Esempio n. 1
0
    def __init__(self, **kwargs):
        super(VisConfig, self).__init__(**kwargs)
        self.dtype = np.float
        # Set Plotly custom variables
        self.figure_image_filename = "temp-figure"
        self.figure_image_format = "png"
        self.figure_filename = "temp-plot.html"

        # Enable online plotting (default is offline plotting as it works perfectly without any issues)
        # @see: https://plot.ly/python/getting-started/#initialization-for-online-plotting
        online_plotting = kwargs.get('online', False)

        # Detect jupyter and/or ipython environment
        try:
            get_ipython
            from plotly.offline import download_plotlyjs, init_notebook_mode
            init_notebook_mode(connected=True)
            self.plotfn = plotly.plotly.iplot if online_plotting else plotly.offline.iplot
            self.no_ipython = False
        except NameError:
            self.plotfn = plotly.plotly.plot if online_plotting else plotly.offline.plot
            self.no_ipython = True

        # Get keyword arguments
        self.display_ctrlpts = kwargs.get('ctrlpts', True)
        self.display_evalpts = kwargs.get('evalpts', True)
        self.display_bbox = kwargs.get('bbox', False)
        self.display_trims = kwargs.get('trims', True)
        self.display_legend = kwargs.get('legend', True)
        self.display_axes = kwargs.get('axes', True)
        self.axes_equal = kwargs.get('axes_equal', True)
        self.figure_size = kwargs.get('figure_size', [1024, 768])
        self.trim_size = kwargs.get('trim_size', 1)
        self.line_width = kwargs.get('line_width', 2)
Esempio n. 2
0
def old_show(explanation, selector=None, index_map=None):
    from plotly.offline import iplot, init_notebook_mode

    init_notebook_mode(connected=True)
    # if not show.imported:
    #     show.imported = True

    if isinstance(selector, str):
        if index_map is None:
            print(
                "If selector is a string, a list or dictionary index_map must be passed."
            )
        if isinstance(index_map, list):
            selector = index_map.index(selector)
        elif isinstance(index_map, dict):
            selector = index_map[selector]
        else:
            print("Not supported index_feature_map type. Use list or dictionary.")
            return None
    elif isinstance(selector, int):
        selector = selector
    elif selector is None:
        selector = None
    else:
        print("Argument 'selector' must be an int, string, or None.")
        return None

    fig = explanation.visualize(selector)
    if fig is not None:
        iplot(fig)
    else:
        print("No overall graph for this explanation. Pass in a selector.")
Esempio n. 3
0
 def _oflline(self):
     if self._offline_mode:
         return
     if self.get_option('mode') == 'offline' and in_ipnb():
         from plotly.offline import init_notebook_mode
         init_notebook_mode()
     self._offline_mode = True
Esempio n. 4
0
    def show(
        self,
        filename: Optional[str] = None,
        show_link: bool = True,
        auto_open: bool = True,
        detect_notebook: bool = True,
    ) -> None:
        """Display the chart.

        Parameters
        ----------
        filename : str, optional
            Save plot to this filename, otherwise it's saved to a temporary file.
        show_link : bool, optional
            Show link to plotly.
        auto_open : bool, optional
            Automatically open the plot (in the browser).
        detect_notebook : bool, optional
            Try to detect if we're running in a notebook.

        """
        kargs = {}
        if detect_notebook and _detect_notebook():
            py.init_notebook_mode()
            plot = py.iplot
        else:
            plot = py.plot
            if filename is None:
                filename = NamedTemporaryFile(prefix='plotly', suffix='.html', delete=False).name
            kargs['filename'] = filename
            kargs['auto_open'] = auto_open

        plot(self, show_link=show_link, **kargs)
Esempio n. 5
0
def save_plot(fig, file_name=None):
    try:
        from plotly.offline import iplot, init_notebook_mode
        init_notebook_mode(connected=True)
        iplot(fig, filename=file_name)
    except:
        from plotly.offline import plot
        plot(fig, auto_open=False, filename=file_name)
Esempio n. 6
0
def _plotly(neuron, plane, title, inline, **kwargs):
    fig = get_figure(neuron, plane, title)

