only one of asymm_min or
        asymm_max, symmetric limits are automatically used (min = -max)

    asymm_max : None or float
        Fractional difference plot max; if you specify only one of
        asymm_min or asymm_max, symmetric limits are automatically used
        (min = -max)

    Returns
    -------
    summary_stats : dict
        Dictionary containing a summary for each h Map processed

    diff : MapSet
        MapSet of the difference
        - (Test - Ref)

    fract_diff : MapSet
        MapSet of the fractional difference
        - (Test - Ref) / Ref

    asymm : MapSet
        MapSet of the asymmetric fraction difference or pull
        - (Test - Ref) / sqrt(Ref)

    """
    ref_plot_label = ref_label
    if ref_abs and not ref_label.startswith('abs'):
        ref_plot_label = 'abs(%s)' % ref_plot_label
    test_plot_label = test_label
    if test_abs and not test_label.startswith('abs'):
        test_plot_label = 'abs(%s)' % test_plot_label

    plot_formats = []
    if pdf:
        plot_formats.append('pdf')
    if png:
        plot_formats.append('png')

    diff_symm = True
    if diff_min is not None and diff_max is None:
        diff_max = -diff_min
        diff_symm = False
    if diff_max is not None and diff_min is None:
        diff_min = -diff_max
        diff_symm = False

    fract_diff_symm = True
    if fract_diff_min is not None and fract_diff_max is None:
        fract_diff_max = -fract_diff_min
        fract_diff_symm = False
    if fract_diff_max is not None and fract_diff_min is None:
        fract_diff_min = -fract_diff_max
        fract_diff_symm = False

    asymm_symm = True
    if asymm_max is not None and asymm_min is None:
        asymm_min = -asymm_max
        asymm_symm = False
    if asymm_min is not None and asymm_max is None:
        asymm_max = -asymm_min
        asymm_symm = False

    outdir = os.path.expanduser(os.path.expandvars(outdir))
    mkdir(outdir)

    # Get the reference distribution(s) into the form of a test MapSet
    p_ref = None
    ref_source = None
    if isinstance(ref, Map):
        p_ref = MapSet(ref)
        ref_source = MAP_SOURCE_STR
    elif isinstance(ref, MapSet):
        p_ref = ref
        ref_source = MAPSET_SOURCE_STR
    elif isinstance(ref, Pipeline):
        if ref_param_selections is not None:
            ref.select_params(ref_param_selections)
        p_ref = ref.get_outputs()
        ref_source = PIPELINE_SOURCE_STR
    elif isinstance(ref, DistributionMaker):
        if ref_param_selections is not None:
            ref.select_params(ref_param_selections)
        p_ref = ref.get_outputs()
        ref_source = DISTRIBUTIONMAKER_SOURCE_STR
    else:
        if len(ref) == 1:
            try:
                ref_pipeline = Pipeline(config=ref[0])
            except:
                pass
            else:
                ref_source = PIPELINE_SOURCE_STR
                if ref_param_selections is not None:
                    ref_pipeline.select_params(ref_param_selections)
                p_ref = ref_pipeline.get_outputs()
        else:
            try:
                ref_dmaker = DistributionMaker(pipelines=ref)
            except:
                pass
            else:
                ref_source = DISTRIBUTIONMAKER_SOURCE_STR
                if ref_param_selections is not None:
                    ref_dmaker.select_params(ref_param_selections)
                p_ref = ref_dmaker.get_outputs()

    if p_ref is None:
        try:
            p_ref = [Map.from_json(f) for f in ref]
        except:
            pass
        else:
            ref_source = MAP_SOURCE_STR
            p_ref = MapSet(p_ref)

    if p_ref is None:
        assert ref_param_selections is None
        assert len(ref) == 1, 'Can only handle one MapSet'
        try:
            p_ref = MapSet.from_json(ref[0])
        except:
            pass
        else:
            ref_source = MAPSET_SOURCE_STR

    if p_ref is None:
        raise ValueError(
            'Could not instantiate the reference Pipeline, DistributionMaker,'
            ' Map, or MapSet from ref value(s) %s' % ref)
    ref = p_ref

    logging.info('Reference map(s) derived from a ' + ref_source)

