Esempio n. 1
0
def resampleSubmaps(submapList, resampleFactor=10):
    '''Gets a list of enmap submaps and resamples them by a constant factor
    Uses defaults in enmap.resample, fft, and order=3
    '''
    resampledSubmapList = []
    for submap in submapList:
        newShape = resampleFactor * np.array(submap.shape, dtype=int)
        resampledSubmapList.append(enmap.resample(submap, newShape))
    return resampledSubmapList
Esempio n. 2
0
def get_anisotropic_noise_template(shape,wcs,template_file=None,tmin=0,tmax=100):
    """
    This function reads in a 2D PS unredenned template and returns a full 2D noise PS.
    It doesn't use the template in the most sensible way though.
    """
    if template_file is None: template_file = "data/anisotropy_template.fits"
    template = np.nan_to_num(enmap.read_map(template_file))
    template[template<tmin] = tmin
    template[template>tmax] = tmax
    ops = enmap.enmap(enmap.resample(template,shape),wcs) # interpolate to new geometry
    return ops
Esempio n. 3
0
def extractStamp(submap,
                 ra_deg,
                 dec_deg,
                 r_ring_arcmin,
                 repixelize=True,
                 reprojection=True):
    extractedSubmap = submap.copy()
    if repixelize:
        extractedSubmap = enmap.resample(extractedSubmap,
                                         10 * np.array(submap.shape))
    if reprojection:
        extractedSubmap = reproject.postage_stamp(extractedSubmap, ra_deg,
                                                  dec_deg, 2 * r_ring_arcmin,
                                                  0.5 / 5.)[0, :, :]
    else:  # this was added for backwards compatibility
        assert len(extractedSubmap.shape) == 2
        extractedSubmap = submapTools.getSubmap_originalPixelization(
            theMap=extractedSubmap,  # noqa
            ra_deg=ra_deg,
            dec_deg=dec_deg,  # noqa
            semiWidth_deg=r_ring_arcmin / 60.)  # noqa
    return extractedSubmap
Esempio n. 4
0
def get_aperturePhotometry(submap,
                           ra_deg,
                           dec_deg,
                           r_ring_arcmin,
                           r_disk_arcmin,
                           repixelize=True,
                           reprojection=True):
    '''Gets T_disk and T_ring for a given submap. Needs ra and dec of
    the center of the submap and the radius of the ring and disk for the
    aperture.
    Can repixelize by a factor of 10 finer resolution and reproject.
    submap: submap in the original pixelization
    ra, dec_deg: ra and dec in degrees of the center of the aperture
    r_ring/disk_arcmin: radius for the aperture photometry
    repixelize: True if you want to do it as enmap.resample by a factor of 10
    reprojection: True if you want to extract the postage stamp by
    reprojection at the equator.
    submapsFilename: None if you dont want to save submaps. String with a
    hdf5 filename if you want to save the submaps.'''
    submapForPhotometry = submap.copy()
    if repixelize:
        submapForPhotometry = enmap.resample(submapForPhotometry,
                                             10 * np.array(submap.shape))
    if reprojection:
        try:
            submapForPhotometry = reproject.postage_stamp(
                submapForPhotometry, ra_deg, dec_deg, 3.0 * r_ring_arcmin,
                0.5 / 10.)[0, :, :]
        except:  # noqa
            T_disk, T_ring = np.nan, np.nan
            return 0, 0
    r_arcmin = 60. * np.rad2deg(submapForPhotometry.modrmap())
    sel_disk = r_arcmin < r_disk_arcmin
    sel_ring = np.logical_and(r_arcmin > r_disk_arcmin,
                              r_arcmin < r_ring_arcmin)

