Esempio n. 1
0
    def createFigureWidget(self):
        dimensions = self.dimensions
        data_lines = []
        i = 0
        if self.only_subsets == False:
            colors = [i for r in range(self.data.size)]
            colorscale = [[0, '#EEEEEE']]
        else:
            colors = []
            colorscale = []
            i = -1

        for sset in self.data.subsets:
            i = i + 1
            tmplist = [i for r in range(len(sset.to_index_list()))]
            colors.extend(tmplist)
            colorscale.append([i, sset.style.color])
        t_color = len(colorscale)
        if (t_color > 1):
            for c in colorscale:
                c[0] = c[0] / (t_color - 1)
        else:
            colorscale = [[0, '#EEEEEE'], [1, '#EEEEEE']]

        for dimension in dimensions:
            line = {}
            if hasattr(self.data[dimension].flatten(), 'codes'):
                line['values'] = self.data[dimension].flatten().codes.tolist()
                tickvals, tickmask = np.unique(
                    self.data[dimension].flatten().codes, return_index=True)
                ticktext = self.data[dimension][tickmask]
                line['tickvals'] = tickvals.tolist()
                line['ticktext'] = ticktext.tolist()
            else:
                line['values'] = self.data[dimension].flatten().tolist()

            line['label'] = dimension
            for sset in self.data.subsets:
                if hasattr(sset[dimension].flatten(), 'codes'):
                    tmplist = sset[dimension].codes.tolist()
                else:
                    tmplist = sset[dimension].tolist()
                line['values'].extend(tmplist)
            data_lines.append(line)
        data = [
            go.Parcoords(line=dict(color=colors, colorscale=colorscale),
                         dimensions=data_lines),
        ]
        layout = {
            'title': self.options['title'].value,
            'xaxis': {
                'title': self.options['xaxis'].value,
            },
            'yaxis': {
                'title': self.options['yaxis'].value,
            }
        }
        return FigureWidget(data=data, layout=layout)
Esempio n. 2
0
    def __init__(self, xe, xc, ye, yc, values, variances, resolution, cb,
                 plot_type, title, contours):

        self.xe = xe
        self.xc = xc
        self.ye = ye
        self.yc = yc
        self.values = values
        self.variances = variances
        self.resolution = resolution
        self.cb = cb
        self.plot_type = plot_type
        self.title = title
        self.contours = contours
        self.nx = len(self.xe)
        self.ny = len(self.ye)
        self.val_range = np.zeros([4], dtype=np.float64)
        self.var_range = np.zeros([4], dtype=np.float64)

        self.fig_val = FigureWidget()
        if self.variances is not None:
            self.fig_var = FigureWidget()
            self.hbox = HBox([self.fig_val, self.fig_var])
        else:
            self.fig_var = None
            self.hbox = None

        # Make an initial low-resolution sampling of the image for plotting
        self.update_values(layout=None, x_range=[self.xe[0], self.xe[-1]],
                           y_range=[self.ye[0], self.ye[-1]])

        # Add a callback to update the view area
        self.fig_val.layout.on_change(
            self.update_values,
            'xaxis.range',
            'yaxis.range')
        if self.variances is not None:
            self.fig_var.layout.on_change(
                self.update_variances,
                'xaxis.range',
                'yaxis.range')

        return
Esempio n. 3
0
    def __init__(self, figure=None):
        self._figure = figure or FigureWidget()
        self._layout = None

        self._trajectories = []  # type: List[Trajectory]

        self._attractor = None
        self._attractor_radius = np.inf * u.km

        self._color_cycle = cycle(plotly.colors.DEFAULT_PLOTLY_COLORS)
Esempio n. 4
0
    def createFigureWidget(self, x_id, y_id_list):
        traces = []
        alpha_min, alpha_max, alpha_delta = self.getDeltaFunction(len(y_id_list))
        alpha_val = alpha_max    
        x_values = self.data[x_id].flatten()        
        x_sort = x_values.argsort()
        for y_id in y_id_list:
            y_values = self.data[y_id].flatten()
            color = "#444444"
            color = 'rgba'+str(self.getDeltaColor(color, alpha_val))
            trace = {
                'type': "scattergl", 'mode': self.options['marker_type'].value, 'name': self.data.label + "_" + y_id,
                'line' : { 'width' : self.options['line_width'].value, 'color' : color },
                'x': x_values[x_sort],
                'y': y_values[x_sort],
            }
            if self.only_subsets == False:
                traces.append(trace)
            alpha_val = alpha_val - alpha_delta
            
        for sset in self.data.subsets:
            alpha_val = alpha_max   
            x_values = sset[x_id].flatten()    
            x_sort = x_values.argsort()
            for i, y_id in enumerate(y_id_list):
                y_values = sset[y_id].flatten()            
                color = sset.style.color
                color = 'rgba'+str(self.getDeltaColor(color, alpha_val, i))
                trace = {
                    'type': "scattergl", 'mode': self.options['marker_type'].value, 'name': sset.label + "_" + y_id,
                    'line' : { 'width' : self.options['line_width'].value, 'color' : color},
                    'x': x_values[x_sort],
                    'y': y_values[x_sort],
                }
                traces.append(trace)  
                alpha_val = alpha_val - alpha_delta                

        layout = {
            'margin' : {'l':50,'r':0,'b':50,'t':30 },
            'xaxis': { 'autorange' : True, 'zeroline': True, 
                'title' : self.options['xaxis'].value, 
                'type' : self.options['xscale'].value 
            },
            'yaxis': { 'autorange':True, 'zeroline': True, 
                'title' : self.options['yaxis'].value, 
                'type' : self.options['yscale'].value
            },            
            'showlegend': True,
        }
        return FigureWidget({
                'data': traces,
                'layout': layout
        })
Esempio n. 5
0
    def show_sky_coords(self,
                        font_size=16,
                        width=500,
                        height=500,
                        y_xaxis=-0.15,
                        x_yaxis=-0.2,
                        title=None,
                        margins=None,
                        **kwargs):
        """
        Interactive RA-DEC plot
        """
        self.set_marker(**kwargs)

