Esempio n. 1
0
def plot_sunbirst_charts(solved_data: pd.DataFrame):
    sb1 = px.sunburst(solved_data, values="expense", path=["type",
                                                           "entity"])._data

    sb2 = px.sunburst(
        solved_data[solved_data["solution"] == 1],
        values="expense",
        path=["type", "entity"],
    )._data

    # use data and structure FROM sb1 and sb2 (trick)

    fig = make_subplots(rows=1,
                        cols=2,
                        specs=[[{
                            "type": "domain"
                        }, {
                            "type": "domain"
                        }]])

    fig.add_trace(
        go.Sunburst(
            branchvalues="total",
            labels=sb1[0]["labels"],
            parents=sb1[0]["parents"],
            values=sb1[0]["values"],
        ),
        1,
        1,
    )

    fig.add_trace(
        go.Sunburst(
            branchvalues="total",
            labels=sb2[0]["labels"],
            parents=sb2[0]["parents"],
            values=sb2[0]["values"],
        ),
        1,
        2,
    )

    fig.update_layout(
        title_text="Expenses distribution in solution, sunbirst chart",
        # Add annotations in the center of the donut pies.
        annotations=[
            dict(text="Original", x=0.17, y=1.1, font_size=20,
                 showarrow=False),
            dict(text="Optimized",
                 x=0.84,
                 y=1.1,
                 font_size=20,
                 showarrow=False),
        ],
    )
    # fig = go.Figure(data = [trace1, trace2], layout = layout)
    fig.show()
Esempio n. 2
0
def make_plot(white_moves, black_moves):
    fig = make_subplots(rows=1, cols=2,
                        specs=[[{'type': 'domain'}, {'type': 'domain'}]],
                        subplot_titles=('White', 'Black'))

    fig.add_trace(go.Sunburst(
        name='M is white',
        ids=white_moves['ids'],
        labels=white_moves['labels'],
        parents=white_moves['parents'],
        values=white_moves['values'],
        branchvalues="total",
        opacity=1,
        marker={'colors': white_moves['color'], 'line': {'color': '#000200'}},
        hoverinfo='label+text+name+current path+value',
        hovertext='Win: ' + white_moves['win'].apply(str) +
                  '\nDraw: ' + white_moves['draw'].apply(str) +
                  '\nLose: ' + white_moves['lose'].apply(str)
    ),
        row=1, col=1)

    fig.add_trace(go.Sunburst(
        name='M is black',
        ids=black_moves['ids'],
        labels=black_moves['labels'],
        parents=black_moves['parents'],
        values=black_moves['values'],
        branchvalues="total",
        opacity=1,
        marker={'colors': black_moves['color'], 'line': {'color': '#000200'}},
        hoverinfo='label+text+name+current path+value',
        hovertext='Win: ' + black_moves['win'].apply(str) +
                  '\nDraw: ' + black_moves['draw'].apply(str) +
                  '\nLose: ' + black_moves['lose'].apply(str)
    ),
        row=1, col=2)

    fig.update_layout(
        height=750, width=1500,
        margin={'t': 0, 'l': 2, 'r': 2, 'b': 0},
        paper_bgcolor='#000200',
        plot_bgcolor='#000200',
        uniformtext={'minsize': 11, 'mode': 'hide'},
        title={'text': 'First five moves of Magnus Carlsen games since he became the world champion',
               'font': {'size': 18, 'color': '#ffffff'},
               'y': 0.98,
               'x': 0.5}
    )

    return fig
Esempio n. 3
0
def build_sunburst():
    story_id = ""
    fig = go.Figure(
        go.Sunburst(
            ids=df.id,
            labels=df.name,
            parents=df.parent,
            values=df.page_duration,
            branchvalues="total",
            customdata=customdata_df,
            # domain=dict(column=0),
            sort=False,
            level=story_id,
            rotation=90,
            maxdepth=5,
            insidetextfont=dict(size=10),
            insidetextorientation="radial",
            marker=dict(colors=df["color"]),
            leaf=dict(opacity=1),
            hovertemplate="<extra></extra><b>%{label} </b> <br> Night Duration: %{customdata[0]}</b> <br> Page Duration:%{value} </b> <br> Gender Mention Ratio (Female/Male):%{customdata[2]: .2f}<br>",
        )
    )
    fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
    fig.update_layout(paper_bgcolor=bg_color)
    return fig
def make_sunburst(df, path, values, title):
    if len(path) > 2:
        hover = "<b>%{label} </b><br> %{percentRoot:,.1%} </br> %{value:$,.0f} </br>"
    else:
        hover = "<b>%{label} </b><br> %{percentRoot:,.1%} </br> "

    fig = px.sunburst(
        df,
        path=path,
        values=values,
        hover_data=["Per Capita_2017"],
        color="Category",
        color_discrete_map=du.sunburst_colors,
    )
    fig.update_traces(
        go.Sunburst(hovertemplate=hover),
        insidetextorientation="radial",
    )
    fig.update_layout(
        title_text=title,
        title_x=0.5,
        title_xanchor="center",
        title_yanchor="top",
        margin=go.layout.Margin(b=10, t=30, l=10, r=10),
        clickmode="event+select",
    )

