avgv = [] provs = ["Churchill Province", "Superior Province", "Slave Province", "Grenville Province"] color = ["b", "g", "m", "y", "k", "c"] handles = () labels = () plt.subplots_adjust(left=None, bottom=None, right=0.75, top=None, wspace=None, hspace=0.05) for (ii, province) in enumerate(provs): d.reset() arg = Args() arg.addQuery("geoprov", "in", province) d2 = Params(stnfile, ["hk::H", "hk::R"], arg) d.sync(d2) prov = province.replace(" ", "") dk, avgdk, bins, ptype = getdata("kan", d, m, vdict, prov) avgp.append(avgdk) ax = plt.subplot(4, 1, ii + 1) n, bins, patches = plt.hist( dk, bins=bins, histtype="bar", color=color[ii], rwidth=1, alpha=0.6, label=province ) handle, label = ax.get_legend_handles_labels() handles += (handle[0],) labels += (label[0],)
arg2.addQuery("hk::H", "lt", "40") arg3 = Args() arg3.addQuery("hk::H", "lt", "35") arg4 = Args() fstns = os.environ['HOME'] + '/thesis/stations.json' a = Params(fstns, arg1, ["mb::H"]) b = Params(fstns, arg2, ["mb::H"]) c = Params(fstns, arg2, ["hk::H"]) d = Params(fstns, arg3, ["hk::H"]) e = Params(fstns, arg3, ["wm::H"]) f = Params(fstns, arg4, ["wm::H"]) lena = len(a.mb_H) a.sync(b) assert len(a.reset().mb_H) == lena assert np.equal(a.sync(b).mb_H, b.sync(a).mb_H).all() c.sync(d.sync(e.sync(f))) for ii in range(len(f.stns)): assert c.stns[ii] == f.stns[ii] assert c.hk_H[ii] == d.hk_H[ii] assert f.sync(d) == f.reset().sync(e) c.reset() d.reset() e.reset()
arg3 = Args() arg3.addQuery("hk::H", "lt", "35") arg4 = Args() fstns = os.environ['HOME'] + '/thesis/stations.json' a = Params(fstns, arg1, ["mb::H"]) b = Params(fstns, arg2, ["mb::H"]) c = Params(fstns, arg2, ["hk::H"]) d = Params(fstns, arg3, ["hk::H"]) e = Params(fstns, arg3, ["wm::H"]) f = Params(fstns, arg4, ["wm::H"]) lena = len(a.mb_H) a.sync(b) assert len(a.reset().mb_H) == lena assert np.equal(a.sync(b).mb_H, b.sync(a).mb_H).all() c.sync(d.sync(e.sync(f))) for ii in range(len(f.stns)): assert c.stns[ii] == f.stns[ii] assert c.hk_H[ii] == d.hk_H[ii] assert f.sync(d) == f.reset().sync(e) c.reset() d.reset() e.reset()
return np.sqrt(md / (n)) for i in range(1, 2): pro = os.environ['HOME'] + data[2 * i + 1] pub = os.environ['HOME'] + data[2 * i] arg = Args().addQuery("stdR", "lt", 0.06) p0 = Params(pro, ["H", "R", "stdR", "stdH"], arg) p2 = Params(pub, ["H", "R", "stdR", "stdH"], arg) p1 = Params(stnfile, ["hk::H", "hk::R", "hk::stdR", "hk::stdH"]) p0.sync(p2) stns = p0.stns R1 = p0.R R2 = p2.R H1 = p0.H H2 = p2.H R1std = p0.stdR R2std = p2.stdR H1std = p0.stdH H2std = p2.stdH
plt.legend(loc= 2) plt.ylabel("Station Vp [km/s]") plt.xlabel("Station Thickness H [km]") plt.grid(True) ############################################################################# # Vp estimates and controlled source ############################################################################## arg = Args().stations(["ALE","ALGO","ARVN","BANO","CBRQ","DAWY","DELO","FCC","FFC","HAL","KGNO","KSVO","LMN","MBC","MNT","MOBC","ORIO","PEMO","PGC","PLVO","PMB","PTCO","SJNN","SUNO","ULM","ULM2","WAPA ","WHY","WSLR ","YKW1","YOSQ"]) m.filter(arg) m.filter(Args().addQuery("mb::Vp", "gt", "5.5")) m.filter(Args().addQuery("mb::stdVp", "lt", "0.8")) c = Params(csfile, ["H","Vp"]) c.sync(m) stdVp = 2 * m.mb_stdVp # 2 stdError t = np.arange(len(m.mb_Vp[0:11])) corr = spearmanr(m.mb_Vp[0:11], c.Vp[0:11]) fig = plt.figure( figsize = (width, height) ) plt.plot(t, m.mb_Vp[0:11], '-ob', lw = 4, ms = 12, label = "Bostock (2010) Vp estimate") plt.errorbar(t, m.mb_Vp[0:11], yerr=stdVp[0:11], xerr=None, fmt=None, ecolor = 'blue', elinewidth = 2, capsize = 7, mew = 2, label = "2 std dev Bootstrap") plt.plot(t, c.Vp[0:11], '-og', lw = 4, ms = 12, label = "Proximal active source estimate") plt.title("Active Source P-wave velocity comparison\n Correlation = {0:2.3f}".format(corr[0]), size = 18) plt.legend() plt.xlabel("Stations") plt.ylabel("Vp [km/s]") plt.xticks(t, c.stns[0:11], size = 12)
"Grenville Province" ] color = ['b', 'g', 'm', 'y', 'k', 'c'] handles = () labels = () plt.subplots_adjust(left= None, bottom=None, right = 0.75, top=None, wspace=None, hspace=0.05) for (ii, province) in enumerate(provs): d.reset() arg = Args() arg.addQuery("geoprov", "in", province) d2 = Params(stnfile, ["hk::H","hk::R"], arg) d.sync(d2) prov = province.replace(" ", "") dk, avgdk, bins, ptype = getdata("kan", d, m, vdict, prov) avgp.append( avgdk ) ax = ( plt.subplot(4,1,ii + 1) ) n, bins, patches = plt.hist(dk, bins = bins, histtype = "bar", color = color[ii], rwidth = 1, alpha = 0.6, label = province) handle, label = ax.get_legend_handles_labels() handles += (handle[0],) labels += (label[0],)
return np.sqrt(md/(n)) for i in range(1,2): pro = os.environ['HOME'] + data[2*i + 1] pub = os.environ['HOME'] + data[2*i] arg = Args().addQuery("stdR", "lt", 0.06) p0 = Params(pro, ["H", "R", "stdR", "stdH"], arg) p2 = Params(pub, ["H", "R", "stdR", "stdH"], arg) p1 = Params(stnfile, ["hk::H","hk::R", "hk::stdR", "hk::stdH"]) p0.sync(p2) stns = p0.stns R1 = p0.R R2 = p2.R H1 = p0.H H2 = p2.H R1std = p0.stdR R2std = p2.stdR H1std = p0.stdH H2std = p2.stdH
plt.legend(loc= 2, prop={'size': leg}) plt.ylabel("normalized Vp", size = label) plt.xlabel("normalized H", size = label) plt.grid(True) plt.axis("equal") ############################################################################# # FIG 2: Vp estimates and controlled source ############################################################################## if 0: maxerr = 0.25#0.24#0.21 arg = Args().addQuery("fg::stdVp", "lt", str(maxerr)) f = Params(stnfile, ["fg::H","fg::Vp", "fg::stdH", "fg::stdVp", "hk::stdR"], arg) c = Params(csfile, ["H","Vp"]) c.sync(f) stdVp = 2 * f.fg_stdVp # 2 stdError stdH = 2 * f.fg_stdH t = np.arange(len(f.fg_Vp)) corr = pearsonr(f.fg_Vp, c.Vp) print "Active Source vs FG Vp with {} stations: correlation = {}".format(len(f.stns), corr[0]) fig = plt.figure() ax1 = fig.add_subplot(111) l1=ax1.plot(t, f.fg_Vp, '-ob', lw = lw, ms = ms, label = "Full Gridsearch Vp estimate") l2=ax1.errorbar(t, f.fg_Vp, yerr=stdVp, xerr=None, fmt=None, ecolor = 'blue',