Esempio n. 1
0
    def solve(self, iterations, killing_rate=0.8):
        for i in range(iterations):
            if not i % 100:
                print('\t> Iteration {}/{}'.format(i, iterations))

            city = self.__cities.sample(1)[['x', 'y']].values
            winner_idx = self.__reduction(self.__population, city)
            self.__mutation(city, winner_idx, killing_rate)
            killing_rate *= 0.99997

            if not i % 1000:
                plot_population(self.__cities, self.__population, name='diagrams/{:05d}.png'.format(i))

            # Проверка на корректность координат в TSP карте
            if self.__population_size < 1:
                print('Radius has completely decayed, finishing execution at {} iterations'.format(i))
                break
            if killing_rate < 0.001:
                print('Killing rate has completely decayed, finishing execution at {} iterations'.format(i))
                break
        else:
            print('Completed {} iterations.'.format(iterations))

        route = self.__get_route(self.__cities, self.__population)
        plot_population(self.__cities, self.__population, name='diagrams/final.png')
        plot_route(self.__cities, route, 'diagrams/route.png')
        return route
Esempio n. 2
0
def som(problem, iterations, learning_rate=0.8):
    """Solve the TSP using a Self-Organizing Map."""

    # Obtain the normalized set of cities (w/ coord in [0,1])
    cities = problem.copy()

    cities[['x', 'y']] = normalize(cities[['x', 'y']])  # 归一化

    # The population size is 8 times the number of cities   神经元个数
    n = cities.shape[0] * 3
    #n = cities.shape[0] * 3   # 测试用,by EE526

    # Generate an adequate network of neurons:
    network = generate_network(cities, n, c=4)
    print('Network of {} neurons created. Starting the iterations:'.format(n))

    for i in range(iterations):
        # Check for plotting interval
        if i % 100 == 0:  # 每隔100次画出神经元图像
            plot_network(cities,
                         network,
                         name='out_files\process\city_network%d.png' %
                         (i // 100))

        if not i % 100:  # if i%100==0
            print('\t> Iteration {}/{}'.format(i, iterations), end="\r")
        # Choose a random city
        city = cities.sample(1)[['x', 'y']].values  # 随机从cities中选取一组数,1*2数组
        winner_idx = select_closest(network, city)
        # Generate a filter that applies changes to the winner's gaussian
        gaussian = get_neighborhood(winner_idx, n // 10,
                                    network.shape[0])  # 高斯核函数是算法的核心
        # Update the network's weights (closer to the city)
        network += gaussian[:, np.newaxis] * learning_rate * (
            city - network)  # np.newaxis在该位置增加一维,变成神经元数*1维
        # 实际上就是为了让对应的移动乘以对应的坐标

        # Decay the variables
        learning_rate = learning_rate * 0.99997
        n = n * 0.9994

        # Check if any parameter has completely decayed.
        if n < 1:
            print('Radius has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
        if learning_rate < 0.001:
            print('Learning rate has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
    else:
        print('Completed {} iterations.'.format(iterations))
    # plot 部分
    plot_network(cities, network)
    route = get_route(cities, network)

    cities = problem.copy()
    citiesReal = cities[['x', 'y']]  # 取实际坐标
    plot_route(citiesReal, route)
    return route
Esempio n. 3
0
def som(problem, iterations, learning_rate=0.8):
    '''
    Solve the TSP using a Self-Organizing Map.
    :params problem(dataframe): 城市坐标 
    :params iterations(int): 最大迭代次数
    :learning_rate(float): 学习率
    :return route
    '''
    cities = problem.copy()

    # Obtain the normalized set of cities (w/ coord in [0,1])
    cities[['x', 'y']] = normalize(cities[['x', 'y']])

    # The population size is 8 times the number of cities
    # <Hyperparameter:times>
    n = cities.shape[0] * 8

    # Generate an adequate network of neurons:
    # (n,2)
    network = generate_network(n)
    print('Network of {} neurons created. Starting the iterations:'.format(n))

    for i in range(iterations):
        if not i % 100:
            print('\t> Iteration {}/{}'.format(i, iterations), end="\r")
        # Choose a random city
        city = cities.sample(1)[['x', 'y']].values
        winner_idx = select_closest(network, city)
        # Generate a filter that applies changes to the winner's gaussian
        # <Hyperparameter:radius>
        gaussian = get_neighborhood(winner_idx, n // 10, network.shape[0])
        # Update the network's weights (closer to the city)
        network += gaussian[:, np.newaxis] * learning_rate * (city - network)
        # Decay the variables
        # <Hyperparameter:decay rate>
        learning_rate = learning_rate * 0.99997
        n = n * 0.9997

