Esempio n. 1
0
def test_video_frame_stim():
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename, onset=4.2)
    frame = VideoFrameStim(video, 42)
    assert frame.onset == (5.6)
    assert np.array_equal(frame.data, video.get_frame(index=42).data)
    assert frame.name == 'frame[42]'
Esempio n. 2
0
def test_frame_sampling_video_filter2():
    filename = join(VIDEO_DIR, 'obama_speech.mp4')
    video = VideoStim(filename, onset=4.2)
    assert video.fps == 12
    assert video.n_frames == 105

    # Test frame indices
    conv = FrameSamplingFilter(every=3)
    derived = conv.transform(video)
    assert derived.n_frames == 35
    assert derived.frame_index[4] == 12
    conv = FrameSamplingFilter(hertz=3)
    derived = conv.transform(video)
    assert derived.n_frames == 27
    assert derived.frame_index[3] == 12
    conv = FrameSamplingFilter(hertz=24)
    derived = conv.transform(video)
    assert derived.n_frames == 210
    assert derived.frame_index[4] == 2
    video.fps = 11.8
    conv = FrameSamplingFilter(hertz=1)
    derived = conv.transform(video)
    assert derived.n_frames == 9
    assert derived.frame_index[4] == 47
    assert derived.frame_index[5] == 59
Esempio n. 3
0
def test_frame_sampling_video_filter2():
    filename = join(VIDEO_DIR, 'obama_speech.mp4')
    video = VideoStim(filename, onset=4.2)
    assert video.fps == 12
    assert video.n_frames == 105

    # Test frame indices
    conv = FrameSamplingFilter(every=3)
    derived = conv.transform(video)
    assert derived.n_frames == 35
    assert derived.frame_index[4] == 12
    conv = FrameSamplingFilter(hertz=3)
    derived = conv.transform(video)
    assert derived.n_frames == 27
    assert derived.frame_index[3] == 12
    conv = FrameSamplingFilter(hertz=24)
    derived = conv.transform(video)
    assert derived.n_frames == 210
    assert derived.frame_index[4] == 2
    video.fps = 11.8
    conv = FrameSamplingFilter(hertz=1)
    derived = conv.transform(video)
    assert derived.n_frames == 9
    assert derived.frame_index[4] == 47
    assert derived.frame_index[5] == 59
Esempio n. 4
0
def test_google_vision_face_batch():
    obama_file = join(get_test_data_path(), 'image', 'obama.jpg')
    people_file = join(get_test_data_path(), 'image', 'thai_people.jpg')
    stims = [ImageStim(obama_file), ImageStim(people_file)]
    ext = GoogleVisionAPIFaceExtractor(handle_annotations='first')
    result = ext.transform(stims)
    result = ExtractorResult.merge_stims(result)
    assert 'face1_joyLikelihood' in result.columns
    assert result['face1_joyLikelihood'][0] == 'VERY_LIKELY'
    assert result['face1_joyLikelihood'][1] == 'VERY_LIKELY'

    video = VideoStim(join(get_test_data_path(), 'video', 'obama_speech.mp4'))
    conv = FrameSamplingFilter(every=10)
    video = conv.transform(video)
    result = ext.transform(video)
    result = ExtractorResult.merge_stims(result)
    assert 'face1_joyLikelihood' in result.columns
    assert result.shape == (11, 137)

