from playLA.Matrix import Matrix from playLA.Vector import Vector from playLA.LinearSystem import LinearSystem from playLA.LinearSystem1 import * if __name__ == "__main__": A = Matrix([[1, 2, 4], [3, 7, 2], [2, 3, 3]]) b = Vector([7, -11, 1]) ls = LinearSystem(A, b) ls.gauss_jordan_elimination() ls.fancy_print() print() A2 = Matrix([[1, -3, 5], [2, -1, -3], [3, 1, 4]]) b2 = Vector([-9, 19, -13]) ls2 = LinearSystem(A2, b2) ls2.gauss_jordan_elimination() ls2.fancy_print() print() A3 = Matrix([[1, 2, -2], [2, -3, 1], [3, -1, 3]]) b3 = Vector([6, -10, -16]) ls3 = LinearSystem(A3, b3) ls3.gauss_jordan_elimination() ls3.fancy_print() print() A4 = Matrix([[3, 1, -2], [5, -3, 10], [7, 4, 16]]) b4 = Vector([4, 32, 13]) ls4 = LinearSystem(A4, b4)
from playLA.LinearSystem import LinearSystem from playLA.Matrix import Matrix from playLA.Vector import Vector if __name__ == "__main__": A = Matrix([[1, 2, 4], [3, 7, 2], [2, 3, 3]]) b = Vector([7, -11, 1]) ls = LinearSystem(A, b) ls.gauss_jordan_elimination() ls.fancy_print() A2 = Matrix([[1, -3, -5], [2, -1, -3], [3, 1, 4]]) b2 = Vector([-9, 19, -13]) ls2 = LinearSystem(A2, b2) ls2.gauss_jordan_elimination() ls2.fancy_print()
from playLA.LinearSystem import LinearSystem from playLA.LinearSystem import inv, rank from playLA.Matrix import Matrix from playLA.Vector import Vector if __name__ == '__main__': A1 = Matrix([[1, 2, 4], [3, 7, 2], [2, 3, 3]]) b = Vector([7, -11, 1]) ls = LinearSystem(A1, b) ls.gauss_jordan_elimination() ls.fancy_print() print() # 测试更加一般化的高斯约旦消元法 A2 = Matrix([[1, -1, 2, 0, 3], [-1, 1, 0, 2, -5], [1, -1, 4, 2, 4], [-2, 2, -5, -1, -3]]) b2 = Vector([1, 5, 13, -1]) ls2 = LinearSystem(A2, b2) ls2.gauss_jordan_elimination() ls2.fancy_print() print() A3 = Matrix([[2, 2], [2, 1], [1, 2]]) b3 = Vector([3, 2.5, 7]) ls3 = LinearSystem(A3, b3)
from playLA.Matrix import Matrix from playLA.Vector import Vector from playLA.LinearSystem import LinearSystem, inv, rank if __name__ == "__main__": A = Matrix([[1, 2, 4], [3, 7, 2], [2, 3, 3]]) b = Vector([7, -11, 1]) ls = LinearSystem(A, b) ls.gauss_jordan_elimination() ls.fancy_print() A7 = Matrix([[1, -1, 2, 0, 3], [-1, 1, 0, 2, -5], [1, -1, 4, 2, 4], [-2, 2, -5, -1, -3]]) b7 = Vector([1, 5, 13, -1]) ls7 = LinearSystem(A7, b7) ls7.gauss_jordan_elimination() ls7.fancy_print() print() A8 = Matrix([[2, 2], [2, 1], [1, 2]]) b8 = Vector([3, 2.5, 7]) ls8 = LinearSystem(A8, b8) if not ls8.gauss_jordan_elimination(): print("No Solution!") ls8.fancy_print() print() A9 = Matrix([[1, 2], [3, 4]]) invA = inv(A9) print(invA)
from playLA.Matrix import Matrix from playLA.Vector import Vector from playLA.LinearSystem import LinearSystem if __name__ == "__main__": A1 = Matrix([[1, -3, 5], [2, -1, -3], [3, 1, 4]]) b1 = Vector([-9, 19, -13]) ls1 = LinearSystem(A1, b1) ls1.gauss_jordan_elimination() ls1.fancy_print() print() A2 = Matrix([[1, 1, 1], [1, -1, -1], [2, 1, 5]]) b2 = Vector([3, -1, 8]) ls2 = LinearSystem(A2, b2) ls2.gauss_jordan_elimination() ls2.fancy_print() print() A3 = Matrix([[1, 2, -2], [2, -3, 1], [3, -1, 3]]) b3 = Vector([6, -10, -16]) ls3 = LinearSystem(A3, b3) ls3.gauss_jordan_elimination() ls3.fancy_print() print() A4 = Matrix([[3, 1, -2], [5, -3, 10], [7, 4, 16]]) b4 = Vector([4, 32, 13]) ls4 = LinearSystem(A4, b4)
from playLA.Matrix import Matrix from playLA.Vector import Vector from playLA.LinearSystem import LinearSystem if __name__ == "__main__": A = Matrix([[1, 2, 4], [3, 7, 2], [2, 3, 3]]) b = Vector([7, -11, 1]) ls = LinearSystem(A, b) ls.gauss_jordan_elimination() ls.fancy_print() print() A2 = Matrix([[1, -3, 5], [2, -1, -3], [3, 1, 4]]) b2 = Vector([-9, 19, -13]) ls2 = LinearSystem(A2, b2) ls2.gauss_jordan_elimination() ls2.fancy_print() print() A3 = Matrix([[1, 2, -2], [2, -3, 1], [3, -1, 3]]) b3 = Vector([6, -10, -16]) ls3 = LinearSystem(A3, b3) ls3.gauss_jordan_elimination() ls3.fancy_print() print() A4 = Matrix([[3, 1, -2], [5, -3, 10], [7, 4, 16]]) b4 = Vector([4, 32, 13]) ls4 = LinearSystem(A4, b4) ls4.gauss_jordan_elimination()
from playLA.LinearSystem import LinearSystem, inv from playLA.Matrix import Matrix from playLA.Vector import Vector if __name__ == '__main__': A = Matrix([[1, 2, 4], [3, 7, 2], [2, 3, 3]]) b = Vector([7, -11, 1]) ls = LinearSystem(A, b) elimination = ls.gauss_jordan_elimination() if not elimination: print("No solution") else: print("has solution") ls.fancy_print() A = Matrix([[1, 2], [3, 4]]) invA = inv(A) print(invA)