Esempio n. 1
0
def plot_multi_scale_output_b(fig, X='L5E'):
    '''docstring me'''

    show_ax_labels = True
    show_insets = False
    show_images = False

    T=[800, 1000]
    T_inset=[900, 920]

    
    left = 0.075
    bottom = 0.05
    top = 0.475
    right = 0.95
    axwidth = 0.16
    numcols = 4
    insetwidth = axwidth/2
    insetheight = 0.5
    
    lefts = np.linspace(left, right-axwidth, numcols)
    lefts += axwidth/2



    #lower row of panels
    #fig = plt.figure()
    #fig.subplots_adjust(left=0.12, right=0.9, bottom=0.36, top=0.9, wspace=0.2, hspace=0.3)

    ############################################################################    
    # E part, soma locations
    ############################################################################

    ax4 = fig.add_axes([lefts[0], bottom, axwidth, top-bottom], frameon=False)
    plt.locator_params(nbins=4)
    ax4.xaxis.set_ticks([])
    ax4.yaxis.set_ticks([])
    if show_ax_labels:
        phlp.annotate_subplot(ax4, ncols=4, nrows=1, letter='E')
    plot_population(ax4, params, isometricangle=np.pi/24, rasterized=False)
    
    
    ############################################################################    
    # F part, CSD
    ############################################################################

    ax5 = fig.add_axes([lefts[1], bottom, axwidth, top-bottom])
    plt.locator_params(nbins=4)
    phlp.remove_axis_junk(ax5)
    if show_ax_labels:
        phlp.annotate_subplot(ax5, ncols=4, nrows=1, letter='F')
    plot_signal_sum(ax5, params, fname=os.path.join(params.savefolder, 'CSDsum.h5'),
                        unit='$\mu$A mm$^{-3}$',
                        T=T,
                        ylim=[ax4.axis()[2], ax4.axis()[3]],
                        rasterized=False)
    ax5.set_title('CSD', va='center')
    
    # Inset
    if show_insets:
        ax6 = fig.add_axes([lefts[1]+axwidth-insetwidth, top-insetheight, insetwidth, insetheight])
        plt.locator_params(nbins=4)
        phlp.remove_axis_junk(ax6)
        plot_signal_sum_colorplot(ax6, params, os.path.join(params.savefolder, 'CSDsum.h5'),
                                  unit=r'$\mu$Amm$^{-3}$', T=T_inset,
                                  ylim=[ax4.axis()[2], ax4.axis()[3]],
                                  fancy=False,colorbar=False,cmap='bwr_r')
        ax6.set_xticks(T_inset)
        ax6.set_yticklabels([])

    #show traces superimposed on color image
    if show_images:
        plot_signal_sum_colorplot(ax5, params, os.path.join(params.savefolder, 'CSDsum.h5'),
                                  unit=r'$\mu$Amm$^{-3}$', T=T,
                                  ylim=[ax4.axis()[2], ax4.axis()[3]],
                                  fancy=False,colorbar=False,cmap='jet_r')
        

    
    ############################################################################
    # G part, LFP 
    ############################################################################

    ax7 = fig.add_axes([lefts[2], bottom, axwidth, top-bottom])
    plt.locator_params(nbins=4)
    if show_ax_labels:
        phlp.annotate_subplot(ax7, ncols=4, nrows=1, letter='G')
    phlp.remove_axis_junk(ax7)
    plot_signal_sum(ax7, params, fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                    unit='mV', T=T, ylim=[ax4.axis()[2], ax4.axis()[3]],
                    rasterized=False)
    ax7.set_title('LFP',va='center')
    
    # Inset
    if show_insets:
        ax8 = fig.add_axes([lefts[2]+axwidth-insetwidth, top-insetheight, insetwidth, insetheight])
        plt.locator_params(nbins=4)
        phlp.remove_axis_junk(ax8)
        plot_signal_sum_colorplot(ax8, params, os.path.join(params.savefolder, 'LFPsum.h5'),
                                  unit='mV', T=T_inset,
                                  ylim=[ax4.axis()[2], ax4.axis()[3]],
                                  fancy=False,colorbar=False,cmap='bwr_r')   
        ax8.set_xticks(T_inset)
        ax8.set_yticklabels([])

