Esempio n. 1
0
def maxLevel(state, problem):
    """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  A good place to start would be:
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  """
    "*** YOUR CODE HERE ***"

    # explain: implement max level heuristic
    #   expand the graph with out mutexs until the goal is reached,
    #   the heuristic value is the number of levels need to reach the goal

    pg = state

    Graph = []
    Graph.append(pg)
    Level = 0

    pgNext = pg
    isRepeat = False
    isGoal = False
    while not isGoal and not isRepeat:

        # expand next level without mutexs
        pgPrev = pgNext
        pgNext = PlanGraphLevel()
        pgNext.expandWithoutMutex(pgPrev)

        Graph.append(pgNext)
        Level += 1

        # check if level expansion is in 'levels-off' state
        #  if isFixed() function return true' check if the current level was aread reached in a previous graph history
        #  if so, we are in a loop state and the heuristic value should be 'inf'

        if isFixed(Graph, Level):

            pgNextPropositions = pgNext.getPropositionLayer().getPropositions()
            isRepeat = True
            for Hist in range(Level - 1):
                HistLevelPropositions = Graph[Hist].getPropositionLayer(
                ).getPropositions()
                for prop in pgNextPropositions:
                    if prop not in HistLevelPropositions:
                        isRepeat = False

        isGoal = not problem.goalStateNotInPropLayer(
            pgNext.propositionLayer.propositions)

    h = Level
    if isRepeat and not isGoal:
        h = float('inf')

    return h
Esempio n. 2
0
def maxLevel(state, problem):
  """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  A good place to start would be:
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  """
  "*** YOUR CODE HERE ***"
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer

  level = 0;

  while not problem.isGoalState(pgInit.getPropositionLayer().getPropositions()):
    level += 1
    ## Expand to the next leyer
    prevLayerSize = len(pgInit.getPropositionLayer().getPropositions())
    pgInit.expandWithoutMutex(pgInit)
    ## Check if the expanded leyer is the same leyer as before
    if len(pgInit.getPropositionLayer().getPropositions()) == prevLayerSize:
      return float("inf")
    
  return level
Esempio n. 3
0
def levelSum(state, problem):
  """
  The heuristic value is the sum of sub-goals level they first appeared.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer

  level = 0
  sumLevel = 0
  currentGoals = set(copy.copy(problem.goal))

  while currentGoals: #TODO: Changed: run until all goals found/no solution possible 
    #check for new goals achieved
    goalsInHand = set(pgInit.getPropositionLayer().getPropositions()) & currentGoals

    if goalsInHand:
      sumLevel +=  len(goalsInHand) * level;
      currentGoals -= goalsInHand;

    level += 1

    ## Expand to the next leyer
    prevLayerSize = len(pgInit.getPropositionLayer().getPropositions())
    pgInit.expandWithoutMutex(pgInit)
    ## Check if the expanded leyer is the same leyer as before
    if len(pgInit.getPropositionLayer().getPropositions()) == prevLayerSize:
      return float("inf")
    
  return sumLevel
Esempio n. 4
0
 def __init__(self, domain, problem):
   """
   Constructor
   """
   p = Parser(domain, problem)
   self.actions, self.propositions = p.parseActionsAndPropositions()	  # list of all the actions and list of all the propositions                                            
   self.initialState, self.goal = p.pasreProblem() 				            # the initial state and the goal state are lists of propositions                                            
   self.createNoOps() 											                            # creates noOps that are used to propagate existing propositions from one layer to the next
   PlanGraphLevel.setActions(self.actions)
   PlanGraphLevel.setProps(self.propositions)
   self._expanded = 0
Esempio n. 5
0
 def __init__(self, domain, problem):
   """
   Constructor
   """
   p = Parser(domain, problem)
   self.actions, self.propositions = p.parseActionsAndPropositions()     # list of all the actions and list of all the propositions                                            
   self.initialState, self.goal = p.pasreProblem()                             # the initial state and the goal state are lists of propositions                                            
   self.createNoOps()                                                                       # creates noOps that are used to propagate existing propositions from one layer to the next
   PlanGraphLevel.setActions(self.actions)
   PlanGraphLevel.setProps(self.propositions)
   self._expanded = 0
Esempio n. 6
0
    def getStartState(self):
        "*** YOUR CODE HERE ***"