    return fig
Esempio n. 5
0
def create_sunburst_fig_title(caller):
    """Create the sunburst by sunburst_dict."""
    if caller == 'ba':
        sunburst_info, sunburst_title = hold_up_ba
    elif caller == 'ma':
        sunburst_info, sunburst_title = hold_up_ma

    fig = go.Figure(
        go.Sunburst(parents=sunburst_info['parent'],
                    labels=sunburst_info['character'],
                    values=sunburst_info['value'],
                    branchvalues="total",
                    marker=dict(
                        colors=sunburst_info['value'],
                        colorscale='Cividis',
                    )))

    fig.update_layout(
        # autosize=False,
        margin={
            "t": 0,
            "l": 0,
            "r": 0,
            "b": 0,
            "pad": 0,
        },
        showlegend=True,
        height=512,
    )
    return fig, sunburst_title
Esempio n. 6
0
def make_sunburst(df, path, values, title):
    fig = px.sunburst(df,
                      path=path,
                      values=values,
                      color="Category",
                      color_discrete_map=du.sunburst_colors
                      #       hover_data=['Population']
                      )
    fig.update_traces(
        go.Sunburst(
            # hovertemplate='<b>%{label} </b> <br>%{customdata[0]}<br> $%{value:,.0f}'
            hovertemplate="<b>%{label} </b> $%{value:,.0f}"),
        insidetextorientation="radial",
    )
    fig.update_layout(
        title_text=title,
        title_x=0.5,
        title_xanchor="center",
        title_yanchor="top",
        #  title_y=0.95,
        margin=go.layout.Margin(b=10, t=10, l=1, r=1),
        # yaxis=go.layout.YAxis(tickprefix="$", fixedrange=True),
        # xaxis=go.layout.XAxis(fixedrange=True),
        # annotations=total_labels,
        # paper_bgcolor="whitesmoke",
        clickmode="event+select",
    )

    return fig
Esempio n. 7
0
def graph():
    fig = go.Figure(
        go.Sunburst(labels=[
            "Población Vulnerable", "3era Edad", "Discapacidad o Limitación",
            "Condición Mental", "Visual o Auditiva", "Hablar o Comunicarse",
            "Motriz", "Recordar o concentrarse", "Condición mental",
            "Ver, aún usando lentes", "Oir, aún usando aparatos",
            "Caminar, subir o bajar", "Bañarse, vestirse o comer"
        ],
                    parents=[
                        "", "Población Vulnerable", "Población Vulnerable",
                        "Población Vulnerable", "Población Vulnerable",
                        "Población Vulnerable", "Población Vulnerable",
                        "Condición Mental", "Condición Mental",
                        "Visual o Auditiva", "Visual o Auditiva", "Motriz",
                        "Motriz"
                    ],
                    values=[
                        46200, 17600, 12568, 2466, 8140, 485, 4941, 982, 1484,
                        6311, 1829, 4147, 794
                    ],
                    branchvalues="total",
                    textinfo='label+percent entry'))
    fig.update_layout(margin=dict(t=0, l=0, r=0, b=0), height=600)

    return dcc.Graph(figure=fig)
Esempio n. 8
0
def get_http_code_fig():
    l, sum_2, sum_3, sum_4, sum_5, SUM = obj.get_http_status_data()
    # print(l, sum_2, sum_3, sum_4, sum_5, SUM)
    SUM += 15000
    sum_3 += 700
    l[2] += 237
    l[3] += 243
    l[4] += 20

    fig = go.Figure(
        go.Sunburst(
            labels=[
                "HTTP Status Code", "2xx", "3xx", "4xx", "5xx", "200", "202",
                "301", "302", "307", "400", "401", "403", "404", '408', '500',
                '502', '503'
            ],
            parents=[
                "", "HTTP Status Code", "HTTP Status Code", "HTTP Status Code",
                "HTTP Status Code", "2xx", "2xx", "3xx", "3xx", "3xx", '4xx',
                '4xx', '4xx', '4xx', '4xx', '5xx', '5xx', '5xx'
            ],
            values=[SUM, sum_2, sum_3, sum_4, sum_5] + l,
            branchvalues="total",
            marker=dict(colorscale='Blackbody', ),  # Rainbow Jet Blackbody
            hovertemplate='<b>%{label} </b> <br> Count: %{value}',
            name='',  # 不显示trace0\trace1...
            # maxdepth=2
        ))
    fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
    return fig
Esempio n. 9
0
def get_domain_host_type_fig():
    labels = [
        'Host Type', '企业', '事业单位', '政府机关', '社会团体', '民营非企业单位', '民办非企业单位', '个人',
        '群众性团体组织', '律师执业机构', '群团组织', '基金会'
    ] + ['门户网站', '后台系统'] * 11
    parents = [''] + ['Host Type'] * 11 + [
        '企业', '企业', '事业单位', '事业单位', '政府机关', '政府机关', '社会团体', '社会团体', '民营非企业单位',
        '民营非企业单位', '民办非企业单位', '民办非企业单位', '个人', '个人', '群众性团体组织', '群众性团体组织',
        '律师执业机构', '律师执业机构', '群团组织', '群团组织', '基金会', '基金会'
    ]
    res = obj.get_domain_host_type_fig_values([
        '企业', '事业单位', '政府机关', '社会团体', '民营非企业单位', '民办非企业单位', '个人', '群众性团体组织',
        '律师执业机构', '群团组织', '基金会'
    ])
    values = [22875, 10630, 7578, 3504, 563, 275, 175, 110, 22, 12, 5, 1] + res
    # print(len(labels), len(parents), len(values))
    # print(labels)
    # print(parents)
    # print(values)
    fig = go.Figure(
        go.Sunburst(
            labels=labels,
            parents=parents,
            values=values,
            branchvalues="total",
            hovertemplate='<b>%{label} </b> <br> Count: %{value}',
            name='',  # 不显示trace0\trace1...
        ))
    fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
    return fig
Esempio n. 10
0
def get_prod_share_trace(episode):
    prod_types = episode.get_prod_types()
    prod_type_values = list(prod_types.values()) if len(
        prod_types.values()) > 0 else []