        fig = FigureWidget(
            **{
                'data': [{
                    'x': self.cat.ra,
                    'y': self.cat.dec,
                    'marker': self.marker,
                    'mode': 'markers',
                    'type': 'scatter'
                }],
                'layout': {
                    'dragmode': 'pan',
                    'width': width,
                    'height': height,
                    'font_size': font_size
                }
            })

        xtit = text_annote(text='$\\text{R.A [}^\circ]$',
                           x=0.5,
                           y=y_xaxis,
                           font_size=font_size * 1.2)
        ytit = text_annote(text='$\\text{Dec [}^\circ]$',
                           x=x_yaxis,
                           y=0.5,
                           font_size=font_size * 1.2,
                           textangle=-90)
        fig = self.set_fig_show(
            fig,
            margins=margins,
            annotations=[xtit, ytit],
            title=title,
            new_xrange=[self.cat.ra.max(),
                        self.cat.ra.min()])

        if hasattr(self, 'control'):
            self.set_marker_control()
            fig.add_trace(
                go.Scatter(x=self.control.cat.ra,
                           y=self.control.cat.dec,
                           marker=self.marker_control,
                           mode='markers'))
            fig.update_layout(showlegend=False)
        self.fig_sky = fig
Esempio n. 6
0
    def show_properm(self,
                     font_size=16,
                     width=500,
                     height=500,
                     y_xaxis=-0.15,
                     x_yaxis=-0.2,
                     title=None,
                     margins=None,
                     **kwargs):
        """
        Interactive Proper-Motions plot
        """
        self.set_marker(**kwargs)

        fig = FigureWidget(
            **{
                'data': [{
                    'x': self.cat.pmra,
                    'y': self.cat.pmdec,
                    'marker': self.marker,
                    'mode': 'markers',
                    'type': 'scatter'
                }],
                'layout': {
                    'dragmode': 'pan',
                    'width': width,
                    'height': height,
                    'font_size': font_size
                }
            })

        xtit = text_annote(text='$\\text{pmra [mas yr}^{-1}]$',
                           x=0.5,
                           y=y_xaxis,
                           font_size=font_size * 1.2)
        ytit = text_annote(text='$\\text{pmdec [mas yr}^{-1}]$',
                           x=x_yaxis,
                           y=0.5,
                           font_size=font_size * 1.2,
                           textangle=-90)
        fig = self.set_fig_show(fig,
                                margins=margins,
                                annotations=[xtit, ytit],
                                title=title)
        if hasattr(self, 'control'):
            self.set_marker_control()
            fig.add_trace(
                go.Scatter(x=self.control.cat.pmra,
                           y=self.control.cat.pmdec,
                           marker=self.marker_control,
                           mode='markers'))
            fig.update_layout(showlegend=False)
        self.fig_properm = fig
Esempio n. 7
0
    def show_hist_dist(self,
                       font_size=16,
                       width=500,
                       height=500,
                       y_xaxis=-0.15,
                       x_yaxis=-0.2,
                       title=None,
                       margins=None,
                       **kwargs):
        """
        Interactive Histogram (distances) plot
        """
        self.set_marker(hist_marker=True, **kwargs)

        fig = FigureWidget(
            **{
                'data': [{
                    'x': self.cat.distance,
                    'marker': self.marker,
                    'type': 'histogram'
                }],
                'layout': {
                    'dragmode': 'pan',
                    'width': width,
                    'height': height,
                    'font_size': font_size
                }
            })

        xtit = text_annote(text='Distance [pc]',
                           x=0.5,
                           y=y_xaxis,
                           font_size=font_size * 1.2)
        ytit = text_annote(text='# Objects',
                           x=x_yaxis,
                           y=0.5,
                           font_size=font_size * 1.2,
                           textangle=-90)
        fig = self.set_fig_show(fig,
                                margins=margins,
                                annotations=[xtit, ytit],
                                title=title)
        if hasattr(self, 'control'):
            marker_control_hist = self.marker.copy()
            marker_control_hist['color'] = self.control.color
            fig.add_trace(
                go.Histogram(x=self.control.cat.distance,
                             marker=marker_control_hist))
            fig.update_layout(barmode='overlay', showlegend=False)
        self.fig_hist_dist = fig
Esempio n. 8
0
def plot_waterfall(input_data, dim=None, name=None, axes=None, filename=None,
                   config=None, **kwargs):
    """
    Make a 3D waterfall plot
    """

    # Get coordinates axes and dimensions
    coords = input_data.coords
    labels = input_data.labels
    xcoord, ycoord, xe, ye, xc, yc, xlabs, ylabs, zlabs = \
        process_dimensions(input_data=input_data, coords=coords,
                           labels=labels, axes=axes)

    data = []
    z = input_data.values

    if (zlabs[0] == xlabs[0]) and (zlabs[1] == ylabs[0]):
        z = z.T
        zlabs = [ylabs[0], xlabs[0]]

    pdict = dict(type='scatter3d', mode='lines', line=dict(width=5))
    adict = dict(z=1)

    if dim is None:
        dim = zlabs[0]

    if dim == zlabs[0]:
        for i in range(len(yc)):
            idict = pdict.copy()
            idict["x"] = xc
            idict["y"] = [yc[i]] * len(xc)
            idict["z"] = z[i, :]
            data.append(idict)
            adict["x"] = 3
            adict["y"] = 1
    elif dim == zlabs[1]:
        for i in range(len(xc)):
            idict = pdict.copy()
            idict["x"] = [xc[i]] * len(yc)
            idict["y"] = yc
            idict["z"] = z[:, i]
            data.append(idict)
            adict["x"] = 1
            adict["y"] = 3
    else:
        raise RuntimeError("Something went wrong in plot_waterfall. The "
                           "waterfall dimension is not recognised.")

    layout = dict(
        scene=dict(
            xaxis=dict(
                title=xcoord),
            yaxis=dict(
                title=ycoord),
            zaxis=dict(
                title=axis_label(var=input_data,
                                 name=name)),
            aspectmode='manual',
            aspectratio=adict),
        showlegend=False,
        height=config.height)
    fig = FigureWidget(data=data, layout=layout)
    if filename is not None:
        write_image(fig=fig, file=filename)
    else:
        display(fig)
    return
Esempio n. 9
0
def plot_1d(input_data, logx=False, logy=False, logxy=False, axes=None,
            color=None, filename=None, config=None):
    """
    Plot a 1D spectrum.