    #show traces superimposed on color image
    if show_images:
        plot_signal_sum_colorplot(ax7, params, os.path.join(params.savefolder, 'LFPsum.h5'),
                                  unit='mV', T=T,
                                  ylim=[ax4.axis()[2], ax4.axis()[3]],
                                  fancy=False,colorbar=False,cmap='bwr_r')
Esempio n. 2
0
def fig_lfp_decomposition(fig,
                          axes,
                          params,
                          transient=200,
                          X=['L23E', 'L6E'],
                          show_xlabels=True):
    # ana_params.set_PLOS_2column_fig_style(ratio=0.5)
    # fig, axes = plt.subplots(1,5)
    # fig.subplots_adjust(left=0.06, right=0.96, wspace=0.4, hspace=0.2)

    if analysis_params.bw:
        # linestyles = ['-', '-', '--', '--', '-.', '-.', ':', ':']
        linestyles = ['-', '-', '-', '-', '-', '-', '-', '-']
        markerstyles = ['s', 's', 'v', 'v', 'o', 'o', '^', '^']
    else:
        if plt.matplotlib.__version__ == '1.5.x':
            linestyles = ['-', ':'] * (len(params.Y) / 2)
            print(
                'CSD variance semi log plots may fail with matplotlib.__version__ {}'
                .format(plt.matplotlib.__version__))
        else:
            linestyles = ['-',
                          (0, (1, 1))] * (len(params.Y) / 2)  #cercor version
        # markerstyles = ['s', 's', 'v', 'v', 'o', 'o', '^', '^']
        markerstyles = [None] * len(params.Y)
        linewidths = [1.25 for i in range(len(linestyles))]

    plt.delaxes(axes[0])

    #population plot
    axes[0] = fig.add_subplot(261)
    axes[0].xaxis.set_ticks([])
    axes[0].yaxis.set_ticks([])
    axes[0].set_frame_on(False)
    plot_population(axes[0],
                    params,
                    aspect='tight',
                    isometricangle=np.pi / 32,
                    plot_somas=False,
                    plot_morphos=True,
                    num_unitsE=1,
                    num_unitsI=1,
                    clip_dendrites=False,
                    main_pops=True,
                    rasterized=False)
    phlp.annotate_subplot(axes[0], ncols=5, nrows=1, letter='A')
    axes[0].set_aspect('auto')
    axes[0].set_ylim(-1550, 50)
    axis = axes[0].axis()

    phlp.remove_axis_junk(axes[1])
    plot_signal_sum(axes[1],
                    params,
                    fname=os.path.join(params.populations_path,
                                       X[0] + '_population_LFP.h5'),
                    unit='mV',
                    T=[800, 1000],
                    ylim=[axis[2], axis[3]],
                    rasterized=False)

    # CSD background colorplot
    im = plot_signal_sum_colorplot(
        axes[1],
        params,
        os.path.join(params.populations_path, X[0] + '_population_CSD.h5'),
        unit=r'$\mu$Amm$^{-3}$',
        T=[800, 1000],
        colorbar=False,
        ylim=[axis[2], axis[3]],
        fancy=False,
        cmap=plt.get_cmap('gray', 21) if analysis_params.bw else plt.get_cmap(
            'bwr_r', 21),
        rasterized=False)

    cb = phlp.colorbar(fig,
                       axes[1],
                       im,
                       width=0.05,
                       height=0.5,
                       hoffset=-0.05,
                       voffset=0.5)
    cb.set_label('($\mu$Amm$^{-3}$)', labelpad=0.)

    axes[1].set_ylim(-1550, 50)
    axes[1].set_title('LFP and CSD ({})'.format(X[0]), va='baseline')
    phlp.annotate_subplot(axes[1], ncols=3, nrows=1, letter='B')

    #quickfix on first axes
    axes[0].set_ylim(-1550, 50)
    if show_xlabels:
        axes[1].set_xlabel(r'$t$ (ms)', labelpad=0.)
    else:
        axes[1].set_xlabel('')

    phlp.remove_axis_junk(axes[2])
    plot_signal_sum(axes[2],
                    params,
                    fname=os.path.join(params.populations_path,
                                       X[1] + '_population_LFP.h5'),
                    ylabels=False,
                    unit='mV',
                    T=[800, 1000],
                    ylim=[axis[2], axis[3]],
                    rasterized=False)

    # CSD background colorplot
    im = plot_signal_sum_colorplot(
        axes[2],
        params,
        os.path.join(params.populations_path, X[1] + '_population_CSD.h5'),
        unit=r'$\mu$Amm$^{-3}$',
        T=[800, 1000],
        ylabels=False,
        colorbar=False,
        ylim=[axis[2], axis[3]],
        fancy=False,
        cmap=plt.get_cmap('gray', 21) if analysis_params.bw else plt.get_cmap(
            'bwr_r', 21),
        rasterized=False)

    cb = phlp.colorbar(fig,
                       axes[2],
                       im,
                       width=0.05,
                       height=0.5,
                       hoffset=-0.05,
                       voffset=0.5)
    cb.set_label('($\mu$Amm$^{-3}$)', labelpad=0.)