    video = VideoStim(join(get_test_data_path(), 'video', 'small.mp4'))
    video = conv.transform(video)
    result = ext.transform(video)
    result = ExtractorResult.merge_stims(result)
    assert 'face1_joyLikelihood' not in result.columns
    assert result.shape == (17, 7)
Esempio n. 5
0
def test_video_frame_stim():
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename, onset=4.2)
    frame = VideoFrameStim(video, 42)
    assert frame.onset == (5.6)
    assert np.array_equal(frame.data, video.get_frame(index=42).data)
    assert frame.name == 'frame[42]'
def test_clarifai_api_video_extractor():
    stim = VideoStim(join(VIDEO_DIR, 'small.mp4'))
    ext = ClarifaiAPIVideoExtractor()
    assert ext.validate_keys()
    result = ext.transform(stim).to_df()
    # This should actually be 6, in principle, because the clip is < 6 seconds,
    # but the Clarifai API is doing weird things. See comment in
    # ClarifaiAPIVideoExtractor._to_df() for further explanation.
    assert result.shape[0] in (6, 7)
    # Changes sometimes, so use a range
    assert result.shape[1] > 25 and result.shape[1] < 30
    assert result['toy'][0] > 0.5
    assert result['onset'][1] == 1.0
    assert result['duration'][0] == 1.0
    # because of the behavior described above—handle both cases
    assert np.isclose(result['duration'][5],
                      0.57) or result['duration'][6] == 0

    ext = ClarifaiAPIVideoExtractor(model='face')
    result = ext.transform(stim).to_df()
    keys_to_check = ['top_row', 'left_col', 'bottom_row', 'right_col']
    assert [k not in result.keys() for k in keys_to_check]
    assert all([result[k][0] == np.nan for k in result if k in keys_to_check])

    stim = VideoStim(join(VIDEO_DIR, 'obama_speech.mp4'))
    result = ext.transform(stim).to_df()
    keys_to_check = ['top_row', 'left_col', 'bottom_row', 'right_col']
    assert [k in result.keys() for k in keys_to_check]
Esempio n. 7
0
def test_google_video_api_shot_extractor(caplog):
    ext = GoogleVideoAPIShotDetectionExtractor(request_rate=3)
    stim = VideoStim(join(VIDEO_DIR, 'small.mp4'))
    result = ext.transform(stim).to_df()
    log_message = caplog.records[-1].message
    incomplete = (log_message == ("The extraction reached the timeout limit of"
                " %fs, which means the API may not have finished analyzing the"
                " video and the results may be empty or incomplete." % 90))
    if not incomplete:
        assert result.shape == (1, 5)
        assert result['onset'][0] == 0.0
        assert np.isclose(result['duration'][0], stim.duration, 0.1)
        assert 'shot_id' in result.columns
        assert result['shot_id'][0] == 0

    ext = GoogleVideoAPIShotDetectionExtractor()
    stim = VideoStim(join(VIDEO_DIR, 'shot_change.mp4'))
    result = ext.transform(stim).to_df()
    log_message = caplog.records[-1].message
    incomplete = (log_message == ("The extraction reached the timeout limit of"
                " %fs, which means the API may not have finished analyzing the"
                " video and the results may be empty or incomplete." % 90))
    if not incomplete:
        assert result.shape == (2, 5)
        assert np.isclose(result['onset'][1], 3.2, 0.1)
        assert 'shot_id' in result.columns
        assert result['shot_id'][1] == 1
Esempio n. 8
0
def test_google_vision_face_batch():
    stims = ['apple', 'obama', 'thai_people']
    stim_files = [join(get_test_data_path(), 'image', '%s.jpg' % s)
                  for s in stims]
    stims = [ImageStim(s) for s in stim_files]
    ext = GoogleVisionAPIFaceExtractor(batch_size=5)
    result = ext.transform(stims)
    result = merge_results(result, format='wide', extractor_names=False,
                           handle_annotations='first')
    assert result.shape == (2, 139)
    assert 'joyLikelihood' in result.columns
    assert result['joyLikelihood'][0] == 'VERY_LIKELY'
    assert result['joyLikelihood'][1] == 'VERY_LIKELY'

    video = VideoStim(join(VIDEO_DIR, 'obama_speech.mp4'))
    conv = FrameSamplingFilter(every=10)
    video = conv.transform(video)
    result = ext.transform(video)
    result = merge_results(result, format='wide', extractor_names=False)
    assert 'joyLikelihood' in result.columns
    assert result.shape == (22, 139)

