def preprocess_T(imap, dust_removal=False, dust_template=None, box=None, auto_adj=False): omap = enmap.submap(imap[0], box=box) if dust_removal: dust = enmap.submap(dust_template[0], box=box) if auto_adj: par, _ = leastsq(lambda x: np.ravel(omap-x*dust), x0=1) factor = par[0] else: factor = 1 print("factor:", factor) omap -= dust * factor return omap
def preprocess_P(imap, dust_removal=None, smooth=None, box=None): omap = np.sum(imap[1:]**2, axis=0)**0.5 if dust_removal is not None: omap -= np.sum(dust_removal[1:]**2, axis=0)**0.5 if smooth is not None: omap = enmap.smooth_gauss(omap, smooth * u.fwhm * u.arcmin) return enmap.submap(omap, box=box)
def getSubmaps_originalPixelization(theMap, ras_deg, decs_deg, semiWidth_deg): '''From the original pixelization of the map, extract a list of submaps. theMap_fname: map to extract submaps from ra_deg, dec_deg: arrays of ra and decs in degrees semiWidth_deg: half of the width of the submap to be extracted in degrees. ''' boxes = gen_boxes(ras_deg, decs_deg, semiWidth_deg) submaps = [] for box in boxes: submaps.append(enmap.submap(theMap, box)) return submaps
def getSubmap_originalPixelization(theMap, ra_deg, dec_deg, semiWidth_deg): '''Receives theMap and gets a submap centered in ra,dec with width semiWidth_deg''' box = gen_box(ra_deg, dec_deg, semiWidth_deg) submap = enmap.submap(theMap, box) return submap