    axes[2].set_ylim(-1550, 50)
    axes[2].set_title('LFP and CSD ({})'.format(X[1]), va='baseline')
    phlp.annotate_subplot(axes[2], ncols=1, nrows=1, letter='C')
    if show_xlabels:
        axes[2].set_xlabel(r'$t$ (ms)', labelpad=0.)
    else:
        axes[2].set_xlabel('')

    plotPowers(axes[3],
               params,
               params.Y,
               'CSD',
               linestyles=linestyles,
               transient=transient,
               markerstyles=markerstyles,
               linewidths=linewidths)
    axes[3].axis(axes[3].axis('tight'))
    axes[3].set_ylim(-1550, 50)
    axes[3].set_yticks(-np.arange(16) * 100)
    if show_xlabels:
        axes[3].set_xlabel(r'$\sigma^2$ ($(\mu$Amm$^{-3})^2$)', va='center')
    axes[3].set_title('CSD variance', va='baseline')
    axes[3].set_xlim(left=1E-7)
    phlp.remove_axis_junk(axes[3])
    phlp.annotate_subplot(axes[3], ncols=1, nrows=1, letter='D')

    plotPowers(axes[4],
               params,
               params.Y,
               'LFP',
               linestyles=linestyles,
               transient=transient,
               markerstyles=markerstyles,
               linewidths=linewidths)
    axes[4].axis(axes[4].axis('tight'))
    axes[4].set_ylim(-1550, 50)
    axes[4].set_yticks(-np.arange(16) * 100)
    if show_xlabels:
        axes[4].set_xlabel(r'$\sigma^2$ (mV$^2$)', va='center')
    axes[4].set_title('LFP variance', va='baseline')
    axes[4].legend(bbox_to_anchor=(1.37, 1.0), frameon=False)
    axes[4].set_xlim(left=1E-7)
    phlp.remove_axis_junk(axes[4])
    phlp.annotate_subplot(axes[4], ncols=1, nrows=1, letter='E')

    return fig
Esempio n. 3
0
def plot_multi_scale_output_b(fig, X='L5E'):
    '''docstring me'''

    show_ax_labels = True
    show_insets = False
    show_images = False

    T = [800, 1000]
    T_inset = [900, 920]

    left = 0.075
    bottom = 0.05
    top = 0.475
    right = 0.95
    axwidth = 0.16
    numcols = 4
    insetwidth = axwidth / 2
    insetheight = 0.5

    lefts = np.linspace(left, right - axwidth, numcols)
    lefts += axwidth / 2

    #lower row of panels
    #fig = plt.figure()
    #fig.subplots_adjust(left=0.12, right=0.9, bottom=0.36, top=0.9, wspace=0.2, hspace=0.3)

    ############################################################################
    # E part, soma locations
    ############################################################################

    ax4 = fig.add_axes([lefts[0], bottom, axwidth, top - bottom],
                       frameon=False)
    plt.locator_params(nbins=4)
    ax4.xaxis.set_ticks([])
    ax4.yaxis.set_ticks([])
    if show_ax_labels:
        phlp.annotate_subplot(ax4, ncols=4, nrows=1, letter='E')
    plot_population(ax4, params, isometricangle=np.pi / 24, rasterized=False)

    ############################################################################
    # F part, CSD
    ############################################################################

    ax5 = fig.add_axes([lefts[1], bottom, axwidth, top - bottom])
    plt.locator_params(nbins=4)
    phlp.remove_axis_junk(ax5)
    if show_ax_labels:
        phlp.annotate_subplot(ax5, ncols=4, nrows=1, letter='F')
    plot_signal_sum(ax5,
                    params,
                    fname=os.path.join(params.savefolder, 'CSDsum.h5'),
                    unit='$\mu$A mm$^{-3}$',
                    T=T,
                    ylim=[ax4.axis()[2], ax4.axis()[3]],
                    rasterized=False)
    ax5.set_title('CSD', va='center')

    # Inset
    if show_insets:
        ax6 = fig.add_axes([
            lefts[1] + axwidth - insetwidth, top - insetheight, insetwidth,
            insetheight
        ])
        plt.locator_params(nbins=4)
        phlp.remove_axis_junk(ax6)
        plot_signal_sum_colorplot(ax6,
                                  params,
                                  os.path.join(params.savefolder, 'CSDsum.h5'),
                                  unit=r'$\mu$Amm$^{-3}$',
                                  T=T_inset,
                                  ylim=[ax4.axis()[2],
                                        ax4.axis()[3]],
                                  fancy=False,
                                  colorbar=False,
                                  cmap='bwr_r')
        ax6.set_xticks(T_inset)
        ax6.set_yticklabels([])

    #show traces superimposed on color image
    if show_images:
        plot_signal_sum_colorplot(ax5,
                                  params,
                                  os.path.join(params.savefolder, 'CSDsum.h5'),
                                  unit=r'$\mu$Amm$^{-3}$',
                                  T=T,
                                  ylim=[ax4.axis()[2],
                                        ax4.axis()[3]],
                                  fancy=False,
                                  colorbar=False,
                                  cmap='jet_r')