        # Check for plotting interval
        if not i % 1000:
            plot_network(cities, network, name='diagrams/{:05d}.png'.format(i))

        # Check if any parameter has completely decayed.
        if n < 1:
            print('Radius has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
        if learning_rate < 0.001:
            print('Learning rate has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
    else:
        print('Completed {} iterations.'.format(iterations))

    plot_network(cities, network, name='diagrams/final.png')

    route = get_route(cities, network)
    plot_route(cities, route, 'diagrams/route.png')
    return route
Esempio n. 4
0
def som(problem, iterations, learning_rate=0.8):
    """Solve the TSP using a Self-Organizing Map."""

    # Obtain the normalized set of cities (w/ coord in [0,1])
    dStep = 100  # 每隔100次保存一次数据
    dSave = np.zeros(iterations // dStep)  # 保存数据
    cities = problem.copy()
    cities[['x', 'y']] = normalize(cities[['x', 'y']])  # 归一化


    # The population size is 8 times the number of cities   神经元个数
    n = cities.shape[0] * 4

    # Generate an adequate network of neurons:
    network = generate_network(cities, n, c=2)
    print('Network of {} neurons created. Starting the iterations:'.format(n))

    for i in range(iterations):
        # Check for plotting interval
        # if i % 100 == 0:      # 每隔100次画出神经元图像
        #     plot_network(cities, network, name='out_files\process\city_network%d.png'%(i//100))

        if not i % 100:   # if i%100==0
            print('\t> Iteration {}/{}'.format(i, iterations), end="\r")
        # Choose a random city
        city = cities.sample(1)[['x', 'y']].values   # 随机从cities中选取一组数,1*2数组
        winner_idx = select_closest(network, city)
        # print(winner_idx)  # DEBUG
        # 改进方案, 获胜神经元距离小于阈值,则直接获胜
        if np.linalg.norm(city - network[winner_idx, :], axis=1) < 0.005:  # 求距离
            network[winner_idx, :] = city
            # print(winner_idx)
        else:
            # Generate a filter that applies changes to the winner's gaussian
            gaussian = get_neighborhood(winner_idx, n // 10, network.shape[0])  # 高斯核函数是算法的核心
            # Update the network's weights (closer to the city)
            network += gaussian[:, np.newaxis] * learning_rate * (city - network)  # np.newaxis在该位置增加一维,变成神经元数*1维
            # 实际上就是为了让对应的移动乘以对应的坐标

        # Decay the variables
        learning_rate = learning_rate * 0.99999
        n = n * 0.9995  # 较好的参数是0.9991-0.9997

        if not i % 100:      # 每隔100次, 求距离
            route = get_route(cities, network)
            p = problem.reindex(route)
            dSave[i // dStep] = route_distance(p)

    else:
        print('Completed {} iterations.'.format(iterations))
    # plot 部分
    plot_network(cities, network)
    route = get_route(cities, network)

    cities = problem.copy()
    citiesReal = cities[['x', 'y']]  # 取实际坐标
    plot_route(citiesReal, route)
    return route, dSave
Esempio n. 5
0
def som(instancia,problem, iterations, learning_rate,delta_learning_rate, delta_n,sensi_radio,sensi_learning_rate,factor_neuronas,plotear):
    """Solve the TSP using a Self-Organizing Map."""

    # Obtenemos primero las ciudades normalizadas (con coordenadas en [0,1])
    cities = problem.copy()
    cities[['x', 'y']] = normalize(cities[['x', 'y']])

    #La población de neuronas se crea con factor_neuronas veces la cantidad de ciudades
    n = cities.shape[0] * factor_neuronas

    # Generamos una adecuada red de neuronas de la forma
    network = generate_network(n)

    if plotear:
        print('Red de {} neuronas creadas. Comenzando las iteraciones:'.format(n))

    for i in range(iterations):
        if not i % 100:
            print('\t> Iteración {}/{}'.format(i, iterations), end="\r")
        # Se escoge una ciudad de forma aleatoria
        city = cities.sample(1)[['x', 'y']].values
        #Se busca la neurona más cercana a la ciudad, la winner neuron
        winner_idx = select_closest(network, city)
        #Genera un filtro que aplica los cambios al winner o BMU
        gaussian = get_neighborhood(winner_idx, n//10, network.shape[0])
        # Actualizar los pesos de la red según una distribución gaussiana
        network += gaussian[:,np.newaxis] * learning_rate * (city - network)
        