    Input is a dictionary containing a list of DataProxy.
    If the coordinate of the x-axis contains bin edges, then a bar plot is
    made.

    TODO: find a more general way of handling arguments to be sent to plotly,
    probably via a dictionay of arguments
    """

    data = []
    color_count = 0
    for name, var in input_data.items():
        # TODO: find a better way of getting x by accessing the dimension of
        # the coordinate directly instead of iterating over all of them
        coords = var.coords
        for c in coords:
            x = coords[c[0]].values
            xlab = axis_label(coords[c[0]])
        y = var.values
        ylab = axis_label(var=var, name=name)

        nx = x.shape[0]
        ny = y.shape[0]
        histogram = False
        if nx == ny + 1:
            x, w = edges_to_centers(x)
            histogram = True

        # Define trace
        trace = dict(x=x, y=y, name=ylab)
        if histogram:
            trace["type"] = 'bar'
            trace["marker"] = dict(opacity=0.6, line=dict(width=0))
            trace["width"] = w
        else:
            trace["type"] = 'scatter'
        if color is not None:
            if "marker" not in trace.keys():
                trace["marker"] = dict()
            trace["marker"]["color"] = color[color_count]
            color_count += 1
        # Include variance if present
        if var.variances is not None:
            trace["error_y"] = dict(
                type='data',
                array=np.sqrt(var.variances),
                visible=True)

        data.append(trace)

    layout = dict(
        xaxis=dict(title=xlab),
        yaxis=dict(),
        showlegend=True,
        legend=dict(x=0.0, y=1.15, orientation="h"),
        height=config.height
    )
    if histogram:
        layout["barmode"] = "overlay"
    if logx or logxy:
        layout["xaxis"]["type"] = "log"
    if logy or logxy:
        layout["yaxis"]["type"] = "log"

    fig = FigureWidget(data=data, layout=layout)
    if filename is not None:
        write_image(fig=fig, file=filename)
    else:
        display(fig)
    return
Esempio n. 10
0
class ImageViewer:

    def __init__(self, xe, xc, ye, yc, values, variances, resolution, cb,
                 plot_type, title, contours):

        self.xe = xe
        self.xc = xc
        self.ye = ye
        self.yc = yc
        self.values = values
        self.variances = variances
        self.resolution = resolution
        self.cb = cb
        self.plot_type = plot_type
        self.title = title
        self.contours = contours
        self.nx = len(self.xe)
        self.ny = len(self.ye)
        self.val_range = np.zeros([4], dtype=np.float64)
        self.var_range = np.zeros([4], dtype=np.float64)

        self.fig_val = FigureWidget()
        if self.variances is not None:
            self.fig_var = FigureWidget()
            self.hbox = HBox([self.fig_val, self.fig_var])
        else:
            self.fig_var = None
            self.hbox = None

        # Make an initial low-resolution sampling of the image for plotting
        self.update_values(layout=None, x_range=[self.xe[0], self.xe[-1]],
                           y_range=[self.ye[0], self.ye[-1]])

        # Add a callback to update the view area
        self.fig_val.layout.on_change(
            self.update_values,
            'xaxis.range',
            'yaxis.range')
        if self.variances is not None:
            self.fig_var.layout.on_change(
                self.update_variances,
                'xaxis.range',
                'yaxis.range')

        return

    def update_values(self, layout, x_range, y_range, origin=None, res=None):

        ranges = np.array([x_range[0], x_range[1], y_range[0], y_range[1]],
                          copy=True)

        if not np.array_equal(self.val_range, ranges):

            self.val_range = ranges.copy()
            if res is None:
                res = self.resample_image(x_range, y_range)

            # The local values array
            values_loc = np.zeros([res.nye - 1, res.nxe - 1])
            values_loc[res.jmin:res.nye - res.jmax - 1,
                       res.imin:res.nxe - res.imax - 1] = \
                self.resample_arrays(self.values, res)

            # Update figure data dict
            res.datadict["z"] = values_loc
            res.datadict["colorbar"] = {"title": {"text": self.title,
                                                  "side": "right"}}

            # Update the figure
            updatedict = {'data': [res.datadict]}
            if origin is not None:
                # Make a copy of the layout to update it all at once
                layoutdict = Layout(self.fig_var.layout)
                updatedict["layout"] = layoutdict
            self.fig_val.update(updatedict)
            if (origin is None) and (self.variances is not None):
                self.update_variances(layout, x_range, y_range, 'values', res)
        return

    def update_variances(self, layout, x_range, y_range, origin=None,
                         res=None):

        ranges = np.array([x_range[0], x_range[1], y_range[0], y_range[1]],
                          copy=True)

        if not np.array_equal(self.var_range, ranges):

            self.var_range = ranges.copy()
            if res is None:
                res = self.resample_image(x_range, y_range)

            # The local variances array
            variances_loc = np.zeros([res.nye - 1, res.nxe - 1])
            variances_loc[res.jmin:res.nye - res.jmax - 1,
                          res.imin:res.nxe - res.imax - 1] = \
                self.resample_arrays(self.variances, res)

            # Update figure data dict
            res.datadict["z"] = variances_loc
            res.datadict["colorbar"] = {"title": {"text": "std. dev",
                                                  "side": "right"}}

            # Update the figure
            updatedict = {'data': [res.datadict]}
            if origin is not None:
                # Make a copy of the layout to update it all at once
                layoutdict = Layout(self.fig_val.layout)
                updatedict["layout"] = layoutdict
            self.fig_var.update(updatedict)
            if origin is None:
                self.update_values(layout, x_range, y_range, "variances", res)

        return

    def resample_image(self, x_range, y_range):