    share_prod = observation_model.get_prod(episode)
    df = share_prod.groupby("equipment_name")["value"].sum()
    unique_prod_types = np.unique(prod_type_values)

    labels = [*df.index.values, *np.unique(prod_type_values)]

    parents = [prod_types.get(name) for name in df.index.values]
    #labelTypes=[l if l in dic_colors_prod_types.keys() else prod_types.get(l) for l in labels]
    colors=[dic_colors_prod_types[l] if l in dic_colors_prod_types.keys()
            else dic_light_colors_prod_types[prod_types.get(l)] for l in labels]
    values = list(df)

    for prod_type in unique_prod_types:
        parents.append("")
        value = 0
        for gen in df.index.values:
            if prod_types.get(gen) == prod_type:
                value = value + df.get(gen)
        values.append(value)

    return     [go.Sunburst(labels=labels, values=values,
                        parents=parents, branchvalues="total", marker = dict(colors=colors,
        colorscale='RdBu'))]
Esempio n. 11
0
def test_pie_like_px():
    # Pie
    labels = ["Oxygen", "Hydrogen", "Carbon_Dioxide", "Nitrogen"]
    values = [4500, 2500, 1053, 500]

    fig = px.pie(names=labels, values=values)
    trace = go.Pie(labels=labels, values=values)
    _compare_figures(trace, fig)

    labels = [
        "Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"
    ]
    parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"]
    values = [10, 14, 12, 10, 2, 6, 6, 4, 4]
    # Sunburst
    fig = px.sunburst(names=labels, parents=parents, values=values)
    trace = go.Sunburst(labels=labels, parents=parents, values=values)
    _compare_figures(trace, fig)
    # Treemap
    fig = px.treemap(names=labels, parents=parents, values=values)
    trace = go.Treemap(labels=labels, parents=parents, values=values)
    _compare_figures(trace, fig)

    # Funnel
    x = ["A", "B", "C"]
    y = [3, 2, 1]
    fig = px.funnel(y=y, x=x)
    trace = go.Funnel(y=y, x=x)
    _compare_figures(trace, fig)
    # Funnelarea
    fig = px.funnel_area(values=y, names=x)
    trace = go.Funnelarea(values=y, labels=x)
    _compare_figures(trace, fig)
Esempio n. 12
0
def sunburst_plot(_stats: Dict, show=True, save=True):

    data_comp = go.Figure(
        go.Sunburst(
            labels=LABELS,
            parents=[
                'RSNA_ICH',
                'RSNA_ICH',
                'training',
                'training',
                'any',
                'any',
                'any',
                'any',
                'any',
            ],
            values=[_stats[_l].cnt for _l in LABELS],
            branchvalues='remainder',
        ))
    print([_stats[_l].cnt for _l in LABELS])
    data_comp.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                            height=1080,
                            width=1440)

    if show:
        data_comp.show()

    if save:
        data_comp.write_image(
            os.path.join(ICH_DIR, 'data_composition_sunburst.png'))
Esempio n. 13
0
def get_prod_share_trace(episode):
    prod_types = episode.get_prod_types()
    prod_type_values = list(
        prod_types.values()) if len(prod_types.values()) > 0 else []

    share_prod = observation_model.get_prod(episode)
    df = share_prod.groupby("equipment_name")["value"].sum()
    unique_prod_types = np.unique(prod_type_values)

    labels = [*df.index.values, *np.unique(prod_type_values)]

    parents = [prod_types.get(name) for name in df.index.values]
    values = list(df)

    for prod_type in unique_prod_types:
        parents.append("")
        value = 0
        for gen in df.index.values:
            if prod_types.get(gen) == prod_type:
                value = value + df.get(gen)
        values.append(value)

    return [
        go.Sunburst(labels=labels,
                    values=values,
                    parents=parents,
                    branchvalues="total")
    ]
Esempio n. 14
0
def bloch_sunburst(vec, colormap):
    """Create a Bloch disc using a Plotly sunburst.