        # explain: A state is a planGraphLevel,
        #   and here I am building a level with the initial state propositions

        propLayerInit = PropositionLayer()
        for prop in self.initialState:
            propLayerInit.addProposition(prop)
        pgInit = PlanGraphLevel()
        pgInit.setPropositionLayer(propLayerInit)

        return pgInit
Esempio n. 7
0
def maxLevel(state, problem):
  """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  A good place to start would be:
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  """
  propLayerInit = PropositionLayer()
  for prop in state:
    propLayerInit.addProposition(prop)
  pgInit = PlanGraphLevel()
  pgInit.setPropositionLayer(propLayerInit)

  graph = []  # list of PlanGraphLevel objects
  graph.append(pgInit)
  level = 0
  while True:
    # check if this level has the goal
    if problem.goalStateNotInPropLayer(graph[level].getPropositionLayer().getPropositions()):
      break
    # else if the goal is not in this level, and we finished to max graph, meens we vant reach the goal.
    elif isFixed(graph, level):
      return float('inf')

    pgNext = PlanGraphLevel()
    pgNext.expandWithoutMutex(graph[level])
    graph.append(pgNext)
    level += 1
  # if we got into break meens last level contain goal. So lets return the level.
  return level
Esempio n. 8
0
def maxLevel(state, problem):
    """
    The heuristic value is the number of layers required to expand all goal propositions.
    If the goal is not reachable from the state your heuristic should return float('inf')
    A good place to start would be:
    propLayerInit = PropositionLayer()          #create a new proposition layer
    for prop in state:
      propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
    pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
    pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
    """

    level = 0
    graph = []

    initial_prop_layer = PropositionLayer()
    for prop in state:
        initial_prop_layer.addProposition(prop)

    curr_graph_level = PlanGraphLevel()
    curr_graph_level.setPropositionLayer(initial_prop_layer)
    graph.append(curr_graph_level)

    while not problem.isGoalState(
            graph[level].getPropositionLayer().getPropositions()):
        if isFixed(graph, level):
            return float('inf')
        level += 1
        next_level = PlanGraphLevel()
        next_level.expandWithoutMutex(graph[level - 1])
        graph.append(next_level)

    return level
Esempio n. 9
0
def maxLevel(state, problem):
    """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  A good place to start would be:
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  """
    "*** YOUR CODE HERE ***"

    propLayerInit = PropositionLayer()
    for prop in state:
        propLayerInit.addProposition(prop)
    pgInit = PlanGraphLevel()
    pgInit.setPropositionLayer(propLayerInit)

    level = 0
    graph = []
    graph.append(pgInit)

    while not problem.isGoalState(
            graph[level].getPropositionLayer().getPropositions()):
        level += 1
        pgNext = PlanGraphLevel()
        pgNext.expandWithoutMutex(graph[level - 1])
        graph.append(pgNext)

    return level
Esempio n. 10
0
def levelSum(state, problem):
    """
    The heuristic value is the sum of sub-goals level they first appeared.
    If the goal is not reachable from the state your heuristic should return float('inf')
    """
    """ this is copy paste from graph plan algorithm, with small change in loop definition and disabling of mutex """

    propLayerInit = PropositionLayer()  # create a new proposition layer
    for prop in state:
        propLayerInit.addProposition(prop)  # update the proposition layer with the propositions of the state
    pgInit = PlanGraphLevel()  # create a new plan graph level (level is the action layer and the propositions layer)
    pgInit.setPropositionLayer(propLayerInit)

    graph = []
    sum_sub_goals = 0
    level = 0
    graph.append(pgInit)

    while problem.goalStateNotInPropLayer(graph[level].getPropositionLayer().getPropositions()):
        if isFixed(graph, level):
            return float("inf")  # this means we stopped the while loop above because we reached a fixed point in the graph. nothing more to do, we failed!

        if problem.isSubGoal(graph[level].getPropositionLayer().getPropositions()):  # if we have sub goal here. count it
            sum_sub_goals += 1
        level += 1

        pgNext = PlanGraphLevel()  # create new PlanGraph object
        pgNext.expandWithoutMutex(graph[level - 1])  # calls the expand function, which you are implementing in the PlanGraph class
        graph.append(pgNext)  # appending the new level to the plan graph

    sum_sub_goals += 1  # the latest full sub goal that is equals goal, we take it to attention too
    return sum_sub_goals
def levelSum(state, problem):
  """
  The heuristic value is the sum of sub-goals level they first appeared.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
  "*** YOUR CODE HERE ***"
  propLayerInit = PropositionLayer()          #create a new proposition layer
  # initialize the propositions
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  currentLevel = pgInit
  level = 0
  sum = 0
  graph = list()
  graph.append(currentLevel)
  goals = copy.deepcopy(problem.goal)
  while(len(goals) > 0):
    if isFixed(graph, level):
      return float("inf")
    layer = currentLevel.getPropositionLayer().getPropositions()
    for prop in layer:
      if prop in goals:
        sum = sum + level
        goals.remove(prop)
    nextLevel = PlanGraphLevel()
    nextLevel.expandWithoutMutex(graph[level])
    level = level + 1
    graph.append(nextLevel)
    currentLevel = nextLevel

  return sum
Esempio n. 12
0
def levelSum(state, problem):
    """
    The heuristic value is the sum of sub-goals level they first appeared.
    If the goal is not reachable from the state your heuristic should return float('inf')
    """

    level = 0
    sum = 0
    graph = []
    goals = [goal for goal in problem.goal]

    initial_prop_layer = PropositionLayer()
    for prop in state:
        initial_prop_layer.addProposition(prop)

    initial_level = PlanGraphLevel()
    initial_level.setPropositionLayer(initial_prop_layer)
    graph.append(initial_level)

    while len(goals) > 0:
        if isFixed(graph, level):
            return float('inf')

        for goal in goals:
            if goal in graph[level].getPropositionLayer().getPropositions():
                sum += level
                goals.remove(goal)

        level += 1
        next_level = PlanGraphLevel()
        next_level.expandWithoutMutex(graph[level - 1])
        graph.append(next_level)

    return sum
Esempio n. 13
0
def maxLevel(state, problem):
    """
    The heuristic value is the number of layers required to expand all goal propositions.
    If the goal is not reachable from the state your heuristic should return float('inf')
    A good place to start would be:
    propLayerInit = PropositionLayer()          #create a new proposition layer
    for prop in state:
      propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
    pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
    pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
    """

