Esempio n. 1
0
    def plot(self):
        """
        Plots the vp and vs model as html files. Looks nice, but is pretty
        costly, so expect some waiting time for bigger models.
        Note that vp and vs are flattened values.

        Returns
        -------
        figvp : plotly.graphs_objs._figure.Figure
            Figure containg vp model.
        figvs : plotly.graphs_objs._figure.Figure
            Figure containing vs model.

        """
        x, y, z = np.meshgrid(self.lat, self.lon, self.z)
        figvp = go.Figure(data=go.Volume(
            x=x.flatten(),
            y=y.flatten(),
            z=z.flatten(),
            value=self.vpf.flatten(),
            isomin=0,
            isomax=10,
            opacity=0.3,  # needs to be small to see through all surfaces
            surface_count=21,
            # surface_count
            # needs to be a large number for good volume rendering
        ))

        figvs = go.Figure(data=go.Volume(
            x=x.flatten(),
            y=y.flatten(),
            z=z.flatten(),
            value=self.vsf.flatten(),
            isomin=0,
            isomax=10,
            opacity=0.3,  # needs to be small to see through all surfaces
            surface_count=21,
            # needs to be a large number for good volume rendering
        ))
        # plot(figvp)
        # plot(figvs)
        return figvp, figvs
Esempio n. 2
0
def update_plot(data):
    res = cp.parse_dict(data)
    _ = [item.to("ppm", "nmr_frequency_ratio") for item in res.x]
    x, y, z = [item.coordinates.value for item in res.x]
    x_, y_, z_ = np.meshgrid(x, y, z, indexing="ij")

    trace = go.Volume(
        x=x_.ravel(),
        y=y_.ravel(),
        z=z_.ravel(),
        value=res.y[0].components[0].T.ravel(),
        isomin=0.05,
        isomax=0.95,
        opacity=0.1,  # needs to be small to see through all surfaces
        surface_count=25,  # needs to be a large number for good volume rendering
        colorscale="RdBu",
    )
    return {"data": [trace]}
Esempio n. 3
0
def plot_volume(array: np.ndarray):
    _, x, y, z = array.shape
    X, Y, Z = np.mgrid[:x, :y, :z]

    fig = go.Figure(data=go.Volume(x=X.flatten(),
                                   y=Y.flatten(),
                                   z=Z.flatten(),
                                   value=array.flatten(),
                                   isomin=0,
                                   isomax=1,
                                   opacity=0.5,
                                   opacityscale="max",
                                   surface_count=5))

    f = StringIO()
    fig.write_html(f, full_html=False)

    f.seek(0)
    return f.read()
Esempio n. 4
0
def _draw_slice(figure, axis, volume, opacity=0.3, step=None, n_steps=0):
    if step is None:
        height = volume.shape[axis] // 2
        visible = True
    else:
        height = (volume.shape[axis] * step) // n_steps
        visible = False

    v_min = volume.min()
    sf = volume.max() - v_min

    if axis == Axes.X:
        X, Y, Z = np.mgrid[height:height + 1,
                           :volume.shape[1], :volume.shape[2]]
        values = volume[height, :, :].flatten()
    elif axis == Axes.Y:
        X, Y, Z = np.mgrid[:volume.shape[0],
                           height:height + 1, :volume.shape[2]]
        values = volume[:, height, :].flatten()
    elif axis == Axes.Z:
        X, Y, Z = np.mgrid[:volume.shape[0],
                           :volume.shape[1], height:height + 1]
        values = volume[:, :, height].flatten()