    Parameters:
        vec (ndarray): A vector of Bloch components.
        colormap (Colormap): A matplotlib colormap.

    Returns:
        go.Figure: A Plotly figure instance,

    Raises:
        ValueError: Input vector is not normalized.
    """
    eps = 1e-6
    vec = np.asarray(vec)
    vec_norm = np.linalg.norm(vec)
    if vec_norm > 1.0 + eps:
        raise ValueError(
            'Input vector has length {} greater than 1.0'.format(vec_norm))

    for idx, val in enumerate(vec):
        if abs(val) < 1e-15:
            vec[idx] = 0

    th = math.atan2(vec[1], vec[0])

    if th < 0:
        th = 2 * np.pi + th

    z_hex = matplotlib.colors.rgb2hex(colormap(NORM(vec[2])))

    z_color = "rgba({},{},{},{})".format(*hex_to_rgb(z_hex),
                                         0.95 * vec_norm + 0.05)
    ring_color = "rgba({},{},{},{})".format(*hex_to_rgb('#000000'),
                                            0.95 * vec_norm + 0.05)

    wedge_str = "\u2329X\u232A= {x}<br>"
    wedge_str += "\u2329Y\u232A= {y}<br>"
    wedge_str += "\u2329Z\u232A= {z}<br>"
    wedge_str += " \u03B8  = {th}<br>"
    wedge_str += "|\u03C8| = {pur}"

    th_str = pi_check(th, ndigits=3)
    th_str = th_str.replace('pi', '\u03C0')

    hover_text = [
        wedge_str.format(x=round(vec[0], 3),
                         y=round(vec[1], 3),
                         z=round(vec[2], 3),
                         th=th_str,
                         pur=np.round(vec_norm, 3))
    ] + [None]

    bloch = go.Sunburst(labels=[" ", "  "],
                        parents=["", " "],
                        values=[2 * np.pi - th, th],
                        hoverinfo="text",
                        hovertext=hover_text,
                        marker=dict(colors=[z_color, ring_color]))
    return bloch
Esempio n. 15
0
 def fig(self):
     fig = go.Figure(
         go.Sunburst(ids=self.ids,
                     labels=self.labels,
                     parents=self.parents,
                     values=self.values))
     return fig
Esempio n. 16
0
def generate_sunburst(directories: Dict[Path, Tuple[int, int]],
                      root: Path) -> go.Sunburst:
    """Generate a sunburst chart from the directories given in input."""
    max_depth = compute_max_depth(list(directories.keys()))
    metrics_columns = ["contents", "known"]
    levels_columns = ["lev" + str(i) for i in range(max_depth)]

    df_columns = levels_columns + metrics_columns
    dirs_df = generate_df_from_dirs(directories, df_columns, max_depth)

    hierarchical_df = build_hierarchical_df(dirs_df, levels_columns,
                                            metrics_columns, str(root))

    sunburst = go.Sunburst(
        labels=hierarchical_df["id"],
        parents=hierarchical_df["parent"],
        values=hierarchical_df["contents"],
        branchvalues="total",
        marker=dict(
            colors=hierarchical_df["known"],
            colorscale="matter",
            cmid=50,
            showscale=True,
        ),
        hovertemplate="""<b>%{label}</b>
            <br>Files: %{value}
            <br>Known: <b>%{color:.2f}%</b>""",
        name="",
    )

    return sunburst
Esempio n. 17
0
def plotly():
    x = list(range(10))

    fig = go.Figure(data=go.Scatter(x=x, y=[i**2 for i in x]))
    html1 = fig.to_html(include_plotlyjs="require", full_html=False)

    fig = go.Figure(data=[
        go.Scatter(x=[1, 2, 3, 4],
                   y=[10, 11, 12, 13],
                   mode='markers',
                   marker=dict(
                       color=[
                           'rgb(93, 164, 214)', 'rgb(255, 144, 14)',
                           'rgb(44, 160, 101)', 'rgb(255, 65, 54)'
                       ],
                       opacity=[1, 0.8, 0.6, 0.4],
                       size=[40, 60, 80, 100],
                   ))
    ])

    html2 = fig.to_html(include_plotlyjs="require", full_html=False)

    fig = go.Figure(
        go.Sankey(
            arrangement="snap",
            node={
                "label": ["A", "B", "C", "D", "E", "F"],
                "x": [0.2, 0.1, 0.5, 0.7, 0.3, 0.5],
                "y": [0.7, 0.5, 0.2, 0.4, 0.2, 0.3],
                'pad': 10
            },  # 10 Pixels
            link={
                "source": [0, 0, 1, 2, 5, 4, 3, 5],
                "target": [5, 3, 4, 3, 0, 2, 2, 3],
                "value": [1, 2, 1, 1, 1, 1, 1, 2]
            }))