    """ this is copy paste from graph plan algorithm, with small change in loop definition and disabling of mutex """

    propLayerInit = PropositionLayer()  # create a new proposition layer
    for prop in state:
        propLayerInit.addProposition(prop)  # update the proposition layer with the propositions of the state
    pgInit = PlanGraphLevel()  # create a new plan graph level (level is the action layer and the propositions layer)
    pgInit.setPropositionLayer(propLayerInit)

    graph = []
    level = 0
    graph.append(pgInit)

    while problem.goalStateNotInPropLayer(graph[level].getPropositionLayer().getPropositions()):
        if isFixed(graph, level):
            return float("inf")  # this means we stopped the while loop above because we reached a fixed point in the graph. nothing more to do, we failed!
        level = level + 1
        pgNext = PlanGraphLevel()  # create new PlanGraph object
        pgNext.expandWithoutMutex(graph[level - 1])  # calls the expand function, which you are implementing in the PlanGraph class
        graph.append(pgNext)  # appending the new level to the plan graph

    return level
def maxLevel(state, problem):
  """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  A good place to start would be:
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  """
  "*** YOUR CODE HERE ***"
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  currentLevel = pgInit
  level = 0
  graph = list()
  graph.append(currentLevel)
  while(problem.goalStateNotInPropLayer(graph[level].getPropositionLayer().getPropositions())):
    newLevel = PlanGraphLevel()
    newLevel.expandWithoutMutex(graph[level])
    level += 1
    graph.append(newLevel)
    currentLevel = newLevel
    if isFixed(graph, level):
      return float("inf")

  return level
Esempio n. 15
0
def levelSum(state, problem):
    """
  The heuristic value is the sum of sub-goals level they first appeared.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
    "*** YOUR CODE HERE ***"
    propLayerInit = PropositionLayer()
    for prop in state:
        propLayerInit.addProposition(prop)
        pgInit = PlanGraphLevel()
        pgInit.setPropositionLayer(propLayerInit)

    level = 0
    sum = 0
    graph = []
    goals = [goal for goal in problem.goal]
    graph.append(pgInit)

    while len(goals) > 0:
        for goal in goals:
            if goal in graph[level].getPropositionLayer().getPropositions():
                sum += level
                goals.remove(goal)

        level += 1
        pgNext = PlanGraphLevel()
        pgNext.expandWithoutMutex(graph[level - 1])
        graph.append(pgNext)

    return sum
Esempio n. 16
0
def maxLevel(state, problem):
    """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  """
    level = 0
    propLayerInit = PropositionLayer()
    # Add all propositions in current state to proposition layer
    for p in state:
        propLayerInit.addProposition(p)

    pgInit = PlanGraphLevel()
    pgInit.setPropositionLayer(propLayerInit)
    # Graph is a list of PlanGraphLevel objects
    graph = []
    graph.append(pgInit)

    # While goal state is not in proposition layer, keep expanding
    while problem.goalStateNotInPropLayer(
            graph[level].getPropositionLayer().getPropositions()):
        # If the graph has not changed between expansions, we should halt
        if isFixed(graph, level):
            return float('inf')
        level += 1
        pgNext = PlanGraphLevel()
        # Expand without mutex (relaxed version of problem)
        pgNext.expandWithoutMutex(graph[level - 1])
        graph.append(pgNext)

    return level
Esempio n. 17
0
def levelSum(state, problem):
    """
    The heuristic value is the sum of sub-goals level they first appeared.
    If the goal is not reachable from the state your heuristic should return float('inf')
    """
    def nextPlan(plan):
        next_plan = PlanGraphLevel()
        next_plan.expandWithoutMutex(plan)
        return next_plan, next_plan.getPropositionLayer().getPropositions()

    propLayerInit = PropositionLayer()
    # add all to the new proposition layer
    lmap(propLayerInit.addProposition, state)

    plan = PlanGraphLevel()
    plan.setPropositionLayer(propLayerInit)
    plan_propositions = plan.getPropositionLayer().getPropositions()