    plot_fun = iplot if inline else plot
    if inline:
        init_notebook_mode(connected=True)  # pragma: no cover
    plot_fun(fig, filename=title + '.html', **kwargs)
    return fig
Esempio n. 7
0
def start160Parralel():
    import plotly.plotly as py
    from plotly.graph_objs import *
    py.sign_in('username', 'api_key')
    trace1 = Box(
        y=[17.107424020767212, 23.18073296546936, 23.362980842590332, 23.812504053115845, 23.346518993377686],
        boxmean='sd',
        marker=Marker(
            color='rgb(8, 81, 156)'
        ),
        name='Mininethosts (1W)',
        ysrc='setchring:103:df6b28'
    )
    trace2 = Box(
        y=[11.409734010696411, 14.017661094665527, 14.139786958694458, 14.00459909439087, 13.936722993850708],
        boxmean='sd',
        marker=Marker(
            color='rgb(8, 81, 156)'
        ),
        name='Mininethosts (2W)',
        ysrc='setchring:103:e9dd30'
    )
    trace3 = Box(
        y=[62.070091009140015, 56.22917199134827, 56.44520902633667, 57.48769211769104, 58.8430700302124],
        boxmean='sd',
        marker=Marker(
            color='rgb(10, 140, 208)'
        ),
        name='Ubuntu Container (1W)',
        ysrc='setchring:103:5a50e4'
    )
    trace4 = Box(
        y=[32.30044984817505, 30.182456016540527, 30.279242038726807, 30.52851104736328, 30.67842388153076],
        boxmean='sd',
        marker=Marker(
            color='rgb(10, 140, 208)'
        ),
        name='Ubuntu Container (2W)',
        ysrc='setchring:103:58e6b9'
    )
    data = Data([trace1, trace2, trace3, trace4])
    layout = Layout(
        title='Startvergleich mit 160 Hosts bzw. Containern'
    )
    layout = Layout(
        showlegend=False,
        title='Startvergleich mit 160 Hosts bzw. Containern (Parallel)',
        yaxis=dict(
            range=[0, 70],
            showgrid=True,
            zeroline=True,
            title="Startzeit in Sekunden"
        ),
        xaxis=dict(tickangle=45))
    fig = Figure(data=data, layout=layout)
    from plotly.offline import init_notebook_mode, plot
    init_notebook_mode()
    plot(fig, image='svg', filename='startvergleich160paralel.html')
Esempio n. 8
0
 def _plot(self, grobby, filename):
     global notebook_mode, notebook_mode_init
     if notebook_mode:
         if not notebook_mode_init:
             ply.init_notebook_mode()
             notebook_mode_init = True
         ply.iplot(grobby)
     else:
         ply.plot(grobby, filename=filename)
Esempio n. 9
0
 def load_nb(cls, inline=True):
     """
     Loads the plotly notebook resources.
     """
     from IPython.display import publish_display_data
     cls._loaded = True
     init_notebook_mode(connected=not inline)
     publish_display_data(data={MIME_TYPES['jlab-hv-load']:
                                get_plotlyjs()})
Esempio n. 10
0
def _plot(
        data, layout, html_only=False, to_file=False,
        layout_updates=None, plotly_kwarg_updates=None,
        # kwargs are included as they get passed through from the
        # plotting accessor method, but are not actually used
        **kwargs):

    plotly_kwargs = dict(
        show_link=False,
        config={
            'displaylogo': False,
            'modeBarButtonsToRemove': ['sendDataToCloud'],
        },
    )

    if type_of_script() == 'jupyter':
        plotter = pltly.iplot
        plotly_filename_key = 'filename'
        pltly.init_notebook_mode(connected=False)
    else:
        plotter = pltly.plot
        plotly_filename_key = 'image_filename'
        plotly_kwargs['auto_open'] = True
        plotly_kwargs['filename'] = 'temp_plot.html'