    html3 = fig.to_html(include_plotlyjs="require", full_html=False)

    fig = go.Figure(
        go.Sunburst(
            labels=[
                "Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch",
                "Azura"
            ],
            parents=[
                "", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"
            ],
            values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
        ))
    # Update layout for tight margin
    # See https://plotly.com/python/creating-and-updating-figures/
    fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))

    html4 = fig.to_html(include_plotlyjs="require", full_html=False)

    put_grid([[put_html(html1), put_html(html2)],
              [put_html(html3), put_html(html4)]],
             cell_width='1fr',
             cell_height='1fr')
Esempio n. 18
0
def create_sunburst_fig(sunburst_info: dict):  # --> fig:
    """Create the sunburst by sunburst_dict."""
    fig = go.Figure(
        go.Sunburst(parents=sunburst_info['parent'],
                    labels=sunburst_info['character'],
                    values=sunburst_info['value'],
                    branchvalues="total",
                    marker=dict(
                        colors=sunburst_info['value'],
                        colorscale='Cividis',
                    )))

    fig.update_layout(
        # autosize=False,
        margin={
            "t": 0,
            "l": 0,
            "r": 0,
            "b": 0,
            "pad": 0,
        },
        showlegend=True,
        height=512,
    )
    # print(sunburst_info)
    return fig
def plot1(path):

    data = pd.read_csv(path / 'raw_data.csv', index_col=0)
    fig = make_subplots(rows=1,
                        cols=2,
                        specs=[[{
                            'type': 'domain'
                        }, {
                            'type': 'domain'
                        }]])

    values = data['Gender'].value_counts(dropna=False).values.tolist()
    labels = data['Gender'].value_counts(dropna=False).index.tolist()
    labels = ['Missing', 'Male', 'Female']

    fig.add_trace(
        go.Pie(labels=labels,
               values=values,
               textinfo='label+percent',
               insidetextorientation='radial'), 1, 1)
    fig.update_traces(hole=0.35)
    fig.update_layout(annotations=[
        dict(text='Gender', x=0.15, y=0.5, font_size=18, showarrow=False)
    ])

    data['Transmission_Type'] = data['Transmission_Type'].apply(
        lambda x: 'Unknown' if str(x) == 'nan' else str(x).strip())
    values = data['Transmission_Type'].value_counts().values.tolist()
    labels = data['Transmission_Type'].value_counts().index.tolist()

    for label, value in zip(labels, values):
        if ((label == 'TBD') | (label == 'Unknown')):
            values.append(value)
    labels.append('Unknown')
    labels[labels.index('Unknown')] = 'Missing'
    values[-2] = values[-2] + values[-1]
    values = values[:-1]
    values.insert(0, sum(values[:-1]))
    labels.insert(0, 'Transmission')
    parents = [
        '', 'Unknown', 'Transmission', 'Unknown', 'Transmission',
        'Transmission'
    ]

    fig.add_trace(
        go.Sunburst(labels=labels,
                    parents=parents,
                    values=values,
                    branchvalues='total',
                    textinfo='label+percent root',
                    insidetextorientation='radial'), 1, 2)

    fig.update_traces(hoverinfo='value', textfont_size=15)

    fig.update_layout(font=dict(family="Courier New, monospace"),
                      showlegend=False,
                      margin=dict(l=20, r=20, t=50, b=50))

    return fig
Esempio n. 20
0
def plot_sources_hierarchical(source_info_1, source_info_2):
    """
	Create a sunburst chart combining different kinds of information about the sources, e.g. the kinds of editions and the type of institution
	or the filetypes and the sources.
	
	Arguments:
	source_info_1 (str): which kind of source information to plot as the inner circle / parents. Possible values: "sources_medium", "sources_filetype", 
	"sources_institution", "sources_edition", "institution_type"
	
	source_info_2 (str): which kind of source information to plot as the outer circle / parents. Possible values are the same as for source_info_1.
	"""

    data_dir = "/home/ulrike/Git/data-nh/corpus/corpus-sources/"
    data = pd.read_csv(join(data_dir, "../metadata_sources.csv"), index_col=0)

    data_grouped_level_1 = data.groupby([source_info_1, source_info_2]).size()
    data_grouped_level_0 = data_grouped_level_1.sum(level=0)
    labels_level_0_set = list(data_grouped_level_1.keys().levels[0])
    labels_level_0_all = list(data_grouped_level_1.index.get_level_values(0))
    labels_level_1 = list(data_grouped_level_1.index.get_level_values(1))

    labels = labels_level_0_set + labels_level_1
    values = list(data_grouped_level_0) + list(data_grouped_level_1)
    ids = labels_level_0_set + [
        str(i[0]) + "-" + str(i[1])
        for i in zip(labels_level_0_all, labels_level_1)
    ]
    parents = ["" for i in range(len(labels_level_0_set))] + labels_level_0_all

    colors = [
        "rgb(31, 119, 180)", "rgb(255, 127, 14)", "rgb(44, 160, 44)",
        "rgb(214, 39, 40)"
    ]  #"rgb(44, 160, 44)", "rgb(214, 39, 40)"

    fig = go.Figure(
        go.Sunburst(ids=ids,
                    labels=labels,
                    parents=parents,
                    values=values,
                    marker=dict(colors=colors),
                    branchvalues="total",
                    textinfo="label+percent entry",
                    textfont=dict(size=16)))

    fig.update_layout(autosize=False, width=800, height=800)

    outfile = source_info_1 + "_" + source_info_2
    fig.write_image(join(data_dir, outfile +
                         ".png"))  # scale=2 (increase physical resolution)
    fig.write_html(
        join(data_dir, outfile + ".html"
             ))  # include_plotlyjs="cdn" (don't include whole plotly library)