    # create a graph that will store all the plan levels
    graph = []
    graph.append(plan)

    goals_levels = dict()
    goal = problem.goal

    # init goals levels
    for p in goal:
        goals_levels[p.getName()] = None

    # as long as we have for one of the goal None we didnt find the first level
    while None in goals_levels.values():
        # if fixed we won't have a solution
        if isFixed(graph, len(graph) - 1):
            return float('inf')
        # for each prop in the goal check if exist on the current plan
        # propositions
        for p in goal:
            # check that we didnt assign a value yet
            if p in plan_propositions and goals_levels[p.getName()] == None:
                # set the current level as the fist appearance of the prop
                goals_levels[p.getName()] = len(graph) - 1
        # create the next plan by the prev
        plan, plan_propositions = nextPlan(plan)
        # store in the graph
        graph.append(plan)

    return sum(goals_levels.values())
Esempio n. 18
0
  def graphPlan(self):
    """
    The graphplan algorithm.
    The code calls the extract function which you should complete below
    """
    #initialization
    initState = self.initialState
    level = 0
    self.noGoods = [] #make sure you update noGoods in your backward search!
    self.noGoods.append([])
    #create first layer of the graph, note it only has a proposition layer which consists of the initial state.
    propLayerInit = PropositionLayer()
    for prop in initState:
      propLayerInit.addProposition(prop)
    pgInit = PlanGraphLevel()
    pgInit.setPropositionLayer(propLayerInit)
    self.graph.append(pgInit)

    """
    While the layer does not contain all of the propositions in the goal state,
    or some of these propositions are mutex in the layer we,
    and we have not reached the fixed point, continue expanding the graph
    """

    while self.goalStateNotInPropLayer(self.graph[level].getPropositionLayer().getPropositions()) or \
        self.goalStateHasMutex(self.graph[level].getPropositionLayer()):
      if self.isFixed(level):
        return None #this means we stopped the while loop above because we reached a fixed point in the graph. nothing more to do, we failed!

      self.noGoods.append([])
      level = level + 1
      pgNext = PlanGraphLevel() #create new PlanGraph object
      pgNext.expand(self.graph[level - 1]) #calls the expand function, which you are implementing in the PlanGraph class
      self.graph.append(pgNext) #appending the new level to the plan graph

      sizeNoGood = len(self.noGoods[level]) #remember size of nogood table

    plan = self.extract(self.graph, self.goal, level) #try to extract a plan since all of the goal propositions are in current graph level, and are not mutex
    while(plan is None): #while we didn't extract a plan successfully
      level = level + 1
      self.noGoods.append([])
      pgNext = PlanGraphLevel() #create next level of the graph by expanding
      pgNext.expand(self.graph[level - 1]) #create next level of the graph by expanding
      self.graph.append(pgNext)
      plan = self.extract(self.graph, self.goal, level) #try to extract a plan again
      if (plan is None and self.isFixed(level)): #if failed and reached fixed point
        if sizeNoGood == len(self.noGoods[level]): #if size of nogood didn't change, means there's nothing more to do. We failed.
          return None
        sizeNoGood = len(self.noGoods[level]) #we didn't fail yet! update size of no good
    return plan
Esempio n. 19
0
def maxLevel(state, problem):
    """
    The heuristic value is the number of layers required to expand all goal propositions.
    If the goal is not reachable from the state your heuristic should return float('inf')
    A good place to start would be:
    propLayerInit = PropositionLayer()          #create a new proposition layer
    for prop in state:
      #update the proposition layer with the propositions of the state
      propLayerInit.addProposition(prop)
    # create a new plan graph level (level is the action layer and the
    # propositions layer)
    pgInit = PlanGraphLevel()
    #update the new plan graph level with the the proposition layer
    pgInit.setPropositionLayer(propLayerInit)
    """
    def nextPlan(plan):
        next_plan = PlanGraphLevel()
        next_plan.expandWithoutMutex(plan)
        return next_plan, next_plan.getPropositionLayer().getPropositions()

    propLayerInit = PropositionLayer()
    # add all to the new proposition layer
    lmap(propLayerInit.addProposition, state)

    plan = PlanGraphLevel()
    plan.setPropositionLayer(propLayerInit)
    plan_propositions = plan.getPropositionLayer().getPropositions()

    # create a graph that will store all the plan levels
    graph = []
    graph.append(plan)

    # if we found we can rest
    while not problem.isGoalState(plan_propositions):
        # if fixed we won't have a solution
        if isFixed(graph, len(graph) - 1):
            return float('inf')
        # create the next plan by the prev
        plan, plan_propositions = nextPlan(plan)
        # store in the graph
        graph.append(plan)

    return len(graph) - 1
Esempio n. 20
0
def maxLevel(state, problem):
  """ El valor de la heurística es el número de capas
  necesarias para expandir todas las proposiciones de gol.
  Si el objetivo no es alcanzable desde el estado de su
  heurística debe volver float('inf') """
  level = 0
  propLayerInit = PropositionLayer()
  # Añadir todas las proposiciones en el estado actual en la propositionLayer
  for p in state:
    propLayerInit.addProposition(p)

  pgInit = PlanGraphLevel()
  pgInit.setPropositionLayer(propLayerInit)
  # El Grafo es una lista de objetos PlanGraphLevel
  graph = []
  graph.append(pgInit)

