epochs=epochs, verbose=verbose) # starts training with open(path_to_dir + 'log.txt', 'a+') as f: f.write(file_name + '\n') f.write(directory_name + '\n\n') # outputs: # ============================================================================================================================ # SAVE # model.save(path_to_dir + 'model.h5', overwrite=True) #Save model #TODO: not working nor checkpoint save model # model.save_weights(path_to_dir +"model_weights.h5", overwrite=True) # plot_model(model, to_file=path_to_dir + 'model.png') # Save plot of model np.save(path_to_dir + 'history_dict.npy', history.history) #Save history plot_outputs.learning_curve(history.history, path_to_dir) #'loss' 'both' accuracy = model.evaluate( Xtest_encoded, Ytest_encoded, verbose=verbose) # TODO:change to test set for final model. with open(path_to_dir + 'log.txt', 'a+') as f: f.write(file_name + str(accuracy) + '\n') Ypredict = model.predict( Xtest_encoded, batch_size=batch_size, verbose=verbose) # TODO:change to test set for final model. Ypredict_encoded = np_utils.to_categorical(Ypredict.argmax(axis=-1)) Ypredict_integer = Ypredict.argmax(axis=-1) np.save(path_to_dir + 'Ypredict_integer', Ypredict_integer) clas_rep = classification_report( Ytest_encoded, Ypredict_encoded, target_names=categories) # TODO:change to test set for final model. df_clas_rep, df_clas_rep_latex = plot_outputs.classification_report_df(
'val_loss': [ 1.0920380201935769, 1.0093031644821167, 1.0757258840401966, 1.2028360558549562, 1.4188584667444228, 1.6316908218463262, 1.766864692568779, 2.0251855607827505, 2.060387311379115, 2.1677825838327407 ], 'loss': [ 1.3953080095847448, 0.9260162450869878, 0.6677782966693242, 0.45178923646608987, 0.3067782683918873, 0.21935892856369416, 0.16770731837799152, 0.1326430987815062, 0.10937795276443163, 0.09297534093881647 ] } input_dir = '/Users/danielmlow/Dropbox/cnn/thesis/manuscript/tables_and_figures/' importlib.reload(plot_outputs) plot_outputs.learning_curve(d, input_dir) ''' :param history: model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10, verbose=0) :return: plot ''' # list all data in history plt.clf() history = { 'acc': [ 0.608408203125, 0.732587890625, 0.80271484375, 0.863232421875, 0.90556640625, 0.931591796875, 0.9465787760416666, 0.9570865885416666, 0.9646321614583333, 0.96919921875 ], 'val_acc': [ 0.6915755208333333, 0.7134635416666667, 0.7146744791666667, 0.7097135416666667, 0.7052083333333333, 0.6964973958333334,