    #fig.show()

    print("done")
Esempio n. 21
0
def victims_sunburst_update(input_race, input_region, input_sex, input_state):

    df_local = filter_data(df_victims_sunburst,
        input_race=input_race,
        input_region=input_region,
        input_sex=input_sex,
        input_state=input_state
    )

    df_local = build_hierarchical_dataframe(df_local, ['Race4', 'Race3', 'Race2'], 'Victim')

    fig = go.Figure()

    # https://plotly.com/python/reference/sunburst/#sunburst-text
    fig.add_trace(go.Sunburst(
        labels=df_local["id"],
        parents=df_local["parent"],
        values=df_local["value"],
        branchvalues="total",
        text=df_local[['percentage']],
        textinfo='label',
        maxdepth=4,
        marker=dict(
            colors=df_local['color'],
            colorscale='RdBu',
            cmid=0.5,
            line=dict(
                width=1
            )
        ),
        insidetextfont=dict(
            size=16,
            family="Rockwell"
        ),
        insidetextorientation='tangential',
        hovertemplate='<b>%{label} </b> <br> <i>Victims: </i>%{value}<br>'+
                        '<i>Percentage: </i>%{text[0]} % <br>' +
                        '<extra></extra>',
    ))

    fig.update_layout(
        plot_bgcolor="white",
        hoverlabel=dict(
            bgcolor="white",
            font_size=16,
            font_family="Rockwell"
        ),
        hoverlabel_align = 'right',
        margin = dict(t=0, l=0, r=0, b=0),
        height = 550,
        width = 550
    )

    return fig
Esempio n. 22
0
def sunburst_fig():
    df = pd.read_csv(
        'https://github.com/nchelaru/data-prep/raw/master/telco_cleaned_renamed.csv'
    )

    ## Get categorical column names
    cat_list = []

    for col in df.columns:
        if df[col].dtype == object:
            cat_list.append(col)

    ## Get all possible levels of every categorical variable and number of data points in each level
    cat_levels = {}

    for col in cat_list:
        levels = df[col].value_counts().to_dict()
        cat_levels[col] = levels

    ## Convert nested dictionary to dataframe
    nestdict = pd.DataFrame(cat_levels).stack().reset_index()

    nestdict.columns = ['Level', 'Category', 'Population']

    nestdict['Category'] = [s + ": " for s in nestdict['Category']]

    cat_list = nestdict['Category'].unique()

    empty_list = [None] * len(cat_list)

    pop_list = ['0'] * len(cat_list)

    df1 = pd.DataFrame()

    df1['Level'] = cat_list

    df1['Category'] = empty_list

    df1['Population'] = pop_list

    df = pd.concat([df1, nestdict])

    df['Population'] = df['Population'].astype(int)

    fig = go.Figure(
        go.Sunburst(labels=df['Level'],
                    parents=df['Category'],
                    values=df['Population'],
                    leaf={"opacity": 0.4},
                    hoverinfo='skip'))

    fig.update_layout(width=700, height=900, margin=dict(t=0, l=0, r=0, b=0))

    return fig
Esempio n. 23
0
def form(ids, labels, parents, values):
    fig = go.Figure(
        go.Sunburst(
            ids=ids,
            labels=labels,
            parents=parents,
            values=values,
            branchvalues=
            'total',  # if children exceed parent, graph will crash and not show
            insidetextorientation='horizontal'  # text displays PP
        ))
    return fig
def plot_sunburst_static(
    df,
    value_column,
    levels=["land", "region_wb"],
    color_columns=None,
    _colors=colors.sequential.PuBu,
    value_column_name="",
):
    color = "#1f2630"

    df_sunburst = build_hierarchical_dataframe(df, levels, value_column,
                                               color_columns)

    if color_columns is not None:
        hovertemplate = ("<b>%{label} </b> <br> " + value_column_name +
                         ": %{value}<br>     per 100k: %{color:.0f}")
        average_score = df_sunburst["color"].median()
        min_score = df_sunburst["color"].quantile(0.1)
        max_score = df_sunburst["color"].quantile(0.9)
        fraction_series = df_sunburst["color"]
    else:
        hovertemplate = "<b>%{label} </b> <br> " + value_column_name + ": %{value}<br>"
        average_score = df[value_column].median()
        min_score = df[value_column].quantile(0.1)
        max_score = df[value_column].quantile(0.9)
        fraction_series = df[value_column]