    # Get the test distribution(s) into the form of a test MapSet
    p_test = None
    test_source = None
    if isinstance(test, Map):
        p_test = MapSet(test)
        test_source = MAP_SOURCE_STR
    elif isinstance(test, MapSet):
        p_test = test
        test_source = MAPSET_SOURCE_STR
    elif isinstance(test, Pipeline):
        if test_param_selections is not None:
            test.select_params(test_param_selections)
        p_test = test.get_outputs()
        test_source = PIPELINE_SOURCE_STR
    elif isinstance(test, DistributionMaker):
        if test_param_selections is not None:
            test.select_params(test_param_selections)
        p_test = test.get_outputs()
        test_source = DISTRIBUTIONMAKER_SOURCE_STR
    else:
        if len(test) == 1:
            try:
                test_pipeline = Pipeline(config=test[0])
            except:
                pass
            else:
                test_source = PIPELINE_SOURCE_STR
                if test_param_selections is not None:
                    test_pipeline.select_params(test_param_selections)
                p_test = test_pipeline.get_outputs()
        else:
            try:
                test_dmaker = DistributionMaker(pipelines=test)
            except:
                pass
            else:
                test_source = DISTRIBUTIONMAKER_SOURCE_STR
                if test_param_selections is not None:
                    test_dmaker.select_params(test_param_selections)
                p_test = test_dmaker.get_outputs()

    if p_test is None:
        try:
            p_test = [Map.from_json(f) for f in test]
        except:
            pass
        else:
            test_source = MAP_SOURCE_STR
            p_test = MapSet(p_test)

    if p_test is None:
        assert test_param_selections is None
        assert len(test) == 1, 'Can only handle one MapSet'
        try:
            p_test = MapSet.from_json(test[0])
        except:
            pass
        else:
            test_source = MAPSET_SOURCE_STR

    if p_test is None:
        raise ValueError(
            'Could not instantiate the test Pipeline, DistributionMaker, Map,'
            ' or MapSet from test value(s) %s' % test)
    test = p_test

    logging.info('Test map(s) derived from a ' + test_source)

    if combine is not None:
        ref = ref.combine_wildcard(combine)
        test = test.combine_wildcard(combine)
        if isinstance(ref, Map):
            ref = MapSet([ref])
        if isinstance(test, Map):
            test = MapSet([test])

    if sum is not None:
        ref = ref.sum(sum)
        test = test.sum(sum)

    # Set the MapSet names according to args passed by user
    ref.name = ref_label
    test.name = test_label

    # Save to disk the maps being plotted (excluding optional aboslute value
    # operations)
    if json:
        refmaps_path = os.path.join(outdir, 'maps__%s.json.bz2' % ref_label)
        to_file(ref, refmaps_path)

        testmaps_path = os.path.join(outdir, 'maps__%s.json.bz2' % test_label)
        to_file(test, testmaps_path)

    if set(test.names) != set(ref.names):
        raise ValueError('Test map names %s do not match ref map names %s.' %
                         (sorted(test.names), sorted(ref.names)))

    # Aliases to save keystrokes
    def masked(x):
        return np.ma.masked_invalid(x.nominal_values)

    def zero_to_nan(map):
        newmap = deepcopy(map)
        mask = np.isclose(newmap.nominal_values, 0, rtol=0, atol=EPSILON)
        newmap.hist[mask] = np.nan
        return newmap

    reordered_test = []
    new_ref = []
    diff_maps = []
    fract_diff_maps = []
    asymm_maps = []
    summary_stats = {}
    for ref_map in ref:
        test_map = test[ref_map.name].reorder_dimensions(ref_map.binning)
        if ref_abs:
            ref_map = abs(ref_map)
        if test_abs:
            test_map = abs(test_map)

        diff_map = test_map - ref_map
        fract_diff_map = (test_map - ref_map) / zero_to_nan(ref_map)
        asymm_map = (test_map - ref_map) / zero_to_nan(ref_map**0.5)
        abs_fract_diff_map = np.abs(fract_diff_map)