    values = 1 - (values - v_min) / sf

    figure.add_trace(
        go.Volume(
            x=X.flatten(),
            y=Y.flatten(),
            z=Z.flatten(),
            value=values,
            colorscale='greys',
            surface_count=1,
            showscale=False,
            opacity=opacity,
            visible=visible,
            name=_name_from_enum(axis),
            hoverinfo='skip'
        )
    )
Esempio n. 5
0
 def drawPlotly(self, schematic, title="", ptype="scatter"):
     x = []
     y = []
     z = []
     id = []
     clrs = []
     if type(schematic) is torch.Tensor:
         sizes = list(schematic.size())
         for i in range(sizes[0]):
             for j in range(sizes[1]):
                 for k in range(sizes[2]):
                     if schematic[i, j, k] > 0:
                         x.append(i)
                         y.append(j)
                         z.append(k)
                         id.append(schematic[i, j, k].item())
     elif type(schematic) is np.ndarray:
         for i in range(schematic.shape[0]):
             for j in range(schematic.shape[1]):
                 for k in range(schematic.shape[2]):
                     if schematic[i, j, k, 0] > 0:
                         c = self.bid_to_color.get(
                             tuple(schematic[i, j, k, :]))
                         if c:
                             x.append(i)
                             y.append(j)
                             z.append(k)
                             id.append(i + j + k)
                             clrs.append(c)
     else:
         for b in schematic:
             if b[1][0] > 0:
                 c = self.bid_to_color.get(b[1])
                 if c:
                     x.append(b[0][0])
                     y.append(b[0][2])
                     z.append(b[0][1])
                     id.append(i + j + k)
                     clrs.append(c)
     #                        clrs.append(self.bid_to_index[b[1]])
     if ptype == "scatter":
         X = torch.Tensor([x, y, z]).t()
         if len(clrs) == 0:
             raise Exception("all 0 input?")
         colors = (256 * torch.Tensor(clrs)[:, 0:3]).long().numpy()
         w = self.viz.scatter(
             X=X,
             opts={
                 "markercolor": colors,
                 "markersymbol": "square",
                 "markersize": 15,
                 "title": title,
                 "camera": dict(eye=dict(x=2, y=0.1, z=2)),
             },
         )
         #            layout = go.Layout(camera =dict(eye=dict(x=2, y=.1, z=2)))
         self.viz._send({
             "win": w,
             "camera": dict(eye=dict(x=2, y=0.1, z=2))
         })
         return w
     else:
         maxid = max(clrs)
         clr_set = set(clrs)
         cmap = [[
             c / maxid,
             "rgb({},{},{})".format(
                 self.index_to_color[c][0],
                 self.index_to_color[c][1],
                 self.index_to_color[c][0],
             ),
         ] for c in clr_set]
         trace1 = go.Volume(
             x=np.asarray(x).transpose(),
             y=np.asarray(y).transpose(),
             z=np.asarray(z).transpose(),
             value=np.asarray(clrs).transpose(),
             isomin=0.1,
             isomax=0.8,
             colorscale=cmap,
             opacity=0.1,  # needs to be small to see through all surfaces
             surface_count=
             21,  # needs to be a large number for good volume rendering
         )
         data = [trace1]
         layout = go.Layout(margin=dict(l=0, r=0, b=0, t=0))
         fig = go.Figure(data=data, layout=layout)
         self.viz.plotlyplot(fig)
     return fig
Esempio n. 6
0
# In[105]:

fig = go.Figure(data=go.Streamtube(x=[0, 0, 0],
                                   y=[0, 1, 2],
                                   z=[0, 0, 0],
                                   u=[0, 0, 0],
                                   v=[1, 1, 1],
                                   w=[0, 0, 0]))
pyo.plot(fig, filename="streamtube.html")
fig.show()

# In[106]:

X, Y, Z = np.mgrid[-8:8:40j, -8:8:40j, -8:8:40j]
values = np.sin(X * Y * Z) / (X * Y * Z)
fig = go.Figure(data=go.Volume(
    x=X.flatten(),
    y=Y.flatten(),
    z=Z.flatten(),
    value=values.flatten(),
    isomin=0.1,
    isomax=0.8,
    opacity=0.1,  # needs to be small to see through all surfaces
    surface_count=17,  # needs to be a large number for good volume rendering
))
pyo.plot(fig, filename="volume.html")
fig.show()

# In[ ]:
Esempio n. 7
0
    def __init__(self, layout, input_data, axes, value_name, cb,
                 show_variances, volume, volume_sampling):

        super().__init__(input_data,
                         axes,
                         value_name,
                         cb,
                         show_variances,
                         button_options=['X', 'Y', 'Z'],
                         volume=volume)

        self.cube = None
        self.volume = volume

        # Initialise Figure and VBox objects
        self.fig = None
        params = {
            "values": {
                "cbmin": "min",
                "cbmax": "max"
            },
            "variances": None
        }
        if self.show_variances:
            params["variances"] = {"cbmin": "min_var", "cbmax": "max_var"}

        # Set colorbar limits once to keep them constant for slicer
        # TODO: should there be auto scaling as slider value is changed?
        for i, (key, val) in enumerate(sorted(params.items())):
            if val is not None:
                arr = getattr(self.input_data, key)
                if self.cb[val["cbmin"]] is not None:
                    val["cmin"] = self.cb[val["cbmin"]]
                else:
                    val["cmin"] = np.amin(arr[np.where(np.isfinite(arr))])
                if self.cb[val["cbmax"]] is not None:
                    val["cmax"] = self.cb[val["cbmax"]]
                else:
                    val["cmax"] = np.amax(arr[np.where(np.isfinite(arr))])

        colorbars = [{
            "x": 1.0,
            "title": value_name,
            "thicknessmode": 'fraction',
            "thickness": 0.02
        }]