    if layout_updates:
        layout = {**layout, **layout_updates}

    if plotly_kwarg_updates:
        plotly_kwargs = {**plotly_kwargs, **plotly_kwarg_updates}

    if to_file:
        filename, image_type = to_file.rsplit('.', 1)
        # Plotly can only save certain file types
        if image_type not in ['png', 'jpeg', 'svg', 'webp']:
            raise TypeError(
                'Unable to save plot as `{}`, choose from '
                '[`png`, `jpeg`, `svg`, `webp`]'.format(image_type)
            )
        if 'updatemenus' in layout:
            raise ValueError('Unable to save multiple arrays to SVG, pick one array only')
        else:
            plotly_kwargs.update(image=image_type)
            plotly_kwargs[plotly_filename_key] = filename

    if data:
        if html_only:
            return pltly.plot(
                {'data': data, 'layout': layout},
                include_plotlyjs=False, output_type='div',
                **plotly_kwargs
            )
        else:
            plotter({'data': data, 'layout': layout}, **plotly_kwargs)
    else:
        raise ValueError('No data to plot.')
Esempio n. 11
0
def start160Sequenziell():
    import plotly.plotly as py
    from plotly.graph_objs import *
    py.sign_in('username', 'api_key')
    trace1 = Box(
        y=[16.710778951644897, 23.12172794342041, 23.15219497680664, 23.376353979110718, 23.672327041625977],
        boxmean='sd',
        marker=Marker(
            color='rgb(8, 81, 156)'
        ),
        name='Mininethosts (1W)',
        ysrc='setchring:81:588b00'
    )
    trace2 = Box(
        y=[18.521923065185547, 18.818742036819458, 18.903568029403687, 19.197312116622925, 19.296133041381836],
        boxmean='sd',
        marker=Marker(
            color='rgb(8, 81, 156)'
        ),
        name='Mininethosts (2W)',
        ysrc='setchring:81:188a28'
    )
    trace3 = Box(
        y=[55.71610999107361, 50.11128902435303, 51.42167401313782, 52.32876491546631, 53.01005816459656],
        boxmean='sd',
        marker=Marker(
            color='rgb(10, 140, 208)'
        ),
        name='Ubuntu Container (1W)',
        ysrc='setchring:81:fb5f3d'
    )
    trace4 = Box(
        y=[46.878589153289795, 47.398112058639526, 47.66672992706299, 48.80990219116211, 49.06117510795593],
        boxmean='sd',
        marker=Marker(
            color='rgb(10, 140, 208)'
        ),
        name='Ubuntu Container (2W)',
        ysrc='setchring:81:80411e'
    )
    data = Data([trace1, trace2, trace3, trace4])
    layout = Layout(
        showlegend=False,
        title='Startvergleich mit 160 Hosts bzw. Containern (Sequenziell)',
    yaxis = dict(
        range=[0, 60],
        showgrid=True,
        zeroline=True,
        title="Startzeit in Sekunden"
    ),
        xaxis=dict(tickangle=45)
    )
    fig = Figure(data=data, layout=layout)
    from plotly.offline import init_notebook_mode, plot
    init_notebook_mode()
    plot(fig, image='svg', filename='startvergleich160seq.html')
Esempio n. 12
0
File: js.py Progetto: janba/GEL
def set_export_mode(_exp_mode=True):
    """ Calling this function will set export mode to true. It is necessary
    to do so if we use nbconvert to export a notebook containing interactive
    plotly graphics to HTML. In other words, this function should not be called
    in normal usage from within Jupyter but only when we export to HTML. It is
    then called once in the beginning of the notebook."""
    global EXPORT_MODE
    EXPORT_MODE=_exp_mode
    if EXPORT_MODE:
        py.init_notebook_mode(connected=False)
Esempio n. 13
0
 def __init__(self, colormap=None, eye=None, zoom=1, init_notebook=True):
     if eye is None:
         self.eye = dict(x=1.25, y=1.25, z=1.25)
     else:
         self.eye = deepcopy(eye)
     for key, val in self.eye.items():
         self.eye[key] = val / float(zoom)
     self.camera = dict(eye=self.eye)
     self.layout = dict(scene=dict(camera=self.camera))
     self.cmap = plt.cm.Greys if colormap is None else colormap
     self.surfacedata = None
     self.scatterdata = None
     if init_notebook is True:
         offl.init_notebook_mode()
Esempio n. 14
0
def ishow(figs, nb=True, **kwargs):
    """ Show multiple plotly figures in notebook or on web. """
    if isinstance(figs, (list, tuple)):
        fig_main = figs[0]
        for fig in figs[1:]:
            fig_main["data"] += fig["data"]
    else:
        fig_main = figs
    if nb:
        from plotly.offline import init_notebook_mode
        from plotly.offline import iplot as plot
        init_notebook_mode()
    else:
        from plotly.plotly import plot
    plot(fig_main, **kwargs)
Esempio n. 15
0
def go_offline(connected=None):
    """
    connected : bool
        If True, the plotly.js library will be loaded
        from an online CDN. If False, the plotly.js library will be loaded locally
        from the plotly python package
    """
    from .auth import get_config_file
    if connected is None:
        try:
            connected=True if get_config_file()['offline_connected'] is None else get_config_file()['offline_connected']
        except:
            connected=True
    if run_from_ipython():
        try:
            py_offline.init_notebook_mode(connected)
        except TypeError:
            #For older versions of plotly
            py_offline.init_notebook_mode()
        py_offline.__PLOTLY_OFFLINE_INITIALIZED=True
Esempio n. 16
0
def plot_plotly(data):
    init_notebook_mode(connected=False)