    video = VideoStim(join(VIDEO_DIR, 'small.mp4'))
    video = conv.transform(video)
    result = ext.transform(video)
    result = merge_results(result, format='wide', extractor_names=False)
    assert 'joyLikelihood' not in result.columns
    assert len(result) == 0
Esempio n. 9
0
def test_video_stim_bytestring():
    path = join(get_test_data_path(), 'video', 'small.mp4')
    vid = VideoStim(path)
    assert vid._bytestring is None
    bs = vid.get_bytestring()
    assert isinstance(bs, str)
    assert vid._bytestring is not None
    raw = bs.encode()
    with open(path, 'rb') as f:
        assert raw == base64.b64encode(f.read())
Esempio n. 10
0
def test_video_stim_bytestring():
    path = join(get_test_data_path(), 'video', 'small.mp4')
    vid = VideoStim(path)
    assert vid._bytestring is None
    bs = vid.get_bytestring()
    assert isinstance(bs, str)
    assert vid._bytestring is not None
    raw = bs.encode()
    with open(path, 'rb') as f:
        assert raw == base64.b64encode(f.read())
Esempio n. 11
0
def test_frame_sampling_video_filter():
    filename = join(VIDEO_DIR, 'small.mp4')
    video = VideoStim(filename, onset=4.2)
    assert video.fps == 30
    assert video.n_frames in (167, 168)
    assert video.width == 560

    # Test frame filters
    conv = FrameSamplingFilter(every=3)
    derived = conv.transform(video)
    assert derived.n_frames == math.ceil(video.n_frames / 3.0)
    assert derived.duration == video.duration
    first = next(f for f in derived)
    assert type(first) == VideoFrameStim
    assert first.name == 'frame[0]'
    assert first.onset == 4.2
    assert first.duration == 3 * (1 / 30.0)
    second = [f for f in derived][1]
    assert second.onset == 4.3
    with pytest.raises(TypeError):
        derived.get_frame(onset=1.0)

    # Commented out because no longer allowing sampling filter chaining
    # conv = FrameSamplingFilter(hertz=15)
    # derived = conv.transform(derived)
    # assert derived.n_frames == math.ceil(video.n_frames / 6.0)
    # first = next(f for f in derived)
    # assert type(first) == VideoFrameStim
    # assert first.duration == 3 * (1 / 15.0)
    # second = [f for f in derived][1]
    # assert second.onset == 4.4

    with pytest.raises(TypeError):
        conv.transform(derived)
Esempio n. 12
0
def resample_video(video_file, sampling_rate):
    """
    This function resamples a video to the desired sampling rate.  Can be useful for making video with high sampling
    rates more tractable for analysis.

    Parameters
    ----------
    video_file: str
        file path to video to be resampled.
    sampling_rate: float
        Desired sampling rate in Hz

    Returns
    -------
    resampled_video: pliers video object with resampled video frames

    """

    from pliers.stimuli import VideoStim
    from pliers.filters import FrameSamplingFilter

    video = VideoStim(video_file)
    resamp_filter = FrameSamplingFilter(hertz=sampling_rate)
    resampled_video = resamp_filter.transform(video)

    return resampled_video
Esempio n. 13
0
def test_compound_stim():
    audio_dir = join(get_test_data_path(), 'audio')
    audio = AudioStim(join(audio_dir, 'crowd.mp3'))
    image1 = ImageStim(join(get_test_data_path(), 'image', 'apple.jpg'))
    image2 = ImageStim(join(get_test_data_path(), 'image', 'obama.jpg'))
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename)
    text = ComplexTextStim(text="The quick brown fox jumped...")
    stim = CompoundStim([audio, image1, image2, video, text])
    assert len(stim.elements) == 5
    assert isinstance(stim.video, VideoStim)
    assert isinstance(stim.complex_text, ComplexTextStim)
    assert isinstance(stim.image, ImageStim)
    with pytest.raises(AttributeError):
        stim.nonexistent_type
    assert stim.video_frame is None