        # Create a namedtuple to hold the results
        out = namedtuple("out", ['nx_view', 'ny_view', 'xmin', 'xmax', 'ymin',
                                 'ymax', 'xe_loc', 'ye_loc', 'nxe', 'nye',
                                 'imin', 'imax', 'jmin', 'jmax', 'datadict'])

        # Find indices of xe and ye that are shown in current range
        x_in_range = np.where(
            np.logical_and(
                self.xe >= x_range[0],
                self.xe <= x_range[1]))
        y_in_range = np.where(
            np.logical_and(
                self.ye >= y_range[0],
                self.ye <= y_range[1]))

        # xmin, xmax... here are array indices, not float coordinates
        out.xmin = x_in_range[0][0]
        out.xmax = x_in_range[0][-1]
        out.ymin = y_in_range[0][0]
        out.ymax = y_in_range[0][-1]
        # here we perform a trick so that the edges of the displayed image
        # is not greyed out if the zoom area slices a pixel in half, only
        # the pixel inside the view area will be shown and the outer edge
        # between that last pixel edge and the edge of the view frame area
        # will be empty. So we extend the selected area with an additional
        # pixel, if the selected area is inside the global limits of the
        # full resolution array.
        out.xmin -= int(out.xmin > 0)
        out.xmax += int(out.xmax < self.nx - 1)
        out.ymin -= int(out.ymin > 0)
        out.ymax += int(out.ymax < self.ny - 1)

        # Part of the global coordinate arrays that are inside the viewing
        # area
        xview = self.xe[out.xmin:out.xmax + 1]
        yview = self.ye[out.ymin:out.ymax + 1]

        # Count the number of pixels in the current view
        out.nx_view = out.xmax - out.xmin
        out.ny_view = out.ymax - out.ymin

        # Define x and y edges for histogramming
        # If the number of pixels in the view area is larger than the
        # maximum allowed resolution we create some custom pixels
        if out.nx_view > self.resolution:
            out.xe_loc = np.linspace(xview[0], xview[-1], self.resolution + 1)
        else:
            out.xe_loc = xview
        if out.ny_view > self.resolution:
            out.ye_loc = np.linspace(yview[0], yview[-1], self.resolution + 1)
        else:
            out.ye_loc = yview

        # Here we perform another trick. If we plot simply the local arrays
        # in plotly, the reset axes or home functionality will be lost
        # because plotly will now think that the data that exists is only
        # the small window shown after a zoom. So we add a one-pixel
        # padding area to the local z array. The size of that padding
        # extends from the edges of the initial full resolution array
        # (e.g. x=0, y=0) up to the edge of the view area. These large
        # (and probably elongated) pixels add very little data and will not
        # show in the view area but allow plotly to recover the full axes
        # limits if we double-click on the plot
        xc_loc = edges_to_centers(out.xe_loc)[0]
        yc_loc = edges_to_centers(out.ye_loc)[0]
        if out.xmin > 0:
            out.xe_loc = np.concatenate([self.xe[0:1], out.xe_loc])
            xc_loc = np.concatenate([self.xc[0:1], xc_loc])
        if out.xmax < self.nx - 1:
            out.xe_loc = np.concatenate([out.xe_loc, self.xe[-1:]])
            xc_loc = np.concatenate([xc_loc, self.xc[-1:]])
        if out.ymin > 0:
            out.ye_loc = np.concatenate([self.ye[0:1], out.ye_loc])
            yc_loc = np.concatenate([self.yc[0:1], yc_loc])
        if out.ymax < self.ny - 1:
            out.ye_loc = np.concatenate([out.ye_loc, self.ye[-1:]])
            yc_loc = np.concatenate([yc_loc, self.yc[-1:]])
        out.imin = int(out.xmin > 0)
        out.imax = int(out.xmax < self.nx - 1)
        out.jmin = int(out.ymin > 0)
        out.jmax = int(out.ymax < self.ny - 1)
        out.nxe = len(out.xe_loc)
        out.nye = len(out.ye_loc)

        # The 'data' dictionary
        out.datadict = dict(type=self.plot_type, zmin=self.cb["min"],
                            zmax=self.cb["max"], colorscale=self.cb["name"])
        if self.contours:
            out.datadict["x"] = xc_loc
            out.datadict["y"] = yc_loc
        else:
            out.datadict["x"] = out.xe_loc
            out.datadict["y"] = out.ye_loc

        return out

    def resample_arrays(self, array, res):

        # Optimize if no re-sampling is required
        if (res.nx_view < self.resolution) and \
           (res.ny_view < self.resolution):
            return array[res.ymin:res.ymax, res.xmin:res.xmax]
        else:
            xg, yg = np.meshgrid(self.xc[res.xmin:res.xmax],
                                 self.yc[res.ymin:res.ymax])
            xv = np.ravel(xg)
            yv = np.ravel(yg)
            # Histogram the data to make a low-resolution image
            # Using weights in the second histogram allows us to then do
            # z1/z0 to obtain the averaged data inside the coarse pixels
            array0, yedges, xedges = np.histogram2d(
                yv, xv, bins=(res.ye_loc[res.jmin:res.nye - res.jmax],
                              res.xe_loc[res.imin:res.nxe - res.imax]))
            array1, yedges, xedges = np.histogram2d(
                yv, xv, bins=(res.ye_loc[res.jmin:res.nye - res.jmax],
                              res.xe_loc[res.imin:res.nxe - res.imax]),
                weights=np.ravel(array[res.ymin:res.ymax, res.xmin:res.xmax]))
            return array1 / array0
Esempio n. 11
0
    def show(self,
             title='',
             xlabel='',
             ylabel='',
             xaxis=True,
             yaxis=True,
             xticks=True,
             yticks=True,
             legend=True,
             grid=True,
             **kwargs):
        # get before wrapper strips
        tdata = []
        ldata = {}

        y2_count = sum([1 for (_, _, a, _) in self.figures if a == 'right'])

        y2s = 2
        y2p = .05 / y2_count if y2_count > 0 else 0
        y2_base = .95 if y2_count > 0 else 1.0