    ############################################################################
    # G part, LFP
    ############################################################################

    ax7 = fig.add_axes([lefts[2], bottom, axwidth, top - bottom])
    plt.locator_params(nbins=4)
    if show_ax_labels:
        phlp.annotate_subplot(ax7, ncols=4, nrows=1, letter='G')
    phlp.remove_axis_junk(ax7)
    plot_signal_sum(ax7,
                    params,
                    fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                    unit='mV',
                    T=T,
                    ylim=[ax4.axis()[2], ax4.axis()[3]],
                    rasterized=False)
    ax7.set_title('LFP', va='center')

    # Inset
    if show_insets:
        ax8 = fig.add_axes([
            lefts[2] + axwidth - insetwidth, top - insetheight, insetwidth,
            insetheight
        ])
        plt.locator_params(nbins=4)
        phlp.remove_axis_junk(ax8)
        plot_signal_sum_colorplot(ax8,
                                  params,
                                  os.path.join(params.savefolder, 'LFPsum.h5'),
                                  unit='mV',
                                  T=T_inset,
                                  ylim=[ax4.axis()[2],
                                        ax4.axis()[3]],
                                  fancy=False,
                                  colorbar=False,
                                  cmap='bwr_r')
        ax8.set_xticks(T_inset)
        ax8.set_yticklabels([])

    #show traces superimposed on color image
    if show_images:
        plot_signal_sum_colorplot(ax7,
                                  params,
                                  os.path.join(params.savefolder, 'LFPsum.h5'),
                                  unit='mV',
                                  T=T,
                                  ylim=[ax4.axis()[2],
                                        ax4.axis()[3]],
                                  fancy=False,
                                  colorbar=False,
                                  cmap='bwr_r')
Esempio n. 4
0
def fig_intro(params,
              ana_params,
              T=[800, 1000],
              fraction=0.05,
              rasterized=False):
    '''set up plot for introduction'''
    ana_params.set_PLOS_2column_fig_style(ratio=0.5)

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    #set up figure and subplots
    fig = plt.figure()
    gs = gridspec.GridSpec(3, 4)

    fig.subplots_adjust(left=0.05, right=0.95, wspace=0.5, hspace=0.)

    #network diagram
    ax0_1 = fig.add_subplot(gs[:, 0], frameon=False)
    ax0_1.set_title('point-neuron network', va='bottom')

    network_sketch(ax0_1, yscaling=1.3)
    ax0_1.xaxis.set_ticks([])
    ax0_1.yaxis.set_ticks([])
    phlp.annotate_subplot(ax0_1,
                          ncols=4,
                          nrows=1,
                          letter='A',
                          linear_offset=0.065)

    #network raster
    ax1 = fig.add_subplot(gs[:, 1], frameon=True)
    phlp.remove_axis_junk(ax1)
    phlp.annotate_subplot(ax1,
                          ncols=4,
                          nrows=1,
                          letter='B',
                          linear_offset=0.065)

    x, y = networkSim.get_xy(T, fraction=fraction)
    # networkSim.plot_raster(ax1, T, x, y, markersize=0.1, alpha=1.,legend=False, pop_names=True)
    networkSim.plot_raster(ax1,
                           T,
                           x,
                           y,
                           markersize=0.2,
                           marker='_',
                           alpha=1.,
                           legend=False,
                           pop_names=True,
                           rasterized=rasterized)
    ax1.set_ylabel('')
    ax1.xaxis.set_major_locator(plt.MaxNLocator(4))
    ax1.set_title('spiking activity', va='bottom')
    a = ax1.axis()
    ax1.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)

    #population
    ax2 = fig.add_subplot(gs[:, 2], frameon=False)
    ax2.xaxis.set_ticks([])
    ax2.yaxis.set_ticks([])
    plot_population(ax2,
                    params,
                    isometricangle=np.pi / 24,
                    plot_somas=False,
                    plot_morphos=True,
                    num_unitsE=1,
                    num_unitsI=1,
                    clip_dendrites=True,
                    main_pops=True,
                    title='',
                    rasterized=rasterized)
    ax2.set_title('multicompartment\nneurons',
                  va='bottom',
                  fontweight='normal')
    phlp.annotate_subplot(ax2,
                          ncols=4,
                          nrows=1,
                          letter='C',
                          linear_offset=0.065)

    #LFP traces in all channels
    ax3 = fig.add_subplot(gs[:, 3], frameon=True)
    phlp.remove_axis_junk(ax3)
    plot_signal_sum(ax3,
                    params,
                    fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                    unit='mV',
                    vlimround=0.8,
                    T=T,
                    ylim=[ax2.axis()[2], ax2.axis()[3]],
                    rasterized=False)
    ax3.set_title('LFP', va='bottom')
    ax3.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax3,
                          ncols=4,
                          nrows=1,
                          letter='D',
                          linear_offset=0.065)
    a = ax3.axis()
    ax3.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)