    # Test iteration
    len([e for e in stim]) == 5

    imgs = stim.get_stim(ImageStim, return_all=True)
    assert len(imgs) == 2
    assert all([isinstance(im, ImageStim) for im in imgs])
    also_imgs = stim.get_stim('image', return_all=True)
    assert imgs == also_imgs
Esempio n. 14
0
def test_big_pipeline():
    pytest.importorskip('pygraphviz')
    filename = join(get_test_data_path(), 'video', 'obama_speech.mp4')
    video = VideoStim(filename)
    visual_nodes = [(FrameSamplingFilter(every=15), [
        (TesseractConverter(), [LengthExtractor()]),
        VibranceExtractor(),
        'BrightnessExtractor',
    ])]
    audio_nodes = [(VideoToAudioConverter(),
                    [WitTranscriptionConverter(),
                     'LengthExtractor'], 'video_to_audio')]
    graph = Graph()
    graph.add_nodes(visual_nodes)
    graph.add_nodes(audio_nodes)
    results = graph.run(video, merge=False)
    result = merge_results(results, format='wide', extractor_names='multi')
    # Test that pygraphviz outputs a file
    drawfile = next(tempfile._get_candidate_names())
    graph.draw(drawfile)
    assert exists(drawfile)
    os.remove(drawfile)
    assert ('LengthExtractor', 'text_length') in result.columns
    assert ('VibranceExtractor', 'vibrance') in result.columns
    # assert not result[('onset', '')].isnull().any()
    assert 'text[negotiations]' in result['stim_name'].values
    assert 'frame[90]' in result['stim_name'].values
Esempio n. 15
0
def test_optical_flow_extractor():
    pytest.importorskip('cv2')
    stim = VideoStim(join(VIDEO_DIR, 'small.mp4'), onset=4.2)
    result = FarnebackOpticalFlowExtractor().transform(stim).to_df()
    target = result.query('onset==7.2')['total_flow']
    # Value returned by cv2 seems to change over versions, so use low precision
    assert np.isclose(target, 86248.05, 1e-4)
Esempio n. 16
0
def test_google_video_api_extractor(caplog):
    ext = GoogleVideoIntelligenceAPIExtractor(timeout=1)
    stim = VideoStim(join(VIDEO_DIR, 'park.mp4'))
    result = ext.transform(stim)

    log_message = caplog.records[-1].message
    assert log_message == ("The extraction reached the timeout limit of %fs, "
                  "which means the API may not have finished analyzing the "
                  "video and the results may be empty or incomplete." % 1.0)

    ext = GoogleVideoIntelligenceAPIExtractor(timeout=500,
                                              features=['LABEL_DETECTION',
                                                    'SHOT_CHANGE_DETECTION'])
    result = ext.transform(stim).to_df()
    log_message = caplog.records[-1].message
    incomplete = (log_message == ("The extraction reached the timeout limit of"
                " %fs, which means the API may not have finished analyzing the"
                " video and the results may be empty or incomplete." % 500))
    if not incomplete:
        assert result.shape == (1, 31)
        assert result['onset'][0] == 0.0
        assert result['duration'][0] > 0.5 and result['duration'][0] < 0.6
        assert result['category_plant'][0] > 0.5
        assert result['park'][0] > 0.5
        assert result['shot_id'][0] == 0
Esempio n. 17
0
def test_derived_video_converter():
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename, onset=4.2)
    assert video.fps == 30
    assert video.n_frames in (167, 168)
    assert video.width == 560

    # Test frame filters
    conv = FrameSamplingConverter(every=3)
    derived = conv.transform(video)
    assert len(derived._frames) == math.ceil(video.n_frames / 3.0)
    first = next(f for f in derived)
    assert type(first) == VideoFrameStim
    assert first.name == 'frame[0]'
    assert first.onset == 4.2
    assert first.duration == 3 * (1 / 30.0)
    second = [f for f in derived][1]
    assert second.onset == 4.3