        for col, figure, axis, color in self.figures:
            for trace in figure['data']:
                if axis == 'right':
                    trace['yaxis'] = 'y%d' % y2s
                    trace['xaxis'] = 'x'
                else:
                    trace['yaxis'] = 'y1'
                    trace['xaxis'] = 'x'
                tdata.append(trace)

            if axis == 'right':
                ldata['yaxis%d' % y2s] = dict(side='right',
                                              overlaying='y',
                                              color=color,
                                              position=y2_base)
                y2s += 1
                y2_base += y2p
            else:
                ldata['yaxis1'] = dict(side='left', )
        ldata['xaxis'] = dict(domain=[0, 0.95])

        ldata['shapes'] = []
        for line in self.hlines:
            ldata['shapes'].append({
                'x0': 0,
                'x1': 1,
                'y0': line[0],
                'y1': line[0],
                'line': {
                    'color': line[1],
                    'width': 1,
                    'dash': 'solid'
                },
                'xref': 'paper',
                'yref': 'y',
                'type': 'line'
            })
        for line in self.vlines:
            ldata['shapes'].append({
                'y0': 0,
                'y1': 1,
                'x0': line[0],
                'x1': line[0],
                'line': {
                    'color': line[1],
                    'width': 1,
                    'dash': 'solid'
                },
                'xref': 'x',
                'yref': 'paper',
                'type': 'line'
            })

        for line in self.hspans:
            col = to_rgb(line[2])
            r = str(round(col[0] * 255))
            g = str(round(col[1] * 255))
            b = str(round(col[2] * 255))

            ldata['shapes'].append({
                'x0':
                0,
                'x1':
                1,
                'y0':
                line[1],
                'y1':
                line[0],
                'line': {
                    'color': line[2],
                    'width': 1,
                    'dash': 'solid'
                },
                'xref':
                'paper',
                'yref':
                'y',
                'type':
                'rect',
                'fillcolor':
                'rgba(' + r + ',' + g + ',' + b + ',.5)'
            })

        for line in self.vspans:
            col = to_rgb(line[2])
            r = str(round(col[0] * 255))
            g = str(round(col[1] * 255))
            b = str(round(col[2] * 255))

            ldata['shapes'].append({
                'y0':
                0,
                'y1':
                1,
                'x0':
                line[1],
                'x1':
                line[0],
                'line': {
                    'color': line[2],
                    'width': 1,
                    'dash': 'solid'
                },
                'xref':
                'x',
                'yref':
                'paper',
                'type':
                'rect',
                'fillcolor':
                'rgba(' + r + ',' + g + ',' + b + ',.5)'
            })

        if title:
            ldata['title'] = title

        if ylabel:
            for k in ldata:
                if 'yaxis' in k:
                    ldata[k] = dict(
                        title=ylabel,
                        titlefont=dict(
                            family='Courier New, monospace',
                            size=18,
                            color='#7f7f7f',
                        ),
                        showgrid=grid,
                        showline=yaxis,
                        showticklabels=yticks,
                    )

        if xlabel:
            for k in ldata:
                if 'xaxis' in k:
                    ldata['xaxis'] = dict(
                        title=xlabel,
                        titlefont=dict(
                            family='Courier New, monospace',
                            size=18,
                            color='#7f7f7f',
                        ),
                        showgrid=grid,
                        showline=xaxis,
                        showticklabels=xticks,
                    )

        ldata['showlegend'] = legend
        x_size = self.size[0] if self.size[0] > 100 else self.size[0] * 100
        y_size = self.size[1] if self.size[1] > 100 else self.size[1] * 100
        ldata['width'], ldata['height'] = x_size, y_size
        return FigureWidget(data=tdata, layout=ldata)
Esempio n. 12
0
    def createFigureWidget(self, x_id, y_id_list):
        traces = []
        alpha_min, alpha_max, alpha_delta = self.getDeltaFunction(len(y_id_list))
        alpha_val = alpha_max   
        xtickmode = "auto"
        xtickvals = None
        xticktext = None        
        if hasattr(self.data[x_id].flatten(), 'codes'):
            x_val = self.data[x_id].flatten().codes.tolist()
            tickvals, tickmask = np.unique(self.data[x_id].flatten().codes, return_index=True)
            ticktext = self.data[x_id][tickmask]
            xtickmode = "array"
            xtickvals = tickvals.tolist()
            xticktext = ticktext.tolist()            
        else:
            x_val = self.data[x_id].flatten()
        for y_id in y_id_list:
            color = "#444444"
            color = 'rgba'+str(self.getDeltaColor(color, alpha_val))                        
            if hasattr(self.data[y_id].flatten(), 'codes'):
                y_val = self.data[y_id].flatten().codes.tolist()
            else:
                y_val = self.data[y_id].flatten()
                
            trace = {
                'type': "scattergl", 'mode': "markers", 'name': self.data.label + "_" + y_id,
                'marker': dict({
                    'symbol':'circle', 'size': self.options['marker_size'].value, 'color': color,
                    'line' : { 'width' : self.options['line_width'].value, 'color' : color }
                }),
                'x': x_val,
                'y': y_val,
            }
            if self.only_subsets == False:
                traces.append(trace)
            alpha_val = alpha_val - alpha_delta
            
        for sset in self.data.subsets:
            alpha_val = alpha_max        
            if hasattr(sset[x_id].flatten(), 'codes'):
                x_val = sset[x_id].flatten().codes.tolist()
            else:
                x_val = sset[x_id].flatten()
            for i, y_id in enumerate(y_id_list):
                y_val = sset[y_id].flatten().astype('float')
                color = sset.style.color
                color = 'rgba'+str(self.getDeltaColor(color, alpha_val, i))             
                trace = {
                    'type': "scattergl", 'mode': "markers", 'name': sset.label + "_" + y_id,
                    'marker': dict({
                        'symbol':'circle', 'size': self.focused_size_marker, 'color': color,
                        'line' : { 'width' : self.options['line_width'].value, 'color' : color}      
                    }),
                    'selected':{'marker':{'color':color, 'size': self.options['marker_size'].value}},
                    'unselected':{'marker':{'color':color, 'size': self.options['marker_size'].value}},                
                    'x': x_val,
                    'y': y_val,
                }
                traces.append(trace)  
                alpha_val = alpha_val - alpha_delta
                