        # actualizar las parametros
        learning_rate = learning_rate * delta_learning_rate
        n = n * delta_n

        # Chequear para plotear cada 1000 iteraciones
        if plotear:
            if not i % 1000:
                plot_network(cities, network, name='imagenes/'+instancia+'/{:05d}.png'.format(i))

        # Chequear si algún parametro a caído por debajo de la sensibilidad
        if n < sensi_radio:
            print('Radio por debajo de sensibilidad, Se ha terminado la ejecución',
            'a {} las iteraciones'.format(i))
            break
        if learning_rate < sensi_learning_rate:
            print('Learning rate por debajo de sensibilidad, Se ha terminado la ejecución',
            'a las {} iteraciones'.format(i))
            break
    else:
        print('Se han completado las {} iteraciones.'.format(iterations))

    if plotear:
        plot_network(cities, network, name='imagenes/'+instancia+'/final.png')


    route = get_route(cities, network)
    if plotear:
        plot_route(cities, route, 'imagenes/'+instancia+'/route.png')
    return route
Esempio n. 6
0
def som(problem, iterations, learning_rate=0.8):
    """Solve the TSP using a Self-Organizing Map."""

    # Obtain the normalized set of cities (w/ coord in [0,1])
    cities = problem.copy()
    cities[['x', 'y']] = normalize(cities[['x', 'y']])
    # The population size is 8 times the number of cities   神经元个数
    n = cities.shape[0] * 8
    network = generate_network(n)  # Generate an adequate network of neurons:
    print('Network of {} neurons created. Starting the iterations:'.format(n))

    for i in range(iterations):
        if i == 0 or (not i % 1000):
            plot_network(cities,
                         network,
                         name='out_files\process\city_network%d.png' %
                         (i // 1000 + 1))

        city = cities.sample(1)[['x', 'y']].values  # 随机从cities中选取一组数,1*2数组
        winner_idx = select_closest(network, city)
        # Generate a filter that applies changes to the winner's gaussian
        gaussian = get_neighborhood(winner_idx, n // 10, network.shape[0])
        # Update the network's weights (closer to the city)
        network += gaussian[:, np.newaxis] * learning_rate * (
            city - network)  # np.newaxis在该位置增加一维,变成神经元数*1维
        # 实际上就是为了让对应的移动乘以对应的坐标
        # Decay the variables
        learning_rate = learning_rate * 0.99997
        n = n * 0.9997

        # Check for plotting interval
        # Check if any parameter has completely decayed.
        if n < 1:
            print('Radius has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
        if learning_rate < 0.001:
            print('Learning rate has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
        # if 神经元覆盖了城市
        #   print('在第{}次迭代,收敛'.format(i))
    else:
        print('Completed {} iterations.'.format(iterations))
    plot_network(cities, network)
    route = get_route(cities, network)
    plot_route(problem[['x', 'y']], route)
    return route
Esempio n. 7
0
def som(problem, iterations, learning_rate=0.8):

    cities = problem.copy()

    cities[['x', 'y']] = normalize(cities[['x', 'y']])

    n = cities.shape[0] * 8

    network = generate_network(n)
    print('Network of {} neurons created. Starting the iterations:'.format(n))

    for i in range(iterations):
        if not i % 100:
            print('\t> Iteration {}/{}'.format(i, iterations), end="\r")

        city = cities.sample(1)[['x', 'y']].values
        winner_idx = select_closest(network, city)

        gaussian = get_neighborhood(winner_idx, n // 10, network.shape[0])

        network += gaussian[:, np.newaxis] * learning_rate * (city - network)

        learning_rate = learning_rate * 0.99997
        n = n * 0.9997

        if not i % 1000:
            plot_network(cities, network, name='diagrams/{:05d}.png'.format(i))

        if n < 1:
            print('Radius has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
        if learning_rate < 0.001:
            print('Learning rate has completely decayed, finishing execution',
                  'at {} iterations'.format(i))
            break
    else:
        print('Completed {} iterations.'.format(iterations))

    plot_network(cities, network, name='diagrams/final.png')

    route = get_route(cities, network)
    plot_route(cities, route, 'diagrams/route.png')
    return route
Esempio n. 8
0
def main():
    """
    Reads in the city data, runs the som algorithm, and plots the topological 1-D mapping
    """
    city_coords, city_names = generate_data.city_coords(verbose=True,
                                                        feat_lim=None,
                                                        examples_lim=None)
    params = {
        "epochs": 50,
        "step_size": 0.2,
        "num_nodes": [10],
        "neighborhood_type": 'circular'  # ['circular', 'linear']
    }
    som1 = Som(city_coords, **params)
    som1.train()
    pos = som1.apply(city_coords)