    # Should refilter from original frames
    conv = FrameSamplingConverter(hertz=15)
    derived = conv.transform(derived)
    assert len(derived._frames) == math.ceil(video.n_frames / 6.0)
    first = next(f for f in derived)
    assert type(first) == VideoFrameStim
    assert first.duration == 3 * (1 / 15.0)
    second = [f for f in derived][1]
    assert second.onset == 4.4
Esempio n. 18
0
def test_optical_flow_extractor():
    pytest.importorskip('cv2')
    video_dir = join(get_test_data_path(), 'video')
    stim = VideoStim(join(video_dir, 'small.mp4'))
    result = DenseOpticalFlowExtractor().transform(stim).to_df()
    target = result.query('onset==3.0')['total_flow']
    # Value returned by cv2 seems to change over versions, so use low precision
    assert np.isclose(target, 86248.05, 1e-4)
Esempio n. 19
0
def test_multistep_converter():
    conv = VideoToTextConverter()
    filename = join(get_test_data_path(), 'video', 'obama_speech.mp4')
    stim = VideoStim(filename)
    text = conv.transform(stim)
    assert isinstance(text, ComplexTextStim)
    first_word = next(w for w in text)
    assert type(first_word) == TextStim
Esempio n. 20
0
def test_video_to_audio_converter():
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename)
    conv = VideoToAudioConverter()
    audio = conv.transform(video)
    assert audio.history.source_class == 'VideoStim'
    assert audio.history.source_file == filename
    assert np.isclose(video.duration, audio.duration, 1e-2)
Esempio n. 21
0
def test_implicit_stim_conversion3():
    video_dir = join(get_test_data_path(), 'video')
    stim = VideoStim(join(video_dir, 'obama_speech.mp4'))
    ext = LengthExtractor()
    result = ext.transform(stim)
    first_word = result[0].to_df()
    # The word should be "today"
    assert 'text_length' in first_word.columns
    assert first_word['text_length'][0] == 5
Esempio n. 22
0
def test_video_to_audio_converter():
    filename = join(VIDEO_DIR, 'small.mp4')
    video = VideoStim(filename, onset=4.2)
    conv = VideoToAudioConverter()
    audio = conv.transform(video)
    assert audio.history.source_class == 'VideoStim'
    assert audio.history.source_file == filename
    assert audio.onset == 4.2
    assert np.isclose(video.duration, audio.duration, 1e-2)
Esempio n. 23
0
def test_frame_sampling_cv2():
    pytest.importorskip('cv2')
    filename = join(VIDEO_DIR, 'small.mp4')
    video = VideoStim(filename)

    conv = FrameSamplingFilter(top_n=5)
    derived = conv.transform(video)
    assert derived.n_frames == 5
    assert type(next(f for f in derived)) == VideoFrameStim
Esempio n. 24
0
def test_derived_video_converter_cv2():
    pytest.importorskip('cv2')
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename)

    conv = FrameSamplingConverter(top_n=5)
    derived = conv.transform(video)
    assert len(derived._frames) == 5
    assert type(next(f for f in derived)) == VideoFrameStim
def test_clarifai_api_video_extractor():
    stim = VideoStim(join(VIDEO_DIR, 'small.mp4'))
    ext = ClarifaiAPIVideoExtractor()
    assert ext.validate_keys()
    result = ext.transform(stim).to_df()
    assert result.shape == (6, 27)
    assert result['toy'][0] > 0.5
    assert result['onset'][1] == 1.0
    assert result['duration'][0] == 1.0
    assert np.isclose(result['duration'][5], 0.57)
Esempio n. 26
0
def test_video_stim():
    ''' Test VideoStim functionality. '''
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename, onset=4.2)
    assert video.fps == 30
    assert video.n_frames == 168
    assert video.width == 560
    assert video.duration == 5.57

    # Test frame iterator
    frames = [f for f in video]
    assert len(frames) == 168
    f1 = frames[100]
    assert isinstance(f1, VideoFrameStim)
    assert isinstance(f1.onset, float)
    assert np.isclose(f1.duration, 1 / 30.0, 1e-5)
    f1.data.shape == (320, 560, 3)