  # Mientras que el estado objetivo no está en la capa proposición, seguimos expandiendolo
  while problem.goalStateNotInPropLayer(graph[level].getPropositionLayer().getPropositions()):
    # Si el grafo no ha cambiado entre expansiones, lo detenemos.
    if isFixed(graph, level):
      return float('inf')
    level += 1
    pgNext = PlanGraphLevel()
    # Expandir sin mutex (versión relajada de problema)
    pgNext.expandWithoutMutex(graph[level-1])
    graph.append(pgNext)

  return level  
Esempio n. 21
0
def maxLevel(state, problem):
  """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  """
  level = 0
  propLayerInit = PropositionLayer()
  # Add all propositions in current state to proposition layer
  for p in state:
    propLayerInit.addProposition(p)

  pgInit = PlanGraphLevel()
  pgInit.setPropositionLayer(propLayerInit)
  # Graph is a list of PlanGraphLevel objects
  graph = []
  graph.append(pgInit)

  # While goal state is not in proposition layer, keep expanding
  while problem.goalStateNotInPropLayer(graph[level].getPropositionLayer().getPropositions()):
    # If the graph has not changed between expansions, we should halt
    if isFixed(graph, level):
      return float('inf')
    level += 1
    pgNext = PlanGraphLevel()
    # Expand without mutex (relaxed version of problem)
    pgNext.expandWithoutMutex(graph[level-1])
    graph.append(pgNext)

  return level
Esempio n. 22
0
def maxLevel(state, problem):
    """
    The heuristic value is the number of layers required to expand all goal propositions.
    If the goal is not reachable from the state your heuristic should return float('inf')
    A good place to start would be:
    propLayerInit = PropositionLayer()          #create a new proposition layer
    for prop in state:
      propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
    pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
    pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
    """

    level = 0
    graph = []

    initial_prop_layer = PropositionLayer()
    for prop in state:
        initial_prop_layer.addProposition(prop)

    curr_graph_level = PlanGraphLevel()
    curr_graph_level.setPropositionLayer(initial_prop_layer)
    graph.append(curr_graph_level)

    while not problem.isGoalState(graph[level].getPropositionLayer().getPropositions()):
        if isFixed(graph, level):
            return float('inf')
        level += 1
        next_level = PlanGraphLevel()
        next_level.expandWithoutMutex(graph[level-1])
        graph.append(next_level)

    return level
Esempio n. 23
0
def levelSum(state, problem):
    """
    The heuristic value is the sum of sub-goals level they first appeared.
    If the goal is not reachable from the state your heuristic should return float('inf')
    """

    level = 0
    sum = 0
    graph = []
    goals = [goal for goal in problem.goal]

    initial_prop_layer = PropositionLayer()
    for prop in state:
        initial_prop_layer.addProposition(prop)

    initial_level = PlanGraphLevel()
    initial_level.setPropositionLayer(initial_prop_layer)
    graph.append(initial_level)

    while len(goals) > 0:
        if isFixed(graph, level):
            return float('inf')

        for goal in goals:
            if goal in graph[level].getPropositionLayer().getPropositions():
                sum += level
                goals.remove(goal)

        level += 1
        next_level = PlanGraphLevel()
        next_level.expandWithoutMutex(graph[level-1])
        graph.append(next_level)

    return sum
Esempio n. 24
0
def levelSum(state, problem):
  """
  The heuristic value is the sum of sub-goals level they first appeared.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
  total = 0
  propLayerInit = PropositionLayer()

  for prop in state:
    propLayerInit.addProposition(prop)

  pgInit = PlanGraphLevel()
  pgInit.setPropositionLayer(propLayerInit)
  g = [pgInit]
  level = 0

  while len(problem.goal) > 0:
    if isFixed(g, level):
      return float("inf")

    for goal in problem.goal:
      if goal in g[level].getPropositionLayer().getPropositions():
        problem.goal.remove(goal)
        total += level

    nextPlanGraphLevel = PlanGraphLevel()
    nextPlanGraphLevel.expandWithoutMutex(g[level])
    level += 1
    g.append(nextPlanGraphLevel)
  return total
Esempio n. 25
0
	def graphPlan(self): 
		#El algoritmo graphplan en sí
		
		#Inicialización
		initState = self.initialState
		level = 0
		self.noGoods = []
		self.noGoods.append([])
		
		#Crea la primera capa del grafo, que no consiste más que en el estado inicial
		propLayerInit = PropositionLayer()
		for prop in initState:
			propLayerInit.addProposition(prop)
		pgInit = PlanGraphLevel()
		pgInit.setPropositionLayer(propLayerInit)
		self.graph.append(pgInit)
		