    #draw some arrows:
    ax = plt.gca()
    ax.annotate(
        "",
        xy=(0.27, 0.5),
        xytext=(.24, 0.5),
        xycoords="figure fraction",
        arrowprops=dict(facecolor='black', arrowstyle='simple'),
    )
    ax.annotate(
        "",
        xy=(0.52, 0.5),
        xytext=(.49, 0.5),
        xycoords="figure fraction",
        arrowprops=dict(facecolor='black', arrowstyle='simple'),
    )
    ax.annotate(
        "",
        xy=(0.78, 0.5),
        xytext=(.75, 0.5),
        xycoords="figure fraction",
        arrowprops=dict(facecolor='black', arrowstyle='simple'),
    )

    return fig
Esempio n. 5
0
def fig_intro(params, fraction=0.05, rasterized=False):
    '''set up plot for introduction'''
    plt.close("all")

    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    # num_pops = 8

    fig = plt.figure(figsize=[4.5, 3.5])

    fig.subplots_adjust(left=0.03, right=0.98, wspace=0.5, hspace=0.)
    ax_spikes = fig.add_axes([0.09, 0.4, 0.2, 0.55])
    ax_morph = fig.add_axes([0.37, 0.3, 0.3, 0.75],
                            frameon=False,
                            aspect=1,
                            xticks=[],
                            yticks=[])
    ax_lfp = fig.add_axes([0.73, 0.4, 0.23, 0.55], frameon=True)
    ax_4s = fig.add_axes([0.42, 0.05, 0.25, 0.2],
                         frameon=False,
                         aspect=1,
                         title='head model',
                         xticks=[],
                         yticks=[])
    ax_top_EEG = fig.add_axes([0.65, 0.02, 0.33, 0.32],
                              frameon=False,
                              xticks=[],
                              yticks=[],
                              ylim=[-0.5, .25])
    dt = 1
    t_idx = 875
    T = [t_idx, t_idx + 75]

    fig.text(0.55, 0.97, "multicompartment neurons", fontsize=6, ha="center")
    ax_spikes.set_title("spiking activity", fontsize=6)
    ax_lfp.set_title("LFP", fontsize=6)

    #network raster
    ax_spikes.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.remove_axis_junk(ax_spikes)
    phlp.annotate_subplot(ax_spikes,
                          ncols=4,
                          nrows=1,
                          letter='A',
                          linear_offset=0.045)
    x, y = networkSim.get_xy(T, fraction=fraction)

    networkSim.plot_raster(ax_spikes,
                           T,
                           x,
                           y,
                           markersize=0.2,
                           marker='_',
                           alpha=1.,
                           legend=False,
                           pop_names=True,
                           rasterized=rasterized)

    #population
    plot_population(ax_morph,
                    params,
                    isometricangle=np.pi / 24,
                    plot_somas=False,
                    plot_morphos=True,
                    num_unitsE=1,
                    num_unitsI=1,
                    clip_dendrites=True,
                    main_pops=True,
                    title='',
                    rasterized=rasterized)
    # ax_morph.set_title('multicompartment neurons', va='top')
    phlp.annotate_subplot(ax_morph,
                          ncols=5,
                          nrows=1,
                          letter='B',
                          linear_offset=0.005)

    phlp.remove_axis_junk(ax_lfp)
    #ax_lfp.set_title('LFP', va='bottom')
    ax_lfp.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax_lfp,
                          ncols=4,
                          nrows=2,
                          letter='C',
                          linear_offset=0.025)
    #print(ax_morph.axis())
    plot_signal_sum(ax_lfp,
                    params,
                    fname=join(params.savefolder, 'LFPsum.h5'),
                    unit='mV',
                    vlimround=0.8,
                    T=T,
                    ylim=[-1600, 100],
                    rasterized=False)

    plot_cdms(fig, params, dt, T)

    plot_foursphere_to_ax(ax_4s)
    phlp.annotate_subplot(ax_4s,
                          ncols=3,
                          nrows=7,
                          letter='E',
                          linear_offset=0.05)

    # Plot EEG at top of head
    # ax_top_EEG.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax_top_EEG,
                          ncols=1,
                          nrows=1,
                          letter='F',
                          linear_offset=-0.08)