        new_ref.append(ref_map)
        reordered_test.append(test_map)
        diff_maps.append(diff_map)
        fract_diff_maps.append(fract_diff_map)
        asymm_maps.append(asymm_map)

        min_ref = np.min(masked(ref_map))
        max_ref = np.max(masked(ref_map))

        min_test = np.min(masked(test_map))
        max_test = np.max(masked(test_map))

        total_ref = np.sum(masked(ref_map))
        total_test = np.sum(masked(test_map))

        mean_ref = np.mean(masked(ref_map))
        mean_test = np.mean(masked(test_map))

        max_abs_fract_diff = np.max(masked(abs_fract_diff_map))
        mean_abs_fract_diff = np.mean(masked(abs_fract_diff_map))
        median_abs_fract_diff = np.median(masked(abs_fract_diff_map))

        mean_fract_diff = np.mean(masked(fract_diff_map))
        min_fract_diff = np.min(masked(fract_diff_map))
        max_fract_diff = np.max(masked(fract_diff_map))
        std_fract_diff = np.std(masked(fract_diff_map))

        mean_diff = np.mean(masked(diff_map))
        min_diff = np.min(masked(diff_map))
        max_diff = np.max(masked(diff_map))
        std_diff = np.std(masked(diff_map))

        median_diff = np.nanmedian(masked(diff_map))
        mad_diff = np.nanmedian(masked(np.abs(diff_map)))
        median_fract_diff = np.nanmedian(masked(fract_diff_map))
        mad_fract_diff = np.nanmedian(masked(np.abs(fract_diff_map)))

        min_asymm = np.min(masked(fract_diff_map))
        max_asymm = np.max(masked(fract_diff_map))

        total_asymm = np.sqrt(np.sum(masked(asymm_map)**2))

        summary_stats[test_map.name] = OrderedDict([
            ('min_ref', min_ref),
            ('max_ref', max_ref),
            ('total_ref', total_ref),
            ('mean_ref', mean_ref),
            ('min_test', min_test),
            ('max_test', max_test),
            ('total_test', total_test),
            ('mean_test', mean_test),
            ('max_abs_fract_diff', max_abs_fract_diff),
            ('mean_abs_fract_diff', mean_abs_fract_diff),
            ('median_abs_fract_diff', median_abs_fract_diff),
            ('min_fract_diff', min_fract_diff),
            ('max_fract_diff', max_fract_diff),
            ('mean_fract_diff', mean_fract_diff),
            ('std_fract_diff', std_fract_diff),
            ('median_fract_diff', median_fract_diff),
            ('mad_fract_diff', mad_fract_diff),
            ('min_diff', min_diff),
            ('max_diff', max_diff),
            ('mean_diff', mean_diff),
            ('std_diff', std_diff),
            ('median_diff', median_diff),
            ('mad_diff', mad_diff),
            ('min_asymm', min_asymm),
            ('max_asymm', max_asymm),
            ('total_asymm', total_asymm),
        ])

        logging.info('Map %s...', ref_map.name)
        logging.info('  Ref map(s):')
        logging.info('    min   :' + ('%.2f' % min_ref).rjust(12))
        logging.info('    max   :' + ('%.2f' % max_ref).rjust(12))
        logging.info('    total :' + ('%.2f' % total_ref).rjust(12))
        logging.info('    mean  :' + ('%.2f' % mean_ref).rjust(12))
        logging.info('  Test map(s):')
        logging.info('    min   :' + ('%.2f' % min_test).rjust(12))
        logging.info('    max   :' + ('%.2f' % max_test).rjust(12))
        logging.info('    total :' + ('%.2f' % total_test).rjust(12))
        logging.info('    mean  :' + ('%.2f' % mean_test).rjust(12))
        logging.info('  Absolute fract. diff., abs((Test - Ref) / Ref):')
        logging.info('    max   : %.4e', max_abs_fract_diff)
        logging.info('    mean  : %.4e', mean_abs_fract_diff)
        logging.info('    median: %.4e', median_abs_fract_diff)
        logging.info('  Fractional difference, (Test - Ref) / Ref:')
        logging.info('    min   : %.4e', min_fract_diff)
        logging.info('    max   : %.4e', max_fract_diff)
        logging.info('    mean  : %.4e +/- %.4e', mean_fract_diff,
                     std_fract_diff)
        logging.info('    median: %.4e +/- %.4e', median_fract_diff,
                     mad_fract_diff)
        logging.info('  Difference, Test - Ref:')
        logging.info('    min   : %.4e', min_diff)
        logging.info('    max   : %.4e', max_diff)
        logging.info('    mean  : %.4e +/- %.4e', mean_diff, std_diff)
        logging.info('    median: %.4e +/- %.4e', median_diff, mad_diff)
        logging.info('  Asymmetry, (Test - Ref) / sqrt(Ref)')
        logging.info('    min   : %.4e', min_asymm)
        logging.info('    max   : %.4e', max_asymm)
        logging.info('    total : %.4e (sum in quadrature)', total_asymm)
        logging.info('')