		#Mientras que la capa no contiene todos los estados del estado final buscado (o están mutex) continuamos expandiendo el grafo
		while self.goalStateNotInPropLayer(self.graph[level].getPropositionLayer().getPropositions()) or \
				self.goalStateHasMutex(self.graph[level].getPropositionLayer()):
			if self.isFixed(level):
				return None	#Si llegamos aquí paramos porque significa que hemos llegado a un fixed point en el grafo, así que no podemos hacer nada más
				
			self.noGoods.append([])
			level = level + 1 #Actualizamos el nivel
			pgNext = PlanGraphLevel() #Crea un nuevo objeto GraphPlan
			pgNext.expand(self.graph[level - 1]) #Llama a la función expandir
			self.graph.append(pgNext) #Une el nuevo nivel generado con el graphplan
		
			sizeNoGood = len(self.noGoods[level])
		
		plan = self.extract(self.graph, self.goal, level) #Intentamos hallar un plan (si todos los estados objetivos están en este nivel y no están mutex)
		while(plan is None): #Hacemos esto mientras no podemos encontrar un plan
			level = level + 1 
			self.noGoods.append([])
			pgNext = PlanGraphLevel() #Crea el próximo nivel del grafo
			pgNext.expand(self.graph[level - 1]) #Y ahora lo expande
			self.graph.append(pgNext)
			plan = self.extract(self.graph, self.goal, level) #Intentamos econtrar el plan
			if (plan is None and self.isFixed(level)): #Si fallamos y encontramos un punto un fixed point
				if sizeNoGood == len(self.noGoods[level]): #Si el tamaño de noGood no cambia significa que hemos fallado y no hay plan
					return None
				sizeNoGood = len(self.noGoods[level]) #Si no, significa que aún podemos encontrar el plan y actualizamos el tamaño de noGood
		return plan
Esempio n. 26
0
    def getSuccessors(self, state):
        """   
    For a given state, this should return a list of triples, 
    (successor, action, stepCost), where 'successor' is a 
    successor to the current state, 'action' is the action
    required to get there, and 'stepCost' is the incremental 
    cost of expanding to that successor, 1 in our case.
    You might want to this function:
    For a list of propositions l and action a,
    a.allPrecondsInList(l) returns true if the preconditions of a are in l
    """
        self._expanded += 1
        "*** YOUR CODE HERE ***"

        # explain: Successors are the list of actions can be done from the current level
        #   I build the action lyer using pgNext.updateActionLayer
        #   then for each action I build a the Level that wholud have been created if only this action was selected

        Successors = []

        pg = state
        previousPropositionLayer = pg.getPropositionLayer()
        previousLayerPropositions = previousPropositionLayer.propositions

        pgNext = PlanGraphLevel()
        pgNext.updateActionLayer(previousPropositionLayer)

        for Action in pgNext.actionLayer.actions:

            if Action.isNoOp():
                continue

            pgNextAction = PlanGraphLevel()
            pgNextAction.actionLayer.addAction(Action)
            for prop in previousLayerPropositions:
                pgNextAction.propositionLayer.addProposition(prop)
            for prop in Action.getAdd():
                new_prop = Proposition(prop.getName())
                new_prop.addProducer(Action)
                pgNextAction.propositionLayer.addProposition(new_prop)
            for prop in Action.getDelete():
                pgNextAction.propositionLayer.removePropositions(prop)
            pgNextAction.updateMutexProposition()

            Successors.append((pgNextAction, Action, 1))

        return Successors
Esempio n. 27
0
def expansionGenerator(state, problem):
    """
    Generates and yields the propositions in each level,
    Until the graph becomes fixed.
    """
    propLayerInit = PropositionLayer()          #create a new proposition layer
    for prop in state:
        propLayerInit.addProposition(prop)      #update the proposition layer with the propositions of the state
    pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
    pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
    graph = [pgInit]
    count = 0
    
    while not isFixed(graph, count):
        props = graph[count].getPropositionLayer().getPropositions()
        yield count, props
        pgNext = PlanGraphLevel()
        pgNext.expandWithoutMutex(graph[count])
        graph.append(pgNext)
        count += 1
Esempio n. 28
0
	def __init__(self,domain, problem):
		#Constructor de la clase
		self.independentActions = set()
		self.noGoods = []
		self.graph = []
		p = Parser(domain, problem)
		self.actions, self.propositions = p.parseActionsAndPropositions() #Listado de todas las acciones y estados
		self.initialState, self.goal = p.pasreProblem()	#El estado iniacial y el objetivo (que son una lista de estados)
		self.createNoOps() #Crea el noOps que se usa para propagar estados de una capa a la siguiente
		self.independent() #Crea el listado de acciones independent y actualiza self.independentActions
		PlanGraphLevel.setIndependentActions(self.independentActions)
		PlanGraphLevel.setActions(self.actions)
		PlanGraphLevel.setProps(self.propositions)
Esempio n. 29
0
def levelSum(state, problem):
    """
  The heuristic value is the sum of sub-goals level they first appeared.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
    propLayerInit = PropositionLayer()
    for p in state:
        propLayerInit.addProposition(p)

    pgInit = PlanGraphLevel()
    pgInit.setPropositionLayer(propLayerInit)

    graph = []  # list of PlanGraphLevel objects
    graph.append(pgInit)
    goals = problem.goal[:]
    level = 0
    sum_ = 0

