$ ./gen_test.py """ # Built-in modules # import time, datetime # Internal modules # from gefes import projects # Third party modules # from shell_command import shell_output import playdoh # Timer # now = time.time() ############################################################################### print "Making test files" # Do it # pairs = [] pairs += [(projects['humic'][i].fwd_path, projects['test'][i].fwd_path) for i in range(3)] pairs += [(projects['humic'][i].rev_path, projects['test'][i].rev_path) for i in range(3)] process = lambda x : shell_output('zcat %s |head -n 4000| gzip > %s' % (x[0],x[1])) # Run it in parallel # playdoh.map(process, pairs, cpu=len(pairs)) # Report Success # run_time = datetime.timedelta(seconds=round(time.time()-now)) print "\033[0;32mRun time: '%s'\033[0m" % (run_time)
# Record the number of spikes Me = PopulationSpikeCounter(Pe) Mi = PopulationSpikeCounter(Pi) net = Network(P, Ce, Ci, Me, Mi) net.run(1 * second) return Me.nspikes, Mi.nspikes if __name__ == '__main__': taums = [5]*3 import time t1 = time.clock() result = playdoh.map(fun, [i for i in taums], cpu=3) d = time.clock()-t1 print result print "simulation last %.2f seconds with playdoh and %d CPUs" % (d, len(taums)) t1 = time.clock() result2 = [] for i in xrange(len(taums)): t0 = time.clock() r = fun(taums[i]) d0 = time.clock()-t0 print "simulation %d last %.2f seconds" % (i, d0) result2.append(r) d2 = time.clock()-t1
}], threads=False) # Regenerate the early exit for one pool # illumitag.projects['inga'].first.run_slurm([{ 'make_qiime_output': {} }, { 'make_mothur_output': {} }]) # Just one graph for one pool # illumitag.projects['evaluation'][0].load().graphs[-1].plot() # A few pools # pj = illumitag.projects['test'] [pool() for pool in pj.pools[1:]] # One function for several pools in parallel # import playdoh playdoh.map(lambda p: p.pool_fastqc(), illumitag.projects['evaluation'].pools, cpu=5) # All pools via SLURM # job_ids = [pool.run_slurm() for pool in illumitag.pools] # And analyses via slurm # ids = [proj.run_analysis_slurm() for proj in illumitag.projects] # One project # pj = illumitag.projects['test'] pj.run_pools() # One project via slurm # pj = illumitag.projects['test'] pj.run_pools_slurm() # Just one statistic for one project # p = illumitag.projects['evaluation'] p.load()
# Just one pool # pj = illumitag.projects['test']; p = pj[0]; p(threads=False) # Just one pool via slurm # pj = illumitag.projects['andrea']; p = pj[2]; p.run_slurm() num = illumitag.projects['inga'].first.run_slurm() # Just one function for one pool # pj = illumitag.projects['test']; p = pj[0]; p(steps=[{'make_pool_plots':{}}], threads=False) # Regenerate the early exit for one pool # illumitag.projects['inga'].first.run_slurm([{'make_qiime_output':{}},{'make_mothur_output':{}}]) # Just one graph for one pool # illumitag.projects['evaluation'][0].load().graphs[-1].plot() # A few pools # pj = illumitag.projects['test']; [pool() for pool in pj.pools[1:]] # One function for several pools in parallel # import playdoh; playdoh.map(lambda p: p.pool_fastqc(), illumitag.projects['evaluation'].pools, cpu=5) # All pools via SLURM # job_ids = [pool.run_slurm() for pool in illumitag.pools] # And analyses via slurm # ids = [proj.run_analysis_slurm() for proj in illumitag.projects] # One project # pj = illumitag.projects['test']; pj.run_pools() # One project via slurm # pj = illumitag.projects['test']; pj.run_pools_slurm() # Just one statistic for one project # p = illumitag.projects['evaluation']; p.load(); [pl.good_barcodes.relative_std_dev for pl in p] # Just one graph for one project # p = illumitag.projects['evaluation']; p.load(); [illumitag.graphs.pool_plots.AssemblyCounts(pl).plot() for pl in p] pj = illumitag.projects['evaluation']; pj.load(); pj.graphs[-1].plot() # Just one function for one project #