Esempio n. 1
0
from playLA.Matrix import Matrix
from playLA.LU import lu

if __name__ == "__main__":
    A = Matrix([[1, 2, 3], [4, 5, 6], [3, -3, 5]])
    L, U = lu(A)
    print(L)
    print(U)
    print(L.dot(U))
Esempio n. 2
0
from playLA.Matrix import Matrix
from playLA.Vector import Vector
from playLA.LinearSystem import LinearSystem
from playLA.LinearSystem import inv, rank


if __name__ == "__main__":

    A = Matrix([[1, 2, 4], [3, 7, 2], [2, 3, 3]])
    b = Vector([7, -11, 1])
    ls = LinearSystem(A, b)
    ls.gauss_jordan_elimination()
    ls.fancy_print()
    print()
    # [-1, -2, 3]

    A2 = Matrix([[1, -3, 5], [2, -1, -3], [3, 1, 4]])
    b2 = Vector([-9, 19, -13])
    ls2 = LinearSystem(A2, b2)
    ls2.gauss_jordan_elimination()
    ls2.fancy_print()
    print()
    # [2, -3, -4]

    A3 = Matrix([[1, 2, -2], [2, -3, 1], [3, -1, 3]])
    b3 = Vector([6, -10, -16])
    ls3 = LinearSystem(A3, b3)
    ls3.gauss_jordan_elimination()
    ls3.fancy_print()
    print()
    # [-2, 1, -3]
import matplotlib.pyplot as plt
from playLA.Matrix import Matrix
from playLA.Vector import Vector

if __name__ == "__main__":
    points = [[0, 0], [0, 5], [3, 5], [3, 4], [1, 4], [1, 3], [2, 3], [2, 2],
              [1, 2], [1, 0]]
    x = [e[0] for e in points]
    y = [e[1] for e in points]
    plt.figure(figsize=(5, 5))
    plt.xlim(-10, 10)
    plt.ylim(-10, 10)
    plt.plot(x, y)
    # plt.show()

    P = Matrix(points)
    # print(P.shape())
    # T = Matrix([[2, 0], [0, 1.5]])

    T = Matrix([[1, 0], [0, -1]])

    P2 = T.dot(P.T())
    # plt.plot(P2.row_vector(0), P2.row_vector(1))
    plt.plot([P2.col_vector(i)[0] for i in range(P2.col_num())],
             [P2.col_vector(i)[1] for i in range(P2.col_num())])
    plt.show()
Esempio n. 4
0
from playLA.Matrix import Matrix
from playLA.Vector import Vector

if __name__ == "__main__":
    matrix = Matrix([[1, 2], [3, 4]])
    print(matrix)
    print("matrix.shape = {}".format(matrix.shape()))
    print("matrix.size = {}".format(matrix.size()))
    print("len(matrix) = {}".format(len(matrix)))
    print("matrix[0][0] = {}".format(matrix[0, 0]))
    print("matrix's row[0] vector = {}".format(matrix.row_vector(0)))
    print("matrix's col[0] vector = {}".format(matrix.col_vector(0)))

    matrix2 = Matrix([[5, 6], [7, 8]])
    print(matrix2)
    print("add: {}".format(matrix + matrix2))
    print("subtract: {}".format(matrix - matrix2))
    print("scalar-mul: {}".format(matrix * 2))
    print("re-scalar-mul: {}".format(2 * matrix))
    print("zero_2_3: {}".format(Matrix.zero(2, 3)))

    T = Matrix([[1.5, 0], [0, 2]])
    p = Vector([5, 3])
    print("T.dot(p) = {}".format(T.dot(p)))

    P = Matrix([[0, 4, 5], [0, 0, 3]])
    print("T.dot(P) = {}".format(T.dot(P)))

    print("A.dot(B) = {}".format(matrix.dot(matrix2)))
    print("B.dot(A) = {}".format(matrix2.dot(matrix)))
Esempio n. 5
0
from playLA.Matrix import Matrix
from playLA.Vector import Vector

if __name__ == "__main__":
    matrix = Matrix([[1, 2], [3, 4]])
    print(matrix)

    print(matrix.row_vector(0))

    matrix2 = Matrix([[5, 6], [7, 8]])
    print("add: {}".format(matrix + matrix2))
    print("sub: {}".format(matrix - matrix2))
    print("zero_2_3: {}".format(Matrix.zero(2, 3)))