    # keep expanding as long as we still have goal states we didn't see
    while goals:
        if isFixed(graph, level):
            # if the graph is fixed and expansions didn't change in the last level, it means that we can't reach
            # the goal state, and we return infinity
            return float('inf')

        props = graph[level].getPropositionLayer().getPropositions()
        for goal in goals:
            if goal in props:
                # each goal state that we run into, we should add to the sum, and remove it from the goals we need to see
                sum_ += level
                goals.remove(goal)

        pg = PlanGraphLevel()
        # expanding using a easier version of the problem - without mutexes
        pg.expandWithoutMutex(graph[level])
        graph.append(pg)
        level += 1

    sum_ += level

    return sum_
Esempio n. 30
0
 def __init__(self,domain, problem):
     """
     Constructor
     """
     self.independentActions = []
     self.noGoods = []
     self.graph = []
     p = Parser(domain, problem)
     self.actions, self.propositions = p.parseActionsAndPropositions()   # list of all the actions and list of all the propositions
     self.initialState, self.goal = p.pasreProblem()                                     # the initial state and the goal state are lists of propositions
     self.createNoOps()                                                                                                  # creates noOps that are used to propagate existing propositions from one layer to the next
     self.independent()                                                                                                  # creates independent actions list and updates self.independentActions
     PlanGraphLevel.setIndependentActions(self.independentActions)
     PlanGraphLevel.setActions(self.actions)
     PlanGraphLevel.setProps(self.propositions)
Esempio n. 31
0
 def __init__(self,domain, problem):
   """
   Constructor
   """
   self.independentActions = []
   self.noGoods = []
   self.graph = []
   p = Parser(domain, problem)
   self.actions, self.propositions = p.parseActionsAndPropositions()   # list of all the actions and list of all the propositions
   self.initialState, self.goal = p.pasreProblem() 					# the initial state and the goal state are lists of propositions
   self.createNoOps() 													# creates noOps that are used to propagate existing propositions from one layer to the next
   self.independent() 													# creates independent actions list and updates self.independentActions
   PlanGraphLevel.setIndependentActions(self.independentActions)
   PlanGraphLevel.setActions(self.actions)
   PlanGraphLevel.setProps(self.propositions)
Esempio n. 32
0
def maxLevel(state, problem):
    """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')  
  A good place to start would be:
  propLayerInit = PropositionLayer()          #create a new proposition layer
  for prop in state:
    propLayerInit.addProposition(prop)        #update the proposition layer with the propositions of the state
  pgInit = PlanGraphLevel()                   #create a new plan graph level (level is the action layer and the propositions layer)
  pgInit.setPropositionLayer(propLayerInit)   #update the new plan graph level with the the proposition layer
  """

    propLayerInit = PropositionLayer()
    for p in state:
        propLayerInit.addProposition(p)

    pgInit = PlanGraphLevel()
    pgInit.setPropositionLayer(propLayerInit)

    graph = []  # list of PlanGraphLevel objects
    graph.append(pgInit)
    level = 0

    # keep expanding as long as we don't hit the goal state
    while problem.goalStateNotInPropLayer(
            graph[level].getPropositionLayer().getPropositions()):
        if isFixed(graph, level):
            # if the graph is fixed and expansions didn't change in the last level, it means that we can't reach
            # the goal state, and we return infinity
            return float('inf')

        pg = PlanGraphLevel()
        # expanding using a easier version of the problem - without mutexes
        pg.expandWithoutMutex(graph[level])
        graph.append(pg)
        level += 1

    return level
Esempio n. 33
0
def levelSum(state, problem):
  """
  The heuristic value is the sum of sub-goals level they first appeared.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
  propLayerInit = PropositionLayer()
  for prop in state:
    propLayerInit.addProposition(prop)
  pgInit = PlanGraphLevel()
  pgInit.setPropositionLayer(propLayerInit)

  graph = []  # list of PlanGraphLevel objects
  graph.append(pgInit)
  level = 0
  leftGoals = problem.goal.copy()
  level_sum = 0

  while True:
    # if leftGoals is empty, means we reached all the goals.
    if len(leftGoals) == 0:
      break
    # else if the goal is not in this level, and we finished to max graph, meens we vant reach the goal.
    elif isFixed(graph, level):
      return float('inf')
    props = graph[level].getPropositionLayer().getPropositions()
    # check for each goal if it is in the next props. If so, remove it from the left golas, and add the level to the sum
    for goal in leftGoals:
      if goal in props:
        level_sum += level
        leftGoals.remove(goal)

    pgTemp = PlanGraphLevel()
    pgTemp.expandWithoutMutex(graph[level])
    graph.append(pgTemp)
    level += 1
  # adding last level to the sum, and return it
  level_sum += level
  return level_sum
Esempio n. 34
0
def maxLevel(state, problem):
  """
  The heuristic value is the number of layers required to expand all goal propositions.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
  newPropositionLayer = PropositionLayer()
  [newPropositionLayer.addProposition(p) for p in state]