    # Test getting of specific frame
    f2 = video.get_frame(index=100)
    assert isinstance(f2, VideoFrameStim)
    assert isinstance(f2.onset, float)
    assert f2.onset > 7.5
    f2.data.shape == (320, 560, 3)
    f2_copy = video.get_frame(onset=3.33334)
    assert isinstance(f2, VideoFrameStim)
    assert isinstance(f2.onset, float)
    assert f2.onset > 7.5
    assert np.array_equal(f2.data, f2_copy.data)

    # Try another video
    filename = join(get_test_data_path(), 'video', 'obama_speech.mp4')
    video = VideoStim(filename)
    assert video.fps == 12
    assert video.n_frames == 105
    assert video.width == 320
    assert video.duration == 8.71
    f3 = video.get_frame(index=104)
    assert isinstance(f3, VideoFrameStim)
    assert isinstance(f3.onset, float)
    assert f3.duration > 0.0
    assert f3.data.shape == (240, 320, 3)
Esempio n. 27
0
def test_stim_history_tracking():
    video = VideoStim(join(get_test_data_path(), 'video', 'obama_speech.mp4'))
    assert video.history is None
    conv = VideoToAudioConverter()
    stim = conv.transform(video)
    assert str(stim.history) == 'VideoStim->VideoToAudioConverter/AudioStim'
    conv = WitTranscriptionConverter()
    stim = conv.transform(stim)
    assert str(
        stim.history
    ) == 'VideoStim->VideoToAudioConverter/AudioStim->WitTranscriptionConverter/ComplexTextStim'
Esempio n. 28
0
def test_video_stim():
    ''' Test VideoStim functionality. '''
    filename = join(get_test_data_path(), 'video', 'small.mp4')
    video = VideoStim(filename)
    assert video.fps == 30
    assert video.n_frames in (167, 168)
    assert video.width == 560

    # Test frame iterator
    frames = [f for f in video]
    assert len(frames) == 168
    f1 = frames[100]
    assert isinstance(f1, VideoFrameStim)
    assert isinstance(f1.onset, float)
    f1.data.shape == (320, 560, 3)

    # Test getting of specific frame
    f2 = video.get_frame(index=100)
    assert isinstance(f2, VideoFrameStim)
    assert isinstance(f2.onset, float)
    f2.data.shape == (320, 560, 3)
Esempio n. 29
0
def test_google_video_api_label_extractor(caplog):
    ext = GoogleVideoAPILabelDetectionExtractor(mode='FRAME_MODE',
                                                stationary_camera=True)
    stim = VideoStim(join(VIDEO_DIR, 'small.mp4'))
    ex_result = ext.transform(stim)
    log_message = caplog.records[-1].message
    incomplete = (log_message == (
        "The extraction reached the timeout limit of"
        " %fs, which means the API may not have finished analyzing the"
        " video and the results may be empty or incomplete." % 90))
    if not incomplete:
        result = ex_result.to_df()
        assert result.shape[1] > 20
        assert 'category_toy' in result.columns
        assert result['toy'][0] > 0.5
        assert np.isclose(result['duration'][0], stim.duration, 0.1)
        result = ex_result.to_df(format='long')
        assert 'pornographyLikelihood' not in result['feature']
        assert np.nan not in result['value']