        layout = {
            'title' : self.options['title'].value,
            'margin' : {
                'l':self.margins['left'].value,
                'r':self.margins['right'].value,
                'b':self.margins['bottom'].value,
                't':self.margins['top'].value 
            },            
            'xaxis': { 'autorange' : True, 'zeroline': True, 
                'title' : self.options['xaxis'].value, 
                'type' : self.options['xscale'].value,
                'tickmode' : xtickmode,
                'tickvals' : xtickvals,
                'ticktext' : xticktext,
            },
            'yaxis': { 'autorange':True, 'zeroline': True, 
                'title' : self.options['yaxis'].value, 
                'type' : self.options['yscale'].value
            },
            'showlegend': True,
        }
        return FigureWidget({
                'data': traces,
                'layout': layout
        })
Esempio n. 13
0
    def createFigureWidget(self):
        x_id = self.dimensions[0]
        y_id = self.dimensions[1]
        z_id = self.dimensions[2]
        x_value = self.data[x_id].flatten().astype('float')
        y_value = self.data[y_id].flatten().astype('float')
        x_value, x_inv = np.unique(x_value, return_inverse=True)
        y_value, y_inv = np.unique(y_value, return_inverse=True)
        try:
            z_value = np.reshape(self.data[z_id].flatten(),
                                 (len(x_value), len(y_value)))
        except:
            t_value = self.data[z_id].flatten()
            x_value = np.sort(x_value)
            y_value = np.sort(y_value)
            z_value = np.zeros((len(x_value), len(y_value)))
            for i, value in enumerate(t_value):
                z_value[x_inv[i]][y_inv[i]] = value
        #with self.debug:
        #    print (x_value,y_value,z_value)

        traces = []
        trace = {
            'type': "contour",
            'colorscale': self.options['color_scale'].value,
            'showlegend': False,
            'autocontour': False,
            'ncontours': 1,
            'contours': {
                'coloring': 'heatmap'
            },
            'x': x_value.tolist(),
            'y': y_value.tolist(),
            'z': z_value.tolist(),
            'zauto': False,
            'zmin': self.options['color_range_min'].value,
            'zmax': self.options['color_range_max'].value,
        }
        if self.only_subsets == False:
            traces.append(trace)

        for sset in self.data.subsets:
            color = sset.style.color
            color = 'rgba' + str(self.getDeltaColor(color, 0.6))
            trace = {
                'type':
                "scattergl",
                'mode':
                "markers",
                'name':
                sset.label + "_" + y_id,
                'marker':
                dict({
                    'symbol': 'circle',
                    'size': self.options['marker_size'].value,
                    'color': color,
                    'line': {
                        'width': self.options['line_width'].value,
                        'color': color
                    }
                }),
                'selected': {
                    'marker': {
                        'color': color,
                        'size': self.options['marker_size'].value
                    }
                },
                'unselected': {
                    'marker': {
                        'color': color,
                        'size': self.options['marker_size'].value
                    }
                },
                'x':
                sset[x_id].flatten(),
                'y':
                sset[y_id].flatten(),
            }
            traces.append(trace)

        layout = {
            'title': self.options['title'].value,
            'margin': {
                'l': 50,
                'r': 0,
                'b': 50,
                't': 30
            },
            'xaxis': {
                'autorange': True,
                'zeroline': True,
                'title': self.options['xaxis'].value,
            },
            'yaxis': {
                'autorange': True,
                'zeroline': True,
                'title': self.options['yaxis'].value,
            },
            'showlegend': True,
        }
        return FigureWidget({'data': traces, 'layout': layout})
Esempio n. 14
0
    def createFigureWidget(self, x_id, y_id, z_id):
        traces = []
        color = "#444444"
        color = 'rgba' + str(self.getDeltaColor(color, .8))
        trace = {
            'type':
            "scatter3d",
            'mode':
            "markers",
            'name':
            self.data.label,
            'marker':
            dict({
                'symbol': 'circle',
                'size': self.options['marker_size'].value,
                'color': color,
            }),
            'x':
            self.data[x_id].flatten(),
            'y':
            self.data[y_id].flatten(),
            'z':
            self.data[z_id].flatten(),
        }
        if self.only_subsets == False:
            traces.append(trace)
        for sset in self.data.subsets:
            color = sset.style.color
            color = 'rgba' + str(self.getDeltaColor(color, .8))
            trace = {
                'type':
                "scatter3d",
                'mode':
                "markers",
                'name':
                sset.label,
                'marker':
                dict({
                    'symbol': 'circle',
                    'size': self.options['marker_size'].value,
                    'color': color,
                }),
                'x':
                sset[x_id].flatten(),
                'y':
                sset[y_id].flatten(),
                'z':
                sset[z_id].flatten(),
            }
            traces.append(trace)

        layout = {
            'margin': {
                'l': 0,
                'r': 0,
                'b': 0,
                't': 30
            },
            'scene': {
                'xaxis': {
                    'title': self.options['xaxis'].value
                },
                'yaxis': {
                    'title': self.options['yaxis'].value
                },
                'zaxis': {
                    'title': self.options['zaxis'].value
                }
            }
        }
        return FigureWidget({'data': traces, 'layout': layout})
Esempio n. 15
0
    def show_3D_space(self,
                      font_size=16,
                      width=1200,
                      height=800,
                      y_xaxis=-0.15,
                      x_yaxis=-0.2,
                      title=None,
                      margins=None,
                      **kwargs):
        """
        Interactive Proper-Motions plot
        """
        self.set_marker(**kwargs)

        fig = FigureWidget(
            **{
                'data': [{
                    'x': self.cat.X_gal,
                    'y': self.cat.Y_gal,
                    'z': self.cat.Z_gal,
                    'marker': self.marker,
                    'mode': 'markers',
                    'type': 'scatter3d'
                }],
                'layout': {
                    'dragmode': 'pan',
                    'width': width,
                    'height': height,
                    'font_size': font_size,
                    'showlegend': False
                }
            })