    # ax_top_EEG.set_ylabel("$\mu$V", labelpad=-3)
    summed_top_EEG = np.load(join(params.savefolder, "summed_EEG.npy"))

    simple_EEG_single_pop = np.load(
        join(params.savefolder, "simple_EEG_single_pop.npy"))
    simple_EEG_pops_with_pos = np.load(
        join(params.savefolder, "simple_EEG_pops_with_pos.npy"))

    tvec = np.arange(len(summed_top_EEG)) * dt

    # sub_pops = ["L5I", "L4I", "L6I", "L23I", "L5E", "L4E", "L6E", "L23E"]
    pops = np.unique(next(zip(*params.mapping_Yy)))
    colors = phlp.get_colors(np.unique(pops).size)
    for p_idx, pop in enumerate(pops):
        pop_eeg = np.load(join(params.savefolder, "EEG_{}.npy".format(pop)))
        pop_eeg -= np.average(pop_eeg)
        # pop_sum.append(pop_eeg)
        ax_top_EEG.plot(pop_eeg, c=colors[p_idx], lw=1)

    ax_top_EEG.plot([878, 878], [-0.1, -0.3], c='k', lw=1)
    ax_top_EEG.plot([878, 888], [-0.3, -0.3], c='k', lw=1)
    ax_top_EEG.text(879, -0.2, "0.2 $\mu$V", va="center")
    ax_top_EEG.text(885, -0.32, "10 ms", va="top", ha="center")

    y0 = summed_top_EEG - np.average(summed_top_EEG)
    y1 = simple_EEG_single_pop - np.average(simple_EEG_single_pop)
    y2 = simple_EEG_pops_with_pos - np.average(simple_EEG_pops_with_pos)

    l3, = ax_top_EEG.plot(tvec, y0 - y2, lw=1.5, c='orange', ls='-')
    l1, = ax_top_EEG.plot(tvec, y0, lw=1.5, c='k')
    l2, = ax_top_EEG.plot(tvec, y2, lw=1.5, c='r', ls='--')

    t0_plot_idx = np.argmin(np.abs(tvec - 875))
    t1_plot_idx = np.argmin(np.abs(tvec - 950))
    max_sig_idx = np.argmax(np.abs(y0[t0_plot_idx:])) + t0_plot_idx

    EEG_error_at_max_1 = np.abs(y0[max_sig_idx] - y1[max_sig_idx]) / np.abs(
        y0[max_sig_idx])
    EEG_error_at_max_2 = np.abs(y0[max_sig_idx] - y2[max_sig_idx]) / np.abs(
        y0[max_sig_idx])

    max_EEG_error_1 = np.max(
        np.abs(y0[t0_plot_idx:t1_plot_idx] - y1[t0_plot_idx:t1_plot_idx]) /
        np.max(np.abs(y0[t0_plot_idx:t1_plot_idx])))
    max_EEG_error_2 = np.max(
        np.abs(y0[t0_plot_idx:t1_plot_idx] - y2[t0_plot_idx:t1_plot_idx]) /
        np.max(np.abs(y0[t0_plot_idx:t1_plot_idx])))

    print(
        "Error with single pop at sig max (t={:1.3f} ms): {:1.4f}. Max relative error: {:1.4f}"
        .format(tvec[max_sig_idx], EEG_error_at_max_1, max_EEG_error_1))
    print(
        "Error with multipop at sig max (t={:1.3f} ms): {:1.4f}. Max relative error: {:1.4f}"
        .format(tvec[max_sig_idx], EEG_error_at_max_2, max_EEG_error_2))
    ax_top_EEG.legend([l1, l2, l3], ["full sum", "pop. dipole", "difference"],
                      frameon=False,
                      loc=(0.5, 0.1))
    # phlp.remove_axis_junk(ax_top_EEG)
    ax_top_EEG.axvline(900, c='gray', ls='--')
    ax_lfp.axvline(900, c='gray', ls='--')

    ax_top_EEG.set_xlim(T)

    fig.savefig(join("..", "figures", 'Figure6.png'), dpi=300)
    fig.savefig(join("..", "figures", 'Figure6.pdf'), dpi=300)
Esempio n. 6
0
def fig_lfp_decomposition(fig, axes, params, transient=200, X=['L23E', 'L6E'], show_xlabels=True):
    # ana_params.set_PLOS_2column_fig_style(ratio=0.5)
    # fig, axes = plt.subplots(1,5)
    # fig.subplots_adjust(left=0.06, right=0.96, wspace=0.4, hspace=0.2)
    
    if analysis_params.bw:
        # linestyles = ['-', '-', '--', '--', '-.', '-.', ':', ':']
        linestyles = ['-', '-', '-', '-', '-', '-', '-', '-']
        markerstyles = ['s', 's', 'v', 'v', 'o', 'o', '^', '^']
    else:
        if plt.matplotlib.__version__ == '1.5.x':
            linestyles = ['-', ':']*(len(params.Y) / 2)
            print('CSD variance semi log plots may fail with matplotlib.__version__ {}'.format(plt.matplotlib.__version__))
        else:
            linestyles = ['-', (0, (1,1))]*(len(params.Y) / 2) #cercor version
        # markerstyles = ['s', 's', 'v', 'v', 'o', 'o', '^', '^']
        markerstyles = [None]*len(params.Y)
        linewidths = [1.25 for i in range(len(linestyles))]
    
    plt.delaxes(axes[0])
    