        # Store min/max for each dimension for invisible scatter
        self.xminmax = dict()
        for key, var in self.slider_x.items():
            self.xminmax[key] = [var.values[0], var.values[-1]]
        scatter_x, scatter_y, scatter_z = self.get_outline_as_scatter()

        # Make a generic volume trace
        if self.volume:
            vol_trace = go.Volume(x=[0],
                                  y=[0],
                                  z=[0],
                                  value=[0],
                                  opacity=0.1,
                                  surface_count=volume_sampling,
                                  colorscale=self.cb["name"],
                                  showscale=True)

        xyz = "xyz"
        if self.show_variances:
            self.fig = go.FigureWidget(
                make_subplots(rows=1,
                              cols=2,
                              horizontal_spacing=0.16,
                              specs=[[{
                                  "type": "scene"
                              }, {
                                  "type": "scene"
                              }]]))

            colorbars.append({
                "x": 1.0,
                "title": "Variances",
                "thicknessmode": 'fraction',
                "thickness": 0.02
            })
            colorbars[0]["x"] = -0.1

            for i, (key, val) in enumerate(sorted(params.items())):
                if self.volume:
                    vol_trace["isomin"] = val["cmin"]
                    vol_trace["isomax"] = val["cmax"]
                    vol_trace["meta"] = key
                    vol_trace["colorbar"] = colorbars[i]
                    self.fig.add_trace(vol_trace, row=1, col=i + 1)
                else:
                    for j in range(3):
                        self.fig.add_trace(go.Surface(
                            cmin=val["cmin"],
                            cmax=val["cmax"],
                            showscale=False,
                            colorscale=self.cb["name"],
                            colorbar=colorbars[i],
                            meta=key,
                            name="slice_{}".format(xyz[j])),
                                           row=1,
                                           col=i + 1)
                    self.fig.add_trace(go.Scatter3d(
                        x=scatter_x,
                        y=scatter_y,
                        z=scatter_z,
                        marker=dict(cmin=val["cmin"],
                                    cmax=val["cmax"],
                                    color=np.linspace(val["cmin"], val["cmax"],
                                                      8),
                                    colorbar=colorbars[i],
                                    colorscale=self.cb["name"],
                                    showscale=True,
                                    opacity=1.0e-6),
                        mode="markers",
                        hoverinfo="none",
                        meta=key,
                        name="scatter"),
                                       row=1,
                                       col=i + 1)
            self.fig.update_layout(**layout)
        else:
            if self.volume:
                vol_trace["isomin"] = params["values"]["cmin"]
                vol_trace["isomax"] = params["values"]["cmax"]
                vol_trace["meta"] = "values"
                vol_trace["colorbar"] = colorbars[0]
                data = [vol_trace]
            else:
                data = [
                    go.Surface(cmin=params["values"]["cmin"],
                               cmax=params["values"]["cmax"],
                               colorscale=self.cb["name"],
                               colorbar=colorbars[0],
                               showscale=False,
                               meta="values",
                               name="slice_{}".format(xyz[j]))
                    for j in range(3)
                ]

                data += [
                    go.Scatter3d(x=scatter_x,
                                 y=scatter_y,
                                 z=scatter_z,
                                 marker=dict(cmin=params["values"]["cmin"],
                                             cmax=params["values"]["cmax"],
                                             color=np.linspace(
                                                 params["values"]["cmin"],
                                                 params["values"]["cmax"], 8),
                                             colorbar=colorbars[0],
                                             colorscale=self.cb["name"],
                                             showscale=True,
                                             opacity=1.0e-6),
                                 mode="markers",
                                 hoverinfo="none",
                                 meta="values",
                                 name="scatter")
                ]
            self.fig = go.FigureWidget(data=data, layout=layout)

        # Call update_slice once to make the initial image
        self.update_axes()
        self.vbox = [self.fig] + self.vbox
        self.vbox = widgets.VBox(self.vbox)
        self.vbox.layout.align_items = 'center'

        return
Esempio n. 8
0
    def activate(self):

        filename, _ = compat.getsavefilename(parent=self.viewer,
                                             basedir="plot.html")

        # when vispy viewer is in "native aspect ratio" mode, scale axes size by data
        if self.viewer.state.native_aspect == True:
            width = self.viewer.state.x_max - self.viewer.state.x_min
            height = self.viewer.state.y_max - self.viewer.state.y_min
            depth = self.viewer.state.z_max - self.viewer.state.z_min