    ext = GoogleVideoAPILabelDetectionExtractor(mode='SHOT_MODE')
    stim = VideoStim(join(VIDEO_DIR, 'shot_change.mp4'))
    ex_result = ext.transform(stim)
    log_message = caplog.records[-1].message
    incomplete = (log_message == (
        "The extraction reached the timeout limit of"
        " %fs, which means the API may not have finished analyzing the"
        " video and the results may be empty or incomplete." % 90))
    if not incomplete:
        raw = ex_result.raw['response']['annotationResults'][0]
        assert 'shotLabelAnnotations' in raw
        result = ex_result.to_df()
        assert result.shape[1] > 10
        assert result['onset'][1] == 0.0
        assert np.isclose(result['onset'][2], 3.2, 0.1)
        assert np.isnan(result['cat'][1])
        assert result['cat'][2] > 0.5
        assert np.isnan(result['clock'][2])
        assert result['clock'][1] > 0.5 or result['clock'][0] > 0.5
Esempio n. 30
0
def test_google_video_api_explicit_extractor(caplog):
    ext = GoogleVideoAPIExplicitDetectionExtractor(request_rate=3)
    stim = VideoStim(join(VIDEO_DIR, 'small.mp4'), onset=4.2)
    result = ext.transform(stim).to_df()
    log_message = caplog.records[-1].message
    incomplete = (log_message == ("The extraction reached the timeout limit of"
                " %fs, which means the API may not have finished analyzing the"
                " video and the results may be empty or incomplete." % 90))
    if not incomplete:
        assert result.shape[1] == 5
        assert result['onset'][0] >= 4.2
        assert 'pornographyLikelihood' in result.columns
        assert 'UNLIKELY' in result['pornographyLikelihood'][0]
Esempio n. 31
0
def test_save():
    text_dir = join(get_test_data_path(), 'text')
    complextext_stim = ComplexTextStim(join(text_dir, 'complex_stim_no_header.txt'),
                                       columns='ot', default_duration=0.2)
    text_stim = TextStim(text='hello')
    video_stim = VideoStim(join(get_test_data_path(), 'video', 'small.mp4'))
    audio_stim = AudioStim(join(get_test_data_path(), 'audio', 'crowd.mp3'))
    image_stim = ImageStim(join(get_test_data_path(), 'image', 'apple.jpg'))
    stims = [complextext_stim, text_stim, video_stim, audio_stim, image_stim]
    for s in stims:
        path = tempfile.mktemp() + s._default_file_extension
        s.save(path)
        assert exists(path)
        os.remove(path)
Esempio n. 32
0
def test_microsoft_vision_api_extractor_large():
    default = config.get_option('allow_large_jobs')
    default_large = config.get_option('large_job')
    config.set_option('allow_large_jobs', False)
    config.set_option('large_job', 3)

    ext = MicrosoftVisionAPITagExtractor()

    video = VideoStim(join(VIDEO_DIR, 'small.mp4'))
    with pytest.raises(ValueError):
        merge_results(ext.transform(video))

    config.set_option('allow_large_jobs', default)
    config.set_option('large_job', default_large)
Esempio n. 33
0
def test_video_trimming_filter():
    video = VideoStim(join(VIDEO_DIR, 'small.mp4'))
    filt = TemporalTrimmingFilter(end=4.0)
    short_video = filt.transform(video)
    assert short_video.fps == 30
    assert short_video.duration == 4.0

    frame_filt = VideoTrimmingFilter(end=100, frames=True)
    short_video = frame_filt.transform(video)
    assert short_video.fps == 30
    assert short_video.n_frames == 100

    error_filt = VideoTrimmingFilter(end=10.0, validation='strict')
    with pytest.raises(ValueError):
        short_video = error_filt.transform(video)
Esempio n. 34
0
def test_google_video_api_extractor2(caplog):
    segments = [{'startTimeOffset': '0.1s', 'endTimeOffset': '0.3s'},
                {'startTimeOffset': '0.3s', 'endTimeOffset': '0.45s'}]
    ext = GoogleVideoIntelligenceAPIExtractor(timeout=500, segments=segments,
                                    features=['EXPLICIT_CONTENT_DETECTION'])
    stim = VideoStim(join(VIDEO_DIR, 'park.mp4'))
    result = ext.transform(stim).to_df()
    log_message = caplog.records[-1].message
    incomplete = (log_message == ("The extraction reached the timeout limit of"
                " %fs, which means the API may not have finished analyzing the"
                " video and the results may be empty or incomplete." % 500))
    if not incomplete:
        assert result.shape == (2, 5)
        assert result['onset'][0] > 0.1 and result['onset'][0] < 0.3
        assert result['onset'][1] > 0.3 and result['onset'][1] < 0.45
        assert 'UNLIKELY' in result['pornographyLikelihood'][0]