        if hasattr(self, 'control'):
            self.set_marker_control()
            fig.add_trace(
                go.Scatter3d({
                    'x': self.control.cat.X_gal,
                    'y': self.control.cat.Y_gal,
                    'z': self.control.cat.Z_gal,
                    'mode': 'markers',
                    'marker': self.marker_control
                }))

        if hasattr(self, 'cat_subsamp'):
            marker = self.marker
            marker['color'] = self.color_high
            fig.add_trace(
                go.Scatter3d({
                    'x': self.cat_subsamp.X_gal,
                    'y': self.cat_subsamp.Y_gal,
                    'z': self.cat_subsamp.Z_gal,
                    'mode': 'markers',
                    'marker': marker
                }))

        fig.update_layout(scene=dict(xaxis_title='X_Gal [pc]',
                                     yaxis_title='Y_Gal [pc]',
                                     zaxis_title='Z_Gal [pc]'))
        fig = self.set_fig_show(fig, margins=margins, title=title)
        self.fig_3D = fig
Esempio n. 16
0
    def __init__(self, plotly_data, plotly_layout, input_data, axes,
                 value_name, cb):

        # Make a copy of the input data - Needed?
        self.input_data = input_data

        # Get the dimensions of the image to be displayed
        self.coords = self.input_data.coords
        self.labels = self.input_data.labels
        _, self.xcoord = get_coord_array(self.coords, self.labels, axes[-1])
        _, self.ycoord = get_coord_array(self.coords, self.labels, axes[-2])
        self.xlabs = self.xcoord.dims
        self.ylabs = self.ycoord.dims

        self.labels = self.input_data.dims
        self.shapes = dict(zip(self.labels, self.input_data.shape))

        # Size of the slider coordinate arrays
        self.slider_nx = []
        # Save dimensions tags for sliders, e.g. Dim.X
        self.slider_dims = []
        # Store coordinates of dimensions that will be in sliders
        self.slider_x = []
        for ax in axes[:-2]:
            self.slider_dims.append(ax)
            self.slider_nx.append(self.shapes[ax])
            self.slider_x.append(self.coords[ax].values)
        self.nslices = len(self.slider_dims)

        # Initialise Figure and VBox objects
        self.fig = FigureWidget(data=plotly_data, layout=plotly_layout)
        self.vbox = self.fig,

        # Initialise slider and label containers
        self.lab = []
        self.slider = []
        # Collect the remaining arguments
        self.value_name = value_name
        self.cb = cb
        # Default starting index for slider
        indx = 0

        # Now begin loop to construct sliders
        for i in range(len(self.slider_nx)):
            # Add a label widget to display the value of the z coordinate
            self.lab.append(Label(value=str(self.slider_x[i][indx])))
            # Add an IntSlider to slide along the z dimension of the array
            self.slider.append(IntSlider(
                value=indx,
                min=0,
                max=self.slider_nx[i] - 1,
                step=1,
                description="",
                continuous_update=True,
                readout=False
            ))
            # Add an observer to the slider
            self.slider[i].observe(self.update_slice, names="value")
            # Add coordinate name and unit
            title = Label(value=axis_label(self.coords[self.slider_dims[i]]))
            self.vbox += (HBox([title, self.slider[i], self.lab[i]]),)

        # Call update_slice once to make the initial image
        self.update_slice(0)
        self.vbox = VBox(self.vbox)
        self.vbox.layout.align_items = 'center'

        return
Esempio n. 17
0
    def createFigureWidget(self, x_id, y_id):
        heatmap, xedges, yedges = np.histogram2d(self.data[x_id].flatten().astype('float'), self.data[y_id].flatten().astype('float'), bins=self.options['nbins'].value)
        mod_heatmap = np.zeros(( self.options['nbins'].value+2, self.options['nbins'].value+2))
        mod_heatmap[1:-1,1:-1] = heatmap.T
        #d_val = self.data[x_id]
        #if hasattr(self.data[x_id].flatten(), 'codes'):
        #    d_val = self.data[x_id].flatten().codes
        
        traces = []
        trace = {
            'type': "contour",
            'colorscale':[[0, 'rgb(255,255,255)'], [1, 'rgb(0,0,0)']],'showlegend':False,
            'autocontour':False,'ncontours':self.options['ncontours'].value,
            'contours':{'coloring':'heatmap'},
            'x0': xedges[0]-(xedges[1]-xedges[0])/2,
            'dx': xedges[1]-xedges[0],
            'y0': yedges[0]-(yedges[1]-yedges[0])/2,
            'dy': yedges[1]-yedges[0],
            'z':mod_heatmap
        }
        if self.only_subsets == False:
            traces.append(trace)
        trace = {
            'type': "scattergl", 'mode': "markers", 'name': self.data.label,
            'marker': dict({
                'symbol':'circle', 'size': self.options['marker_size'].value, 'color': 'rgba(0, 0, 0, 0.4)',
                'line' : { 'width' : self.options['line_width'].value, 'color' : 'rgba(0, 0, 0, 0.3)' }
            }),
            'x': self.data[x_id].flatten(),
            'y': self.data[y_id].flatten(),
        }
        if self.only_subsets == False:    
            traces.append(trace)
        for sset in self.data.subsets:
            color = sset.style.color
            trace = {
                'type': "scattergl", 'mode': "markers", 'name': sset.label,
                'marker': dict({
                    'symbol':'circle', 'size': self.options['marker_size'].value, 'color': color,
                    'line' : { 'width' : self.options['line_width'].value, 'color' : '#000000'}      
                }),
                'selected':{'marker':{'color':color, 'size': self.options['marker_size'].value}},
                'unselected':{'marker':{'color':color, 'size': self.options['marker_size'].value}},                 
                'x': sset[x_id].flatten(),
                'y': sset[y_id].flatten(),
            }
            traces.append(trace)

