def get_footprint(tod, wcs_kernel, dets=None, timestamps=None, boresight=None, focal_plane=None, sight=None, rot=None): """Find a geometry (in the sense of enmap) based on wcs_kernel that is big enough to contain all data from tod. Returns (shape, wcs). """ dets = _valid_arg(dets, tod.dets.vals, src=tod) fp0 = _valid_arg(focal_plane, 'focal_plane', src=tod) if sight is None and 'sight' in tod: sight = tod.sight sight = _valid_arg(sight, tod.get('sight'), src=tod) if sight is None: # Let's try to either require a sightline or boresight info. timestamps = _valid_arg(timestamps, 'timestamps', src=tod) boresight = _valid_arg(boresight, 'boresight', src=tod) sight = so3g.proj.CelestialSightLine.az_el(timestamps, boresight.az, boresight.el, roll=boresight.roll, site='so', weather='typical').Q sight = _get_csl(sight) n_samp = len(sight.Q) # Do a simplest convex hull... q = so3g.proj.quat.rotation_xieta(fp0.xi, fp0.eta) xi, eta, _ = so3g.proj.quat.decompose_xieta(q) xi0, eta0 = xi.mean(), eta.mean() R = ((xi - xi0)**2 + (eta - eta0)**2).max()**.5 n_circ = 16 dphi = 2 * np.pi / n_circ phi = np.arange(n_circ) * dphi # cos(dphi/2) is the largest underestimate in radius one can make when # replacing a circle with an n_circ-sided polygon, as we do here. L = 1.01 * R / np.cos(dphi / 2) xi, eta = L * np.cos(phi) + xi0, L * np.sin(phi) + eta0 fake_dets = ['hull%i' % i for i in range(n_circ)] fp1 = so3g.proj.FocalPlane.from_xieta(fake_dets, xi, eta, 0 * xi) asm = so3g.proj.Assembly.attach(sight, fp1) output = np.zeros((len(fake_dets), n_samp, 4)) proj = so3g.proj.Projectionist.for_geom((1, 1), wcs_kernel) if rot: # Works whether rot is a quat or a vector of them. asm.Q = rot * asm.Q proj.get_planar(asm, output=output) output2 = output * 0 proj.get_coords(asm, output=output2) # Get the pixel extrema in the form [{xmin,ymin},{xmax,ymax}] delts = wcs_kernel.wcs.cdelt * DEG planar = output[:, :, :2] ranges = utils.minmax(planar / delts, (0, 1)) # These are in units of pixel *offsets* from crval. crval # might not correspond to a pixel center, though. So the # thing that should be integer-valued to preserve pixel compatibility # is crpix + ranges, not just ranges. Let's add crpix to transform this # into offsets from the bottom-left pixel to make it easier to reason # about integers ranges += wcs_kernel.wcs.crpix del output # Start a new WCS and set the lower left corner. w = wcs_kernel.deepcopy() corners = utils.nint(ranges) w.wcs.crpix -= corners[0] shape = tuple(corners[1] - corners[0] + 1)[::-1] return (shape, w)
def read_area(ipathfmt, opix, itile1=(None, None), itile2=(None, None), verbose=False, cache=None, slice=None, wrap=True): """Given a set of tiles on disk with locations ipathfmt % {"y":...,"x":...}, read the data corresponding to the pixel range opix[{from,to},{y,x}] in the full map.""" opix = np.asarray(opix) # Find the range of input tiles itile1, itile2 = find_tile_range(ipathfmt, itile1, itile2) # To fill in the rest of the information we need to know more # about the input tiling, so read the first tile if cache is None or cache[2] is None: geo = read_tileset_geometry(ipathfmt, itile1=itile1, itile2=itile2) else: geo = cache[2] if cache is not None: cache[2] = geo # Determine tile wrapping npix_phi = np.abs(360. / geo.wcs.wcs.cdelt[0]) ntile_phi = utils.nint(npix_phi / geo.tshape[-1]) isize = geo.tshape osize = opix[1] - opix[0] omap = enmap.zeros(geo.shape[:-2] + tuple(osize), geo.wcs, geo.dtype) # Find out which input tiles overlap with this output tile. # Our tile stretches from opix1:opix2 relative to the global input pixels it1 = opix[0] // isize it2 = (opix[1] - 1) // isize + 1 noverlap = 0 for ity in range(it1[0], it2[0]): if ity < itile1[0] or ity >= itile2[0]: continue # Start/end of this tile in global input pixels ipy1, ipy2 = ity * isize[0], (ity + 1) * isize[0] overlap = range_overlap(opix[:, 0], [ipy1, ipy2]) oy1, oy2 = overlap - opix[0, 0] iy1, iy2 = overlap - ipy1 for itx in range(it1[1], it2[1]): if wrap: itx_wrap = itx % ntile_phi if itx_wrap < itile1[1] or itx_wrap >= itile2[1]: continue ipx1, ipx2 = itx * isize[1], (itx + 1) * isize[1] overlap = range_overlap(opix[:, 1], [ipx1, ipx2]) ox1, ox2 = overlap - opix[0, 1] ix1, ix2 = overlap - ipx1 # Read the input tile and copy over iname = ipathfmt % {"y": ity, "x": itx_wrap} if cache is None or cache[0] != iname: imap = enmap.read_map(iname) if slice: imap = eval("imap" + slice) else: imap = cache[1] if cache is not None: cache[0], cache[1] = iname, imap if verbose: print(iname) # Edge input tiles may be smaller than the standard # size. ysub = isize[0] - imap.shape[-2] xsub = isize[1] - imap.shape[-1] # If the input map is too small, there may actually be # zero overlap. if oy2 - ysub <= oy1 or ox2 - xsub <= ox1: continue omap[..., oy1:oy2 - ysub, ox1:ox2 - xsub] = imap[..., iy1:iy2 - ysub, ix1:ix2 - xsub] noverlap += 1 if noverlap == 0: raise IOError("No tiles for tiling %s in range %s" % (ipathfmt, ",".join( [":".join([str(p) for p in r]) for r in opix.T]))) # Set up the wcs for the output tile omap.wcs.wcs.crpix -= opix[0, ::-1] return omap
def build(self, tod, srate, **kwargs): # Apply window before measuring noise model nwin = utils.nint(self.window / srate) apply_window(tod, nwin) ft = fft.rfft(tod) # Unapply window again apply_window(tod, nwin, -1) ndet, nfreq = ft.shape nsamp = tod.shape[1] # First build our set of eigenvectors in two bins. The first goes from # 0.25 to 4 Hz the second from 4Hz and up mode_bins = makebins(self.mode_bins, srate, nfreq, 1000, rfun=np.round)[1:] # Then use these to get our set of basis vectors vecs = find_modes_jon(ft, mode_bins, eig_lim=self.eig_lim, single_lim=self.single_lim, verbose=self.verbose) nmode = vecs.shape[1] if vecs.size == 0: raise errors.ModelError("Could not find any noise modes") # Cut bins that extend beyond our max frequency bin_edges = self.bin_edges[self.bin_edges < srate / 2 * 0.99] bins = makebins(bin_edges, srate, nfreq, nmin=2 * nmode, rfun=np.round) nbin = len(bins) # Now measure the power of each basis vector in each bin. The residual # noise will be modeled as uncorrelated E = np.zeros([nbin, nmode]) D = np.zeros([nbin, ndet]) Nd = np.zeros([nbin, ndet]) for bi, b in enumerate(bins): # Skip the DC mode, since it's it's unmeasurable and filtered away b = np.maximum(1, b) E[bi], D[bi], Nd[bi] = measure_detvecs(ft[:, b[0]:b[1]], vecs) # Optionally downweight the lowest frequency bins if self.downweight != None and len(self.downweight) > 0: D[:len(self.downweight)] /= np.array(self.downweight)[:, None] # Instead of VEV' we can have just VV' if we bake sqrt(E) into V V = vecs[None] * E[:, None]**0.5 # At this point we have a model for the total noise covariance as # N = D + VV'. But since we're doing inverse covariance weighting # we need a similar representation for the inverse iN. The function # woodbury_invert computes iD, iV, s such that iN = iD + s iV iV' # where s usually is -1, but will become +1 if one inverts again iD, iV, s = woodbury_invert(D, V) # Also compute a representative white noise level bsize = bins[:, 1] - bins[:, 0] ivar = np.sum(iD * bsize[:, None], 0) / np.sum(bsize) # What about units? I haven't applied any fourier unit factors so far, # so we're in plain power units. From the uncorrelated model I found # that factor of tod.shape[1] is needed iD *= nsamp iV *= nsamp**0.5 ivar *= nsamp # Fix dtype bins = np.ascontiguousarray(bins.astype(np.int32)) D = np.ascontiguousarray(iD.astype(tod.dtype)) V = np.ascontiguousarray(iV.astype(tod.dtype)) iD = np.ascontiguousarray(D.astype(tod.dtype)) iV = np.ascontiguousarray(V.astype(tod.dtype)) return NmatDetvecs(bin_edges=self.bin_edges, eig_lim=self.eig_lim, single_lim=self.single_lim, window=self.window, nwin=nwin, downweight=self.downweight, verbose=self.verbose, bins=bins, D=D, V=V, iD=iD, iV=iV, s=s, ivar=ivar)
def retile(ipathfmt, opathfmt, itile1=(None, None), itile2=(None, None), otileoff=(0, 0), otilenum=(None, None), ocorner=(-np.pi / 2, -np.pi), otilesize=(675, 675), comm=None, verbose=False, slice=None, wrap=True): """Given a set of tiles on disk with locations ipathfmt % {"y":...,"x":...}, retile them into a new tiling and write the result to opathfmt % {"y":...,"x":...}. The new tiling will have tile size given by otilesize[2]. Negative size means the tiling will to down/left instead of up/right. The corner of the tiling will be at sky coordinates ocorner[2] in radians. The new tiling will be pixel- compatible with the input tiling - w.g. the wcs will only differ by crpix. The output tiling will logically cover the whole sky, but only output tiles that overlap with input tiles will actually be written. This can be modified by using otileoff[2] and otilenum[2]. otileoff gives the tile indices of the corner tile, while otilenum indicates the number of tiles to write.""" # Set up mpi rank, size = (comm.rank, comm.size) if comm is not None else (0, 1) # Expand any scalars if otilesize is None: otilesize = (675, 675) otilesize = np.zeros(2, int) + otilesize otileoff = np.zeros(2, int) + otileoff # Find the range of input tiles itile1, itile2 = find_tile_range(ipathfmt, itile1, itile2) # To fill in the rest of the information we need to know more # about the input tiling, so read the first tile ibase = enmap.read_map(ipathfmt % {"y": itile1[0], "x": itile1[1]}) if slice: ibase = eval("ibase" + slice) itilesize = ibase.shape[-2:] ixres = ibase.wcs.wcs.cdelt[0] nphi = utils.nint(360 / np.abs(ixres)) ntile_wrap = nphi // otilesize[1] # Find the pixel position of our output corners according to the wcs. # This is the last place we need to do a coordinate transformation. # All the rest can be done in pure pixel logic. pixoff = np.round(ibase.sky2pix(ocorner)).astype(int) # Find the range of output tiles def pix2otile(pix, ioff, osize): return (pix - ioff) // osize otile1 = pix2otile(itile1 * itilesize, pixoff, otilesize) otile2 = pix2otile(itile2 * itilesize - 1, pixoff, otilesize) otile1, otile2 = np.minimum(otile1, otile2), np.maximum(otile1, otile2) otile2 += 1 # We can now loop over output tiles cache = [None, None, None] oyx = [(oy, ox) for oy in range(otile1[0], otile2[0]) for ox in range(otile1[1], otile2[1])] for i in range(rank, len(oyx), size): otile = np.array(oyx[i]) # Find out which