    T_disk = submapForPhotometry[sel_disk].mean()
    T_ring = submapForPhotometry[sel_ring].mean()
    return T_disk, T_ring
Esempio n. 5
0
def noise_average(n2d,dfact=(16,16),lmin=300,lmax=8000,wnoise_annulus=500,bin_annulus=20,
                  lknee_guess=3000,alpha_guess=-4,nparams=None,modlmap=None,
                  verbose=False,method="fft",radial_fit=True,
                  oshape=None,upsample=True,fill_lmax=None,fill_lmax_width=100):
    """Find the empirical mean noise binned in blocks of dfact[0] x dfact[1] . Preserves noise anisotropy.
    Most arguments are for the radial fitting part.
    A radial fit is divided out before downsampling (by default by FFT) and then multplied back with the radial fit.
    Watch for ringing in the final output.
    n2d noise power
    """
    assert np.all(np.isfinite(n2d))
    shape,wcs = n2d.shape,n2d.wcs
    minell = maps.minimum_ell(shape,wcs)
    if modlmap is None: modlmap = enmap.modlmap(shape,wcs)
    Ny,Nx = shape[-2:]
    if radial_fit:
        if nparams is None:
            if verbose: print("Radial fitting...")
            nparams = fit_noise_1d(n2d,lmin=lmin,lmax=lmax,wnoise_annulus=wnoise_annulus,
                                bin_annulus=bin_annulus,lknee_guess=lknee_guess,alpha_guess=alpha_guess)
        wfit,lfit,afit = nparams
        nfitted = rednoise(modlmap,wfit,lfit,afit)
    else:
        nparams = None
        nfitted = 1.
    nflat = enmap.enmap(np.nan_to_num(n2d/nfitted),wcs) # flattened 2d noise power
    if fill_lmax is not None:
        fill_avg = nflat[np.logical_and(modlmap>(fill_lmax-fill_lmax_width),modlmap<=fill_lmax)].mean()
        nflat[modlmap>fill_lmax] = fill_avg
    if oshape is None: oshape = (Ny//dfact[0],Nx//dfact[1])
    if verbose: print("Resampling...")
    nint = enmap.resample(enmap.enmap(nflat,wcs), oshape, method=method)
    if not(upsample):
        if radial_fit:
            nshape,nwcs = nint.shape,nint.wcs
            modlmap = enmap.modlmap(nshape,nwcs)
            nfitted = rednoise(modlmap,wfit,lfit,afit)
        ndown = nint
    else:
        ndown = enmap.enmap(enmap.resample(nint,shape,method=method),wcs)
    outcov = ndown*nfitted
    outcov[modlmap<minell] = 0 #np.inf
    if fill_lmax is not None: outcov[modlmap>fill_lmax] = 0
    # res,_ = curve_fit(ntemplatefunc,cents,dn1d,p0=[lknee_guess,alpha_guess],bounds=([lknee_min,alpha_min],[lknee_max,alpha_max]))



    # bad_ells = modlmap[np.isnan(outcov)]
    # for ell in bad_ells:
    #     print(ell)
    # print(maps.minimum_ell(shape,wcs))
    # from orphics import io
    # # io.hplot(enmap.enmap(np.fft.fftshift(np.log(n2d)),wcs),"fitnoise_npower.png")
    # # io.hplot(enmap.enmap(np.fft.fftshift(np.log(outcov)),wcs),"fitnoise_ndown.png")
    # io.plot_img(enmap.enmap(np.fft.fftshift(np.log(n2d)),wcs),"fitnoise_npower_lowres.png",aspect='auto')#,lim=[-20,-16])
    # io.plot_img(enmap.enmap(np.fft.fftshift(np.log(ndown)),wcs),"fitnoise_ndown_lowres.png",aspect='auto')#,lim=[-20,-16])
    # io.plot_img(enmap.enmap(np.fft.fftshift(np.log(outcov)),wcs),"fitnoise_outcov_lowres.png",aspect='auto')#,lim=[-20,-16])

    # import time
    # t = time.time()
    # fbin_edges = np.arange(lmin,lmax,bin_annulus)
    # fbinner = stats.bin2D(modlmap,fbin_edges)
    # cents, n1d = fbinner.bin(n2d)
    # cents,dn1d = fbinner.bin(outcov)
    # pl = io.Plotter(xyscale='linlog',xlabel='l',ylabel='D',scalefn=lambda x: x**2./2./np.pi)
    # pl.add(cents,n1d)
    # pl.add(cents,dn1d,ls="--")
    # pl.done(os.environ['WORK']+"/fitnoise2_%s.png" % t)
    # sys.exit()

    assert not(np.any(np.isnan(outcov)))
    return outcov,nfitted,nparams