    ref = MapSet(new_ref)
    test = MapSet(reordered_test)
    diff = MapSet(diff_maps)
    fract_diff = MapSet(fract_diff_maps)
    asymm = MapSet(asymm_maps)

    if json:
        diff.to_json(
            os.path.join(
                outdir,
                'diff__%s__%s.json.bz2' % (test_plot_label, ref_plot_label)))
        fract_diff.to_json(
            os.path.join(
                outdir, 'fract_diff__%s___%s.json.bz2' %
                (test_plot_label, ref_plot_label)))
        asymm.to_json(
            os.path.join(
                outdir,
                'asymm__%s___%s.json.bz2' % (test_plot_label, ref_plot_label)))
        to_file(
            summary_stats,
            os.path.join(
                outdir,
                'stats__%s__%s.json.bz2' % (test_plot_label, ref_plot_label)))

    for plot_format in plot_formats:
        # Plot the raw distributions
        plotter = Plotter(stamp='',
                          outdir=outdir,
                          fmt=plot_format,
                          log=False,
                          annotate=False,
                          symmetric=False,
                          ratio=False)
        plotter.plot_2d_array(ref, fname='distr__%s' % ref_plot_label)
        plotter.plot_2d_array(test, fname='distr__%s' % test_plot_label)

        # Plot the difference (test - ref)
        plotter = Plotter(stamp='',
                          outdir=outdir,
                          fmt=plot_format,
                          log=False,
                          annotate=False,
                          symmetric=diff_symm,
                          ratio=False)
        plotter.label = '%s - %s' % (test_plot_label, ref_plot_label)
        plotter.plot_2d_array(
            test - ref,
            fname='diff__%s__%s' % (test_plot_label, ref_plot_label),
            #vmin=diff_min, vmax=diff_max
        )

        # Plot the fractional difference (test - ref)/ref
        plotter = Plotter(stamp='',
                          outdir=outdir,
                          fmt=plot_format,
                          log=False,
                          annotate=False,
                          symmetric=fract_diff_symm,
                          ratio=True)
        plotter.label = ('(%s-%s)/%s' %
                         (test_plot_label, ref_plot_label, ref_plot_label))
        plotter.plot_2d_array(
            (test - ref) / MapSet([zero_to_nan(r) for r in ref]),
            fname='fract_diff__%s__%s' % (test_plot_label, ref_plot_label),
            #vmin=fract_diff_min, vmax=fract_diff_max
        )

        # Plot the asymmetry (test - ref)/sqrt(ref)
        plotter = Plotter(stamp='',
                          outdir=outdir,
                          fmt=plot_format,
                          log=False,
                          annotate=False,
                          symmetric=asymm_symm,
                          ratio=True)
        plotter.label = (r'$(%s - %s)/\sqrt{%s}$' %
                         (test_plot_label, ref_plot_label, ref_plot_label))
        plotter.plot_2d_array(
            (test - ref) / MapSet([zero_to_nan(r**0.5) for r in ref]),
            fname='asymm__%s__%s' % (test_plot_label, ref_plot_label),
            #vmin=asymm_min, vmax=asymm_max
        )

    return summary_stats, diff, fract_diff, asymm