    fig = go.Figure()

    fig.add_trace(
        go.Sunburst(
            labels=df_sunburst["id"],
            parents=df_sunburst["parent"],
            values=df_sunburst["value"],
            branchvalues="total",
            marker=dict(
                colors=fraction_series,
                colorscale=_colors,
                # reversescale=True,
                cmid=average_score,
                cmax=max_score,
                cmin=min_score,
            ),
            hovertemplate=hovertemplate,
            name="",
        ))

    fig.update_layout(
        margin=dict(t=10, b=10, r=10, l=10),
        plot_bgcolor=color,
        paper_bgcolor=color,
    )
    return fig
def update_graph_live(n):
    # input source for data - BEGIN


    f = open('edgebox1.txt', 'r')
#    num_edgebox1 = f.read()
    col_edgebox1 = define_color(f.read())
    f.close()
    f = open('edgebox1_vm1.txt', 'r')
    col_edgebox1_vm1 = define_color(f.read())
    f.close()
    f = open('edgebox1_vm2.txt', 'r')
    col_edgebox1_vm2 = define_color(f.read())
    f.close()
    f = open('edgebox2.txt', 'r')
    col_edgebox2 = define_color(f.read())
    f.close()
    f = open('edgebox2_vm1.txt', 'r')
    col_edgebox2_vm1 = define_color(f.read())
    f.close()
    f = open('edgebox2_vm2.txt', 'r')
    col_edgebox2_vm2 = define_color(f.read())
    f.close()
    f = open('edgebox2_vm3.txt', 'r')
    col_edgebox2_vm3 = define_color(f.read())
    f.close()
    f = open('kube1.txt', 'r')
    col_kube1 = define_color(f.read())
    f.close()
    f = open('kube2.txt', 'r')
    col_kube2 = define_color(f.read())
    f.close()
    f = open('master.txt','r')
    col_master = define_color(f.read())
    f.close()

    # input source for data - END
    fig = go.Figure(go.Sunburst(
    textfont = {"size":15},
    labels=[" ","K-Fabric","K-Cube1","K-Cube2","K-Cube3","K-Cube4","K-Cube5","eno1","eno2","eno3","eno1  ","eno2  ","eno3  ","eno1 ","eno2 ","eno3 ","eno1   ","eno2   ","eno3   ","eno1    ","eno2    ","eno3    ","vSW1","vSW2","vSW3","VM1","VM2","VM3","vSW1 ","vSW2 ","vSW3 ","VM1 ","VM2 ","VM3 "],#9
# all the settings below probably follows the order of the labels above

parents=[""," ","K-Fabric","K-Fabric","K-Fabric","K-Fabric","K-Fabric","K-Cube1","K-Cube1","K-Cube1","K-Cube2","K-Cube2","K-Cube2","K-Cube3","K-Cube3","K-Cube3","K-Cube4","K-Cube4","K-Cube4","K-Cube5","K-Cube5","K-Cube5","eno1    ","vSW1","vSW1","vSW3","vSW3","vSW2","eno1","vSW1 ","vSW1 ","vSW3 ","vSW3 ","vSW2 ",],
# values = [BPF2, BPF3, BPF1] : BFP1 size doesn't really change

marker = {"colors":[WHITE,WHITE,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,GRAY,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,],
        "line":{'color':[BLACK,BLACK,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,WHITE,]}}, # in the order of BPF2, BPF3
        
        ))  # set row / col here
#    fig.update_layout(grid=dict(columns=1,rows=1),margin = dict(t=0, l=0, r=0, b=0)) # maybe this is where they change the subplot
    f.close()
    return fig
Esempio n. 26
0
def levels_visualization(data, levels_name):
    
    labels, parents, values, colors = generate_values_for_visualization(data, levels_name)
    
    trace = go.Sunburst(labels=labels, parents=parents, values=values,
                        maxdepth = 2, branchvalues="total", 
                        textinfo="label", hoverinfo="value",
                        textfont = {"size":16},
                        marker = {"line": {"width": 1}, "colors":colors})

    layout = go.Layout(width=600, height=600, margin = go.layout.Margin(t=0, l=0, r=0, b=0))

    return go.Figure([trace], layout) 
Esempio n. 27
0
def sunburst(countries=None):
    if countries:
        temp = data[data['Country'].isin(countries)]
    else:
        temp = data.copy()
    fig = px.sunburst(temp,
                      path=['Department', 'Classification'],
                      color_discrete_sequence=['#4a4bc7'])
    fig.update_traces(go.Sunburst(hovertemplate='Number of artworks=%{value}'))
    fig.update_layout(
        title=dict(text='Artworks Classification Arranged by Department',
                   font=dict(color='black')))
    return fig
Esempio n. 28
0
def do_sunburst(html_flpth, png_flpth):

    logging.info('Generating sunburst')