    sorted_coords, sorted_names = som1.order(pos, city_coords, city_names)
    print("city names in order: ")
    print(sorted_names)

    plot.plot_route(sorted_coords, sorted_names)
Esempio n. 9
0
            count[i] = _count
        print("mean time: {:.5f}".format(T.mean()))
        print("mean kaisuu: {}".format(count.mean()))
    elif wh == 'sa':
        T = np.arange(epoch, dtype=np.float64)
        count = np.arange(epoch)
        tf = [True] * len(test_order)
        route = []
        if len(test_order) == 10:
            best_route, _count = dfs_best(test_order, dis, tf, route,
                                          len(test_order))
        t = 1000
        a = 0.999
        truth = 0
        for i in range(epoch):
            start = time.time()
            best_route_, _count = sa_2opt(test_order, dis, t, a)
            end = time.time()
            T[i] = end - start
            print(T[i])
            count[i] = _count
            if len(test_order) == 10:
                if tru(best_route_, best_route):
                    truth += 1
        if len(test_order) == 10:
            print("precision: {:.4f}".format(truth / epoch))
        print("mean time: {:.5f}".format(T.mean()))
        print("mean kaisuu: {}".format(count.mean()))

    plot_route(test_order, best_route_, point)
Esempio n. 10
0
#!/usr/bin/python3

import calc as cl
import database as db
import plot as pl
import view as vw

if __name__ == "__main__":
    db.connect()

    start_addr = db.get_start_address()
    stops = db.get_stop_positions()
    pos = db.get_unique_positions()
    addrs = cl.order_addresses(db.get_all_addresses(), stops)

    tot_dist = cl.total_distance(pos)
    print("Total route distance:", round(tot_dist, 2), "km")

    pl.init()
    pl.plot_addresses(start_addr, addrs)
    pl.plot_route(pos)
    pl.save()

    vw.copy_kml_public("/home/hlilje/Dropbox/")
    vw.write_kml_url()
    vw.view()

    db.close()
Esempio n. 11
0
from sys import argv

import numpy as np
#iner
from neuron import generate_network, get_neighborhood, get_route
from plot import plot_neuron_chain, plot_route, plot_loss
from opts import OPT
from dataloader import dataloader
import pandas as pd
from path import Path
from som import SOM

import matplotlib.pyplot as plt


def main():
    pass


if __name__ == '__main__':
    args = OPT().args()
    SOM(args)

    plot_loss(input_dir=args.out_dir)
    plot_route(input_dir=args.out_dir)
    plot_neuron_chain(input_dir=args.out_dir)
Esempio n. 12
0
def som(problem, iterations, learning_rate=0.8):
    '''
    SOM解决TSP问题
    '''
    # 将城市数据归一化处理
    cities = problem.copy()
    cities[['x', 'y']] = normalize(cities[['x', 'y']])

    # 神经元数量设定为城市的8倍
    n = cities.shape[0] * 8

    # 建立神经网络
    network = generate_network(n)

    print('创建{} 个神经元. 开始进行迭代:'.format(n))

    for i in range(iterations):
        if not i % 100:
            print('\t> 迭代过程 {}/{}'.format(i, iterations), end='\r')
        # 随机选择一个城市
        city = cities.sample(1)[['x', 'y']].values

        #优胜神经元(距离该城市最近的神经元)
        winner_idx = select_closest(network, city)

        # 以该神经元为中心建立高斯分布
        gaussian = get_neighborhood(winner_idx, n // 10, network.shape[0])

        # 更新神经元的权值,使神经元向被选中城市移动
        network += gaussian[:, np.newaxis] * learning_rate * (city - network)

        # 学习率衰减,方差衰减
        learning_rate = learning_rate * 0.99997
        n = n * 0.9997

        # 每迭代1000次时作图
        if not i % 1000:
            plot_network(cities,
                         network,
                         name='som_diagrams/{:05d}.png'.format(i))
            pass
        # 判断方差和学习率是否达到阈值
        if n < 1:
            print('方差已经达到阈值,完成执行次数{}'.format(i))
            break
        if learning_rate < 0.001:
            print('学习率已经达到阈值,完成执行次数{}'.format(i))
            break
    else:
        print('完成迭代:{}次'.format(iterations))

    plot_network(cities, network, name='som_diagrams/final.png')
    route = get_route(cities, network)
    cities = cities.reindex(route)
    plot_route(cities, route, 'som_diagrams/route.png')

    # 将多个png文件合成gif文件
    path = os.chdir('.\som_diagrams')
    pic_list = os.listdir()
    create_gif(pic_list, 'result.gif', 0.3)

    return route