Esempio n. 1
0
 def _apply_impl(self, data):
     # TODO: generalize this to resample all fields (xyzuvwpq...) or
     #  create a parameter to define which fields to process
     sklearn_model = self.algorithm_factory()
     X, y = sklearn_model.fit_resample(*data.Xy)
     applied = data.updated(self.transformations('a'), X=X, y=y)
     return Model(self, data, applied)
Esempio n. 2
0
    def _apply_impl(self, data):
        splitter_model = self.transformer.apply(data)
        applied = splitter_model.data.last_transformations_replaced(
            drop=self.transformer.size,
            transformation=self.transformations('a')[0])

        return Model(self, data, applied, splitter_model=splitter_model)
Esempio n. 3
0
 def _apply_impl(self, data):
     from pjdata.specialdata import NoData
     if data is not NoData:
         raise Exception(
             'Source component needs to be applied with NoData. '
             'Use Sink before it if needed.')
     return Model(self, NoData, self.data)
Esempio n. 4
0
 def _apply_impl(self, data):
     zeros = numpy.zeros(data.field(self.fields[0], self).shape[0])
     partitions = list(self.algorithm.split(X=zeros, y=zeros))
     applied = self._use_impl(data, partitions[self.partition][0], step='a')
     return Model(self,
                  data,
                  applied,
                  indices=partitions[self.partition][1])
Esempio n. 5
0
    def apply(self, data: Union[type, Data] = NoData, exit_on_error=True):
        if data.isfrozen:
            return Model(self, data, data)
        if data.allfrozen:
            return Model(self, data, data.frozen)

        self._check_nodata(data, self)

        # Disable warnings, measure time and make the party happen.
        self._handle_warnings()  # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
        start = self._cpu()
        try:
            # Aqui, passa-se _exit_on_error para self de forma que
            # implementadores de conteineres possam acessar o valor
            # dentro de
            # _apply_impl e repassar aos contidos. TODO: Mesmo p/ max_time?
            self._exit_on_error = exit_on_error

            model = self._limit_by_time(function=self._apply_impl,
                                        data=data,
                                        max_time=self.max_time)

            # Check result type.
            if not isinstance(model, Model):
                raise Exception(f'{self.name} does not handle {type(model)}!')
        except Exception as e:
            self._handle_exception(e, exit_on_error)
            applied = data.updated(self.transformations('a'),
                                   failure=str(e),
                                   frozen=True)
            model = Model(self, data, applied)
            # TODO: é possível que um container não complete o try acima?
            #  Caso sim, devemos gerar um ContainerModel aqui?

        # TODO: put time_spent inside data (as a "volatile" matrix)?
        time_spent = self._cpu() - start
        self._dishandle_warnings()  # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

        self._check_history(data, model.data, self.transformations('a'))
        return model
Esempio n. 6
0
    def _apply_impl(self, data):
        if data is not None:
            print('[apply] ', self._interpolate(self.text, data))

        return Model(self, data, data)
Esempio n. 7
0
 def _apply_impl(self, data):
     applied = self._use_impl(data, step='a')
     return Model(self, data, applied)
Esempio n. 8
0
 def _apply_impl(self, data):
     sklearn_model = self.algorithm_factory()
     sklearn_model.fit(*data.Xy)
     return Model(self, data, data.frozen, sklearn_model=sklearn_model)
Esempio n. 9
0
    def _apply_impl(self, data):
        sklearn_model = self.algorithm_factory()
        sklearn_model.fit(*data.Xy)

        applied = self._use_impl(data, sklearn_model, step='a')
        return Model(self, data, applied, sklearn_model=sklearn_model)
Esempio n. 10
0
 def _apply_impl(self, data):
     return Model(self, data, data)
Esempio n. 11
0
 def _apply_impl(self, data):
     self._enforce_nodata(data, 'a')
     return Model(self, data, self.data)
Esempio n. 12
0
 def _apply_impl(self, data):
     sklearn_model = self.algorithm_factory(data.X.shape[1])
     X_new = sklearn_model.fit_transform(*data.Xy)
     applied = data.updated(self.transformations('a'), X=X_new)
     return Model(self, data, applied, sklearn_model=sklearn_model)
Esempio n. 13
0
 def _apply_impl(self, data):
     from pjdata.specialdata import NoData
     return Model(self, data, NoData)
Esempio n. 14
0
 def _apply_impl(self, collection):
     applied = self._use_impl(collection)
     return Model(self, collection, applied)