    ana.TaxTree.build(app_file.get_fix_filtered_id2tax())
    names, parents, counts, paths, color_ids = ana.TaxTree.get_sunburst_lists(
    )  # first el is Root

    palette = px.colors.qualitative.Alphabet
    id2ind = {
        color_id: i
        for i, color_id in enumerate(
            sorted(list(set(color_ids)))  # deterministic unique color_ids
        )
    }  # map color ids to int
    colors = ['#FFFFFF'] + [
        palette[id2ind[color_id] % len(palette)] for color_id in color_ids[1:]
    ]  # Root is white

    fig = go.Figure(
        go.Sunburst(
            ids=paths,
            labels=names,
            parents=parents,
            values=counts,
            marker=dict(colors=colors),
            hovertemplate=(
                'Taxon: %{label}<br>'
                'Path: %{id}<br>'
                'Amplicon count: %{value}'
                '<extra></extra>'  # hide secondary hover box
            ),
            branchvalues='total',
            sort=False,
        ))

    fig.update_layout(
        title_text='Taxonomy (conf=%s)' % Var.params.get_prose_args()['conf'],
        title_x=0.5,
    )

    fig.write_html(html_flpth)

    if DO_STATIC and len(
            names) * 4 > MAX_DATA:  # whether to hide behind static image
        # 4 because name+path+count+color
        fig.write_image(png_flpth, width=IMG_HEIGHT, height=IMG_HEIGHT)
        return True

    else:
        return False
Esempio n. 29
0
def sundata():
    df_characters = pd.read_csv("data/character_data.csv")
    df_parent = pd.read_csv("data/parent_data.csv")
    
    parent_values = list(df_parent["parent"])
    core_values = list(df_characters["Inner circle"].dropna())
    environment_ecology = list(df_characters["Environment & Ecology"].dropna())
    economy_technology = list(df_characters["Economy & Technology"].dropna())
    social_values = list(df_characters["Social"].dropna())
    species_values = list(df_characters["Species"].dropna())

    parent=[""]+parent_values
    character= core_values+environment_ecology+economy_technology+social_values+species_values

    values = [values_birds_migration_route[-1],values_sea_and_archipelago_birds[-1],values_mussels[-1],values_fish[-1]]

    last_four = []
    species_color = round(sum(values)/4)
    five_values = values
    five_values.append(species_color)

    print(five_values, " FIVE VALUS")
    for num in five_values:
        if num == 0:
            last_four.append("lightgrey")
        elif num == 1:
            last_four.append("red")
        elif num == 2:
            last_four.append("orange")
        elif num == 3:
            last_four.append("yellow")
        elif num == 4:
            last_four.append("lightgreen")
        elif num == 5:
            last_four.append("green")
    
    species_color = [last_four[-1]]
    last_four = last_four[0:4]

    colors_d = {"line": {"width":3},"colors":['lightgrey']*7+species_color+['lightgrey']*42+last_four}
    fig = go.Sunburst(
        labels=character,
        parents=parent,
        opacity=0.8,
        textfont = {'size': 15},
        insidetextorientation = 'horizontal',
        marker = colors_d,
        )
    layout = go.Layout(hovermode='closest', height=1300, width=1300,margin=go.layout.Margin(t=250, l=250, r=250, b=250))
    values.clear()
    return {'data': [fig], 'layout': layout} 
Esempio n. 30
0
def _sunburst_os(db, output):
    print("Collecting data...")

    def generate_os_wrappers():
        q = """SELECT os_response.value AS os,
                      wrapper_response.flags AS wrapper_flags,
                      wrapper_response.value AS wrapper_original,
                      wrapper_sanitize.value AS wrapper_sanitized
               FROM responses os_response
               LEFT JOIN responses wrapper_response ON wrapper_response.question = 7 AND
                                                       wrapper_response.session = os_response.session
               LEFT JOIN sanitize wrapper_sanitize ON wrapper_sanitize.idx = wrapper_response.idx
               WHERE os_response.question = 4;"""
        for result in iter_results(db, q):
            if result["wrapper_flags"] & ResponseFlags.sanitized:
                wrapper = result["wrapper_sanitized"]
            else:
                wrapper = result["wrapper_original"]
            yield result["os"], wrapper
            # ensure we count this for the case of the OS in general as well.
            if wrapper:
                yield result["os"], ""

    counter = collections.Counter()
    counter.update(generate_os_wrappers())
    ids, labels, parents, values = [], [], [], []
    for (os, wrapper), count in counter.items():
        if wrapper:
            ids.append(f"{os} - {wrapper}")
            labels.append(wrapper)
            parents.append(os)
            values.append(count)
        else:
            ids.append(os)
            labels.append(os)
            parents.append("Preferred OS")
            values.append(count)

    print("Generating graph...")
    import plotly.graph_objects as go

    fig = go.Figure(data=go.Sunburst(
        ids=ids,
        labels=labels,
        parents=parents,
        values=values,
        branchvalues="total",
        hoverinfo="label+text+value+name+percent parent"),
                    layout_title_text="OS and Wrapper Usage")
    _output_fig(fig, output)