        # otherwise, set all axes to be equal size
        else:
            width = 1200  # this 1200 size is arbitrary, could change to any width; just need to scale rest accordingly
            height = 1200
            depth = 1200

        # set the aspect ratio of the axes, the tick label size, the axis label sizes, and the axes limits
        layout = go.Layout(
            margin=dict(r=50, l=50, b=50, t=50),
            width=1200,
            scene=dict(
                xaxis=dict(title=self.viewer.state.x_att.label,
                           titlefont=dict(family=DEFAULT_FONT,
                                          size=20,
                                          color='black'),
                           showticklabels=True,
                           backgroundcolor='white',
                           tickfont=dict(family=DEFAULT_FONT,
                                         size=12,
                                         color='black'),
                           range=[0, self.viewer.state.resolution]),
                yaxis=dict(
                    title=self.viewer.state.y_att.label,
                    titlefont=dict(family=DEFAULT_FONT, size=20,
                                   color='black'),
                    range=[0, self.viewer.state.resolution],
                    showticklabels=True,
                    backgroundcolor='white',
                    tickfont=dict(family=DEFAULT_FONT, size=12, color='black'),
                ),
                zaxis=dict(
                    title=self.viewer.state.z_att.label,
                    titlefont=dict(family=DEFAULT_FONT, size=20,
                                   color='black'),
                    range=[0, self.viewer.state.resolution],
                    showticklabels=True,
                    backgroundcolor='white',
                    tickfont=dict(family=DEFAULT_FONT, size=12, color='black'),
                ),
                aspectratio=dict(
                    x=1 * self.viewer.state.x_stretch,
                    y=height / width * self.viewer.state.y_stretch,
                    z=depth / width * self.viewer.state.z_stretch),
                aspectmode='manual',
            ),
        )

        #set up function that returns values of cube at different pixel positions in the fixed resolution grid
        f = lambda x, y, z, datacube: datacube[z, y, x]

        bounds = [(self.viewer.state.z_min, self.viewer.state.z_max,
                   self.viewer.state.resolution),
                  (self.viewer.state.y_min, self.viewer.state.y_max,
                   self.viewer.state.resolution),
                  (self.viewer.state.x_min, self.viewer.state.x_max,
                   self.viewer.state.resolution)]

        #generate array of vertices at fixed resolution
        X, Y, Z = np.mgrid[0:self.viewer.state.resolution,
                           0:self.viewer.state.resolution,
                           0:self.viewer.state.resolution]

        data = []
        for layer_state in self.viewer.state.layers:

            #check if subset object
            if isinstance(layer_state.layer,
                          glue.core.subset_group.GroupedSubset):
                subcube = layer_state.layer.data.compute_fixed_resolution_buffer(
                    target_data=self.viewer.state.reference_data,
                    bounds=bounds,
                    subset_state=layer_state.layer.subset_state)
                datacube = layer_state.layer.data.compute_fixed_resolution_buffer(
                    target_data=self.viewer.state.reference_data,
                    bounds=bounds,
                    target_cid=layer_state.attribute)
                datacube = subcube * datacube

                for i in range(0, len(self.viewer.state.layers)):
                    if self.viewer.state.layers[
                            i].layer is layer_state.layer.data:
                        isomin = self.viewer.state.layers[i].vmin
                        isomax = self.viewer.state.layers[i].vmax

            #otherwise a data object
            else:
                datacube = layer_state.layer.compute_fixed_resolution_buffer(
                    target_data=self.viewer.state.reference_data,
                    bounds=bounds,
                    target_cid=layer_state.attribute)
                isomin = layer_state.vmin
                isomax = layer_state.vmax

            #fetch values of cube at different coordinate combination
            values = f(X.flatten().astype(int),
                       Y.flatten().astype(int),
                       Z.flatten().astype(int), datacube.copy())

            voltrace = go.Volume(
                x=X.flatten().astype(int),
                y=Y.flatten().astype(int),
                z=Z.flatten().astype(int),
                value=values.flatten(),
                flatshading=True,
                opacity=0.2,
                isomin=isomin,
                showscale=False,
                isomax=isomax,
                colorscale=[[0, 'white'], [1., layer_state.color]],
                opacityscale='max',
                reversescale=False,
                surface=dict(show=True, count=25),
                spaceframe=dict(show=True),  #,
                contour=dict(show=False, width=4))
            data.append(voltrace)

        fig = go.Figure(data=data, layout=layout)