    #population plot
    axes[0] = fig.add_subplot(261)
    axes[0].xaxis.set_ticks([])
    axes[0].yaxis.set_ticks([])
    axes[0].set_frame_on(False)
    plot_population(axes[0], params, aspect='tight', isometricangle=np.pi/32,
                           plot_somas = False, plot_morphos = True,
                           num_unitsE = 1, num_unitsI=1,
                           clip_dendrites=False, main_pops=True,
                           rasterized=False)
    phlp.annotate_subplot(axes[0], ncols=5, nrows=1, letter='A')
    axes[0].set_aspect('auto')
    axes[0].set_ylim(-1550, 50)
    axis = axes[0].axis()
    
    
    
    phlp.remove_axis_junk(axes[1])
    plot_signal_sum(axes[1], params,
                    fname=os.path.join(params.populations_path, X[0] + '_population_LFP.h5'),
                    unit='mV', T=[800,1000], ylim=[axis[2], axis[3]],
                    rasterized=False)
    
    # CSD background colorplot
    im = plot_signal_sum_colorplot(axes[1], params, os.path.join(params.populations_path,  X[0] + '_population_CSD.h5'),
                              unit=r'$\mu$Amm$^{-3}$', T=[800,1000],
                              colorbar=False,
                              ylim=[axis[2], axis[3]], fancy=False,
                              cmap=plt.get_cmap('gray', 21) if analysis_params.bw else plt.get_cmap('bwr_r', 21),
                              rasterized=False)

    cb = phlp.colorbar(fig, axes[1], im,
                       width=0.05, height=0.5,
                       hoffset=-0.05, voffset=0.5)
    cb.set_label('($\mu$Amm$^{-3}$)', labelpad=0.)

    axes[1].set_ylim(-1550, 50)
    axes[1].set_title('LFP and CSD ({})'.format(X[0]), va='baseline')
    phlp.annotate_subplot(axes[1], ncols=3, nrows=1, letter='B')
     
    #quickfix on first axes
    axes[0].set_ylim(-1550, 50)
    if show_xlabels:
        axes[1].set_xlabel(r'$t$ (ms)',labelpad=0.)
    else:
        axes[1].set_xlabel('')
    


    phlp.remove_axis_junk(axes[2])
    plot_signal_sum(axes[2], params,
                    fname=os.path.join(params.populations_path, X[1] + '_population_LFP.h5'), ylabels=False,
                    unit='mV', T=[800,1000], ylim=[axis[2], axis[3]],
                    rasterized=False)
    
    # CSD background colorplot
    im = plot_signal_sum_colorplot(axes[2], params, os.path.join(params.populations_path, X[1] + '_population_CSD.h5'),
                              unit=r'$\mu$Amm$^{-3}$', T=[800,1000], ylabels=False,
                              colorbar=False,
                              ylim=[axis[2], axis[3]], fancy=False, 
                              cmap=plt.get_cmap('gray', 21) if analysis_params.bw else plt.get_cmap('bwr_r', 21),
                              rasterized=False)

    cb = phlp.colorbar(fig, axes[2], im,
                       width=0.05, height=0.5,
                       hoffset=-0.05, voffset=0.5)
    cb.set_label('($\mu$Amm$^{-3}$)', labelpad=0.)

    axes[2].set_ylim(-1550, 50)
    axes[2].set_title('LFP and CSD ({})'.format(X[1]), va='baseline')
    phlp.annotate_subplot(axes[2], ncols=1, nrows=1, letter='C')
    if show_xlabels:
        axes[2].set_xlabel(r'$t$ (ms)',labelpad=0.)
    else:
        axes[2].set_xlabel('')
    

    plotPowers(axes[3], params, params.Y, 'CSD', linestyles=linestyles, transient=transient, markerstyles=markerstyles, linewidths=linewidths)
    axes[3].axis(axes[3].axis('tight'))
    axes[3].set_ylim(-1550, 50)
    axes[3].set_yticks(-np.arange(16)*100)
    if show_xlabels:
        axes[3].set_xlabel(r'$\sigma^2$ ($(\mu$Amm$^{-3})^2$)', va='center')
    axes[3].set_title('CSD variance', va='baseline')
    axes[3].set_xlim(left=1E-7)
    phlp.remove_axis_junk(axes[3])
    phlp.annotate_subplot(axes[3], ncols=1, nrows=1, letter='D')
    