input tiles overlap with this output tile. # Our tile stretches from opix1:opix2 relative to the global input pixels opix1 = otile * otilesize + pixoff opix2 = (otile + 1) * otilesize + pixoff # output tiles and input tiles may increase in opposite directions opix1, opix2 = np.minimum(opix1, opix2), np.maximum(opix1, opix2) try: omap = read_area(ipathfmt, [opix1, opix2], itile1=itile1, itile2=itile2, cache=cache, slice=slice) except (IOError, OSError): continue x = otile[1] + otileoff[1] if wrap: x %= ntile_wrap oname = opathfmt % {"y": otile[0] + otileoff[0], "x": x} utils.mkdir(os.path.dirname(oname)) enmap.write_map(oname, omap) if verbose: print(oname)
def sim_srcs(shape, wcs, srcs, beam, omap=None, dtype=None, nsigma=5, rmax=None, smul=1, return_padded=False, pixwin=False, op=np.add, wrap="auto", verbose=False, cache=None): """Simulate a point source map in the geometry given by shape, wcs for the given srcs[nsrc,{dec,ra,T...}], using the beam[{r,val},npoint], which must be equispaced. If omap is specified, the sources will be added to it in place. All angles are in radians. The beam is only evaluated up to the point where it reaches exp(-0.5*nsigma**2) unless rmax is specified, in which case this gives the maximum radius. smul gives a factor to multiply the resulting source model by. This is mostly useful in conction with omap. The source simulation is sped up by using a source lookup grid. """ if omap is None: omap = enmap.zeros(shape, wcs, dtype) ishape = omap.shape omap = omap.preflat ncomp = omap.shape[0] # Set up wrapping if wrap is "auto": wrap = [0, utils.nint(360. / wcs.wcs.cdelt[0])] # In keeping with the rest of the functions here, srcs is [nsrc,{dec,ra,T,Q,U}]. # The beam parameters are ignored - the beam argument is used instead amps = srcs[:, 2:2 + ncomp] poss = srcs[:, :2].copy() # Rewind positions to let us use flat-sky approximation for distance calculations ref = np.mean(enmap.box(shape, wcs, corner=False)[:, 1]) poss[:, 1] = utils.rewind(poss[:, 1], ref) beam = expand_beam(beam, nsigma, rmax) rmax = nsigma2rmax(beam, nsigma) # Pad our map by rmax, so we get the contribution from sources # just ourside our area. We will later split our map into cells of size cres. Let's # adjust the padding so we have a whole number of cells minshape = np.min(omap[..., 5:-5:10, 5:-5:10].pixshapemap() / 10, (-2, -1)) cres = np.maximum(1, utils.nint(rmax / minshape)) epix = cres - (omap.shape[-2:] + 2 * cres) % cres padding = [cres, cres + epix] wmap, wslice = enmap.pad(omap, padding, return_slice=True) # Overall we will have this many grid cells cshape = wmap.shape[-2:] / cres # Find out which sources matter for which cells srcpix = wmap.sky2pix(poss.T).T pixbox = np.array([[0, 0], wmap.shape[-2:]], int) nhit, cell_srcs = build_src_cells(pixbox, srcpix, cres, wrap=wrap) # Optionally cache the posmap if cache is None or cache[0] is None: posmap = wmap.posmap() else: posmap = cache[0] if cache is not None: cache[0] = posmap model = eval_srcs_loop(posmap, poss, amps, beam, cres, nhit, cell_srcs, dtype=wmap.dtype, op=op, verbose=verbose) del posmap if pixwin: model = enmap.apply_window(model) # Update our work map, through our view if smul != 1: model *= smul wmap = op(wmap, model, wmap) if not return_padded: # Copy out omap[:] = wmap[wslice] # Restore shape omap = omap.reshape(ishape) return omap else: return wmap.reshape(ishape[:-2] + wmap.shape[-2:]), wslice