        plot(fig, filename=filename, auto_open=False)
Esempio n. 9
0
    def volume(self,
               x=None, y=None, z=None, vol=None,
               w=700, h=700, res=50, grid=True, pane_fill=None, prune=None,
               x_slice=True, x_center=None, x_scale=1, x_lim=None,
               y_slice=True, y_center=-3.5, y_scale=1, y_lim=None,
               z_slice=True, z_center=None, z_scale=1, z_lim=None,
               norm=None, cb_labelpad=10, cb_nticks=10, cb_x=None, cb_y=None,
               cb_title=None, cb_length=0.75, cb_outlinecolor=None, cb_outlinewidth=1, cb_tickfontsize=10,
               plot_title='Airstream', title_bold=True, title_size=20, title_pad=5, title_y=0.85,
               x_label='x', xaxis_bold=False, xaxis_labelpad=5, xlabel_rotation=None, x_tick_number=10,
               y_label='y', yaxis_bold=False, yaxis_labelpad=5, ylabel_rotation=None, y_tick_number=10,
               z_label='z', zaxis_bold=False, zaxis_labelpad=5, zlabel_rotation=None, z_tick_number=10,
               axis_label_size=20, tick_color=None, tick_label_size=12, tick_label_pad=5,
               xtick_rotation=None, ytick_rotation=None, ztick_rotation=None,
               floating_text=None,
               filename=None):

        # Colorbar parameters
        self.cb_outlinecolor = cb_outlinecolor if cb_outlinecolor is not None else self.color2
        self.cb_outlinewidth = cb_outlinewidth
        self.cb_length = cb_length
        self.cb_title = cb_title
        self.cb_x = cb_x
        self.cb_y = cb_y
        self.cb_xpad = cb_labelpad
        self.cb_nticks = cb_nticks
        self.cb_tickfontsize = cb_tickfontsize

        # Mock plot
        if isinstance(x, type(None)) and isinstance(y, type(None)) and isinstance(z, type(None)) and isinstance(vol, type(None)):
            np.random.seed(0)
            def f(x, y, z):
                return x+y+z
            x, y, z, vol = Data3D().volumetric(f, u0=0, un=1, v0=0, vn=1, w0=0, wn=1, n=100)

        # Individual axis setup
        axis = dict(showbackground=True,
                    backgroundcolor=pane_fill,
                    showgrid=grid,
                    gridcolor=self.color2,
                    zerolinecolor=self.color2,
                    tickfont={'family': self.font,
                              'size': tick_label_size,
                              'color': tick_color},
                    titlefont={'family': self.font,
                               'size': axis_label_size},
                    )

        # Layout
        layout = go.Layout(
            width=w,
            height=h,
            scene=dict(xaxis=dict(axis, range=x_lim, tickangle=xtick_rotation, nticks=x_tick_number, title='<b>'+x_label+'</b>' if xaxis_bold is True else x_label),
                       yaxis=dict(axis, range=y_lim, tickangle=ytick_rotation, nticks=y_tick_number, title='<b>'+y_label+'</b>' if yaxis_bold is True else y_label),
                       zaxis=dict(axis, range=z_lim, tickangle=ztick_rotation, nticks=z_tick_number, title='<b>'+z_label+'</b>' if zaxis_bold is True else z_label),
                       aspectratio=dict(x=x_scale, y=y_scale, z=z_scale)
                       ),
            template=self.template
        )

        # Plot
        fig = go.Figure(data=go.Volume(x=x, y=y, z=z,
                                       value=vol,
                                       isomin=0.2,
                                       isomax=0.7,
                                       opacity=0.1,
                                       surface_count=25,
                                       colorbar=dict(len=self.cb_length,
                                                     x=self.cb_x,
                                                     xpad=self.cb_xpad,
                                                     y=self.cb_y,
                                                     outlinecolor=self.cb_outlinecolor,
                                                     outlinewidth=self.cb_outlinewidth,
                                                     tick0=0,
                                                     dtick=0.5,
                                                     ticklen=5,
                                                     tickwidth=1,
                                                     tickfont=dict(size=self.cb_tickfontsize,
                                                                   color=self.color,
                                                                   family=self.font),
                                                     title=self.cb_title)
                                       ),
                        layout=layout)

        # Makeup
        fig.update_layout(
            title={'text': '<b>'+plot_title+'<b>' if title_bold is True else plot_title,
                   'x': 0.5,
                   'y': title_y,
                   'xanchor': 'center',
                   'yanchor': 'top'},
            font=dict(
                family=self.font,
                size=title_size,
                color=self.color,
            )
        )

        fig.show()

        if not isinstance(filename, type(None)):
            self.save(fig=fig, filename=filename)