    
    plotPowers(axes[4], params, params.Y, 'LFP', linestyles=linestyles, transient=transient, markerstyles=markerstyles, linewidths=linewidths)
    axes[4].axis(axes[4].axis('tight'))
    axes[4].set_ylim(-1550, 50)
    axes[4].set_yticks(-np.arange(16)*100)
    if show_xlabels:
        axes[4].set_xlabel(r'$\sigma^2$ (mV$^2$)', va='center')
    axes[4].set_title('LFP variance', va='baseline')
    axes[4].legend(bbox_to_anchor=(1.37, 1.0), frameon=False)
    axes[4].set_xlim(left=1E-7)
    phlp.remove_axis_junk(axes[4])
    phlp.annotate_subplot(axes[4], ncols=1, nrows=1, letter='E')
    
    
    
    
    return fig
Esempio n. 7
0
def fig_intro(params, ana_params, T=[800, 1000], fraction=0.05, rasterized=False):
    '''set up plot for introduction'''
    ana_params.set_PLOS_2column_fig_style(ratio=0.5)
    
    #load spike as database
    networkSim = CachedNetwork(**params.networkSimParams)
    if analysis_params.bw:
        networkSim.colors = phlp.get_colors(len(networkSim.X))

    #set up figure and subplots
    fig = plt.figure()
    gs = gridspec.GridSpec(3, 4)
    
    
    fig.subplots_adjust(left=0.05, right=0.95, wspace=0.5, hspace=0.)


    #network diagram
    ax0_1 = fig.add_subplot(gs[:, 0], frameon=False)
    ax0_1.set_title('point-neuron network', va='bottom')

    network_sketch(ax0_1, yscaling=1.3)
    ax0_1.xaxis.set_ticks([])
    ax0_1.yaxis.set_ticks([])
    phlp.annotate_subplot(ax0_1, ncols=4, nrows=1, letter='A', linear_offset=0.065)
   
    
    #network raster
    ax1 = fig.add_subplot(gs[:, 1], frameon=True)
    phlp.remove_axis_junk(ax1)
    phlp.annotate_subplot(ax1, ncols=4, nrows=1, letter='B', linear_offset=0.065)
       
    x, y = networkSim.get_xy(T, fraction=fraction)
    # networkSim.plot_raster(ax1, T, x, y, markersize=0.1, alpha=1.,legend=False, pop_names=True)
    networkSim.plot_raster(ax1, T, x, y, markersize=0.2, marker='_', alpha=1.,legend=False, pop_names=True, rasterized=rasterized)
    ax1.set_ylabel('')
    ax1.xaxis.set_major_locator(plt.MaxNLocator(4))
    ax1.set_title('spiking activity', va='bottom')
    a = ax1.axis()
    ax1.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)


    #population
    ax2 = fig.add_subplot(gs[:, 2], frameon=False)
    ax2.xaxis.set_ticks([])
    ax2.yaxis.set_ticks([])
    plot_population(ax2, params, isometricangle=np.pi/24, plot_somas=False,
                    plot_morphos=True, num_unitsE=1, num_unitsI=1,
                    clip_dendrites=True, main_pops=True, title='',
                    rasterized=rasterized)
    ax2.set_title('multicompartment\nneurons', va='bottom', fontweight='normal')
    phlp.annotate_subplot(ax2, ncols=4, nrows=1, letter='C', linear_offset=0.065)
    

    #LFP traces in all channels
    ax3 = fig.add_subplot(gs[:, 3], frameon=True)
    phlp.remove_axis_junk(ax3)
    plot_signal_sum(ax3, params, fname=os.path.join(params.savefolder, 'LFPsum.h5'),
                unit='mV', vlimround=0.8,
                T=T, ylim=[ax2.axis()[2], ax2.axis()[3]],
                rasterized=False)
    ax3.set_title('LFP', va='bottom')
    ax3.xaxis.set_major_locator(plt.MaxNLocator(4))
    phlp.annotate_subplot(ax3, ncols=4, nrows=1, letter='D', linear_offset=0.065)
    a = ax3.axis()
    ax3.vlines(x['TC'][0], a[2], a[3], 'k', lw=0.25)
    
    
    #draw some arrows:
    ax = plt.gca()
    ax.annotate("", xy=(0.27, 0.5), xytext=(.24, 0.5),
                xycoords="figure fraction",
            arrowprops=dict(facecolor='black', arrowstyle='simple'),
            )
    ax.annotate("", xy=(0.52, 0.5), xytext=(.49, 0.5),
                xycoords="figure fraction",
            arrowprops=dict(facecolor='black', arrowstyle='simple'),
            )
    ax.annotate("", xy=(0.78, 0.5), xytext=(.75, 0.5),
                xycoords="figure fraction",
            arrowprops=dict(facecolor='black', arrowstyle='simple'),
            )

    
    return fig