  newPlanGraphLevel = PlanGraphLevel()
  newPlanGraphLevel.setPropositionLayer(newPropositionLayer)

  level = 0
  g = [newPlanGraphLevel]

  while problem.goalStateNotInPropLayer(g[level].getPropositionLayer().getPropositions()):
    if isFixed(g, level):
      return float("inf")

    level += 1
    nextPlanGraphLevel = PlanGraphLevel()
    nextPlanGraphLevel.expandWithoutMutex(g[level - 1])
    g.append(newPlanGraphLevel)

  return level
Esempio n. 35
0
 def nextPlan(plan):
     next_plan = PlanGraphLevel()
     next_plan.expandWithoutMutex(plan)
     return next_plan, next_plan.getPropositionLayer().getPropositions()
Esempio n. 36
0
    def graphPlan(self):
        """
    The graphplan algorithm. 
    The code calls the extract function which you should complete below
    """
        #initialization
        initState = self.initialState
        level = 0
        self.noGoods = [
        ]  #make sure you update noGoods in your backward search!
        self.noGoods.append([])
        #create first layer of the graph, note it only has a proposition layer which consists of the initial state.
        propLayerInit = PropositionLayer()
        for prop in initState:
            propLayerInit.addProposition(prop)
        pgInit = PlanGraphLevel()
        pgInit.setPropositionLayer(propLayerInit)
        self.graph.append(pgInit)
        """
    While the layer does not contain all of the propositions in the goal state,
    or some of these propositions are mutex in the layer we,
    and we have not reached the fixed point, continue expanding the graph
    """

        while self.goalStateNotInPropLayer(self.graph[level].getPropositionLayer().getPropositions()) or \
            self.goalStateHasMutex(self.graph[level].getPropositionLayer()):
            if self.isFixed(level):
                return None  #this means we stopped the while loop above because we reached a fixed point in the graph. nothing more to do, we failed!

            self.noGoods.append([])
            level = level + 1
            pgNext = PlanGraphLevel()  #create new PlanGraph object
            pgNext.expand(
                self.graph[level - 1]
            )  #calls the expand function, which you are implementing in the PlanGraph class
            self.graph.append(
                pgNext)  #appending the new level to the plan graph

            sizeNoGood = len(
                self.noGoods[level])  #remember size of nogood table

        plan = self.extract(
            self.graph, self.goal, level
        )  #try to extract a plan since all of the goal propositions are in current graph level, and are not mutex
        while (plan is None):  #while we didn't extract a plan successfully
            level = level + 1
            self.noGoods.append([])
            pgNext = PlanGraphLevel(
            )  #create next level of the graph by expanding
            pgNext.expand(
                self.graph[level -
                           1])  #create next level of the graph by expanding
            self.graph.append(pgNext)
            plan = self.extract(self.graph, self.goal,
                                level)  #try to extract a plan again
            if (plan is None and
                    self.isFixed(level)):  #if failed and reached fixed point
                if sizeNoGood == len(
                        self.noGoods[level]
                ):  #if size of nogood didn't change, means there's nothing more to do. We failed.
                    return None
                sizeNoGood = len(self.noGoods[level]
                                 )  #we didn't fail yet! update size of no good
        return plan
Esempio n. 37
0
def levelSum(state, problem):
    """
  The heuristic value is the sum of sub-goals level they first appeared.
  If the goal is not reachable from the state your heuristic should return float('inf')
  """
    "*** YOUR CODE HERE ***"

    # explain: implement max level heuristic
    #   expand the graph with out mutexs until the goal is reached,
    #   the heuristic value is the sum of the levels reached for each goal proposition

    pg = state

    Graph = []
    Graph.append(pg)
    Level = 0
    Sum = 0
    goal = copy.deepcopy(problem.goal)

    pgNext = pg
    isRepeat = False
    isGoal = False
    while not isGoal and not isRepeat:

        # expand next level without mutexs
        pgPrev = pgNext
        pgNext = PlanGraphLevel()
        pgNext.expandWithoutMutex(pgPrev)

        Graph.append(pgNext)
        Level += 1

        # check if level expansion is in 'levels-off' state
        #  if isFixed() function return true' check if the current level was aread reached in a previous graph history
        #  if so, we are in a loop state and the heuristic value should be 'inf'

        if isFixed(Graph, Level):
            pgNextPropositions = pgNext.getPropositionLayer().getPropositions()
            isRepeat = True
            for Hist in range(Level - 1):
                HistLevelPropositions = Graph[Hist].getPropositionLayer(
                ).getPropositions()
                for prop in pgNextPropositions:
                    if prop not in HistLevelPropositions:
                        isRepeat = False

        to_delete = []
        for prop in goal:
            if prop in pgNext.propositionLayer.propositions:
                # add each goal level, and delete it from goal list
                Sum += Level
                to_delete.append(prop)
        for prop in to_delete:
            goal.remove(prop)
        isGoal = len(goal) == 0

    h = Sum
    if isRepeat and not isGoal:
        h = float('inf')

    return h