        layout = {
            'title' : self.options['title'].value,
            'margin' : {'l':50,'r':0,'b':50,'t':30 },            
            'xaxis': { 'autorange' : True, 'zeroline': True, 
                'title' : self.options['xaxis'].value, 
                'type' : self.options['xscale'].value 
            },
            'yaxis': { 'autorange':True, 'zeroline': True, 
                'title' : self.options['yaxis'].value, 
                'type' : self.options['yscale'].value
            },
            'showlegend': True,
        }        
        return FigureWidget({
                'data': traces,
                'layout': layout
        })
Esempio n. 18
0
    def createFigureWidget(self):
        x_id = self.dimensions[0]
        y_id_list = [
            self.dimensions[i] for i in range(1, len(self.dimensions))
        ]
        d_val = self.data[x_id]
        if hasattr(self.data[x_id], 'codes'):
            d_val = self.data[x_id].codes.flatten()
        hist, bin_edges = np.histogram(d_val.flatten(), bins='auto')
        bin_list = bin_edges.searchsorted(d_val.flatten(), 'right')

        xedges = []
        for i in range(len(bin_edges) - 1):
            xedges.append((bin_edges[i + 1] + bin_edges[i]) / 2)
        traces = []
        alpha_min, alpha_max, alpha_delta = self.getDeltaFunction(
            len(y_id_list), 0.1, 0.5)
        alpha_val = alpha_max
        for y_id in y_id_list:

            d_val = self.data[y_id]
            if hasattr(self.data[y_id], 'codes'):
                d_val = self.data[y_id].codes

            y_mean = []
            y_std_u = []
            y_std_l = []
            y_min = []
            y_max = []

            for i in range(1, len(bin_edges)):
                d_col = d_val[(bin_list == i)].flatten()
                if len(d_col) > 0:
                    i_mean = d_col.mean()
                    i_min = d_col.min()
                    i_max = d_col.max()
                    i_std = d_col.std()
                else:
                    i_mean = 0
                    i_std = 0
                    i_min = 0
                    i_max = 0
                y_mean.append(i_mean)
                y_std_u.append(i_mean + i_std)
                y_std_l.append(i_mean - i_std)
                y_min.append(i_min)
                y_max.append(i_max)

            color = "#444444"
            color = 'rgba' + str(self.getDeltaColor(color, alpha_val))

            trace = {
                'type': "scatter",
                'name': '-',
                'marker': {
                    'color': color
                },
                'line': {
                    'width': 0
                },
                'x': xedges,
                'y': y_min,
                'mode': 'lines',
                'showlegend': False
            }
            if self.only_subsets == False:
                traces.append(trace)

            trace = {
                'type': "scatter",
                'name': self.data.label + "_" + y_id,
                'marker': {
                    'color': color
                },
                'fillcolor': color,
                'fill': 'tonexty',
                'line': {
                    'color': color
                },
                'x': xedges,
                'y': y_mean,
                'mode': 'lines',
            }
            if self.only_subsets == False:
                traces.append(trace)

            trace = {
                'type': "scatter",
                'name': '+',
                'marker': {
                    'color': color
                },
                'fillcolor': color,
                'fill': 'tonexty',
                'line': {
                    'width': 0
                },
                'x': xedges,
                'y': y_max,
                'mode': 'lines',
                'showlegend': False
            }
            if self.only_subsets == False:
                traces.append(trace)
            alpha_val = alpha_val - alpha_delta

        for sset in self.data.subsets:
            s_val = sset[x_id]
            if hasattr(sset[x_id], 'codes'):
                s_val = sset[x_id].codes
            bin_list = bin_edges.searchsorted(s_val, 'right')
            alpha_val = alpha_max
            for y_id in y_id_list:

                s_val = sset[y_id]
                if hasattr(sset[y_id], 'codes'):
                    s_val = sset[y_id].codes

                y_s_mean = []
                y_s_std_u = []
                y_s_std_l = []

                for i in range(1, len(bin_edges)):
                    s_col = s_val[(bin_list == i)]
                    if len(s_col) > 0:
                        i_mean = s_col.mean()
                        i_std = s_col.std()
                        i_min = s_col.min()
                        i_max = s_col.max()
                    else:
                        i_mean = 0
                        i_std = 0
                        i_min = 0
                        i_max = 0
                    y_s_mean.append(i_mean)
                    y_s_std_u.append(i_mean + i_std)
                    y_s_std_l.append(i_mean - i_std)

                color = sset.style.color
                color = 'rgba' + str(self.getDeltaColor(color, alpha_val))
                trace = {
                    'type': "scatter",
                    'name': '-',
                    'marker': {
                        'color': color
                    },
                    'line': {
                        'width': 0
                    },
                    'x': xedges,
                    'y': y_s_std_l,
                    'mode': 'lines',
                    'showlegend': False
                }
                traces.append(trace)

                trace = {
                    'type': "scatter",
                    'name': sset.label + "_" + y_id,
                    'marker': {
                        'color': color
                    },
                    'fillcolor': color,
                    'fill': 'tonexty',
                    'line': {
                        'color': color
                    },
                    'x': xedges,
                    'y': y_s_mean,
                    'mode': 'lines',
                }
                traces.append(trace)

                trace = {
                    'type': "scatter",
                    'name': '+',
                    'marker': {
                        'color': color
                    },
                    'fillcolor': color,
                    'fill': 'tonexty',
                    'line': {
                        'width': 0
                    },
                    'x': xedges,
                    'y': y_s_std_u,
                    'mode': 'lines',
                    'showlegend': False
                }
                traces.append(trace)
                alpha_val = alpha_val - alpha_delta

        layout = {
            'title': self.options['title'].value,
            'margin': {
                'l': 50,
                'r': 0,
                'b': 50,
                't': 30
            },
            'xaxis': {
                'autorange': True,
                'zeroline': True,
                'title': self.options['xaxis'].value,
            },
            'yaxis': {
                'autorange': True,
                'zeroline': True,
                'title': self.options['yaxis'].value,
            },
            'showlegend': True,
            'barmode': 'overlay',
        }

        return FigureWidget({'data': traces, 'layout': layout})