    T = Matrix([[1.5, 0], [0, 2]])
    p = Vector([5, 3])
    print("T.dot(p) = {}".format(T.dot(p)))

    P = Matrix([[0, 4, 5], [0, 0, 3]])
    print("T.dot(P) = {}".format(T.dot(P)))

    print("A.dot(B) = {}".format(matrix.dot(matrix2)))
    print("B.dot(A) = {}".format(matrix2.dot(matrix)))

    print("P.T = {} ".format(P.T()))
Esempio n. 6
0
import math

if __name__ == "__main__":
    points = [[0, 0], [0, 5], [3, 5], [3, 4], [1, 4], [1, 3], [2, 3], [2, 2],
              [1, 2], [1, 0]]
    x = [point[0] for point in points]
    y = [point[1] for point in points]

    plt.figure(figsize=(5, 5))
    plt.xlim(-10, 10)
    plt.ylim(-10, 10)

    plt.plot(x, y)
    # plt.show()

    P = Matrix(points)
    # print(P)

    # T = Matrix([[2, 0], [0, 1.5]])  # T: 2 * 2   P: 10 * 2
    # T = Matrix([[1, 0], [0, -1]])
    # T = Matrix([[-1, 0], [0, 1]])
    # T = Matrix([[-1, 0], [0, -1]])
    # T = Matrix([[1, 1], [0, 1]])
    # T = Matrix([[1, 0], [1, 1]])
    # T = Matrix([[1, 0.5], [1, 1]])
    # T = Matrix([[1, 0.5], [1, 1]])
    theta = math.pi / 3
    T = Matrix([[math.cos(theta), math.sin(theta)],
                [-math.sin(theta), math.cos(theta)]])

    P2 = T.dot(P.T())  # P2: 2 * 10
Esempio n. 7
0
from playLA.Matrix import Matrix
from playLA.LU import lu

if __name__ == "__main__":
    A1 = Matrix([[1, 2, 3], [4, 5, 6], [3, -3, 5]])
    L1, U1 = lu(A1)
    print(L1)
    print(U1)
    print(L1.dot(U1))

    print()

    A2 = Matrix([[1, 4, 5, 3], [5, 22, 27, 11], [6, 19, 27, 31],
                 [5, 28, 35, -8]])
    L2, U2 = lu(A2)
    print(L2)
    print(U2)
    print(L2.dot(U2))

    print()

    A3 = Matrix([[1, 2, 3], [3, 7, 14], [4, 13, 38]])
    L3, U3 = lu(A3)
    print(L3)
    print(U3)
    print(L3.dot(U3))

    print()
Esempio n. 8
0
from playLA.Matrix import Matrix

if __name__ == "__main__":

    matrix = Matrix([[1, 2], [3, 4]])
    print(matrix)
    print("matrix.shape = {}".format(matrix.shape()))
    print("matrix.size = {}".format(matrix.size()))
    print("len(matrix) = {}".format(len(matrix)))
    print("matrix[0][0] = {}".format(matrix[0, 0]))
Esempio n. 9
0
import matplotlib.pyplot as plt
from playLA.Matrix import Matrix
from playLA.Vector import Vector
import math

if __name__ == "__main__":

    points = [[0, 0], [0, 5], [3, 5], [3, 4], [1, 4], [1, 3], [2, 3], [2, 2],
              [1, 2], [1, 0]]
    x = [point[0] for point in points]
    y = [point[1] for point in points]
    plt.figure(figsize=(5, 5))
    plt.xlim(-10, 10)
    plt.ylim(-10, 10)
    plt.plot(x, y)

    P = Matrix(points)
    T = Matrix([[2, 0], [0, 1.5]])
    P2 = T.dot(P.T())
    plt.plot([P2.col_vector(i)[0] for i in range(P2.col_num())],
             [P2.col_vector(i)[1] for i in range(P2.col_num())])
    plt.show()
Esempio n. 10
0
from playLA.Matrix import Matrix
from playLA.GramSchmidtProcess import qr

if __name__ == "__main__":

    A1 = Matrix([[1, 1, 2], [1, 1, 0], [1, 0, 0]])
    Q1, R1 = qr(A1)
    print(Q1)
    print(R1)
    print(Q1.dot(R1))