    fig = ff.create_candlestick(dates=data.index,
                                open=data.open,
                                high=data.high,
                                low=data.low,
                                close=data.close)
    fig['layout'].update({
        'title': 'FX 1min',
        'yaxis': {'title': 'AUDCAD'},
        'shapes': [{
            'x0': '20114-12-28', 'x1': '2014-12-30',
            'y0': 0, 'y1': 1, 'xref': 'x', 'yref': 'paper',
            'line': {'color': 'rgb(30,30,30)', 'width': 1}
        }],
        'annotations': [{
            'x': '2014-12-29', 'y': 0.05, 'xref': 'x', 'yref': 'paper',
            'showarrow': False, 'xanchor': 'left',
            'text': 'Official start of the recession'
        }]
    })
    plot(fig, filename='simple_candlestick.html', validate=True)
Esempio n. 17
0
def xray_maker_2(df_xray, bz=50, bx=15, by=15):
    '''Helper function to generate the x-ray visualization for particle trapping plots.'''

    print('binning...')
    init_notebook_mode()
    xray_query = 'xstop<1000 and tstop< 200 and sqrt(xstop*xstop+ystop*ystop)<900'
    df_xray.query(xray_query, inplace=True)

    h, e = np.histogramdd(np.asarray([df_xray.zstop, df_xray.xstop, df_xray.ystop]).T,
                          bins=(bz, bx, by), range=[(3500, 15000), (-900, 900), (-900, 900)])
    h_adj = h/h.max()

    cube_list = []
    for i in range(bz):
        for j in range(bx):
            for k in range(by):
                if h_adj[i][j][k] == 0:
                    continue
                cube_list.append(
                    go.Mesh3d(
                        x=[e[0][i], e[0][i], e[0][i+1], e[0][i+1],
                           e[0][i], e[0][i], e[0][i+1], e[0][i+1]],
                        y=[e[1][j], e[1][j+1], e[1][j+1], e[1][j],
                           e[1][j], e[1][j+1], e[1][j+1], e[1][j]],
                        z=[e[2][k], e[2][k], e[2][k], e[2][k],
                           e[2][k+1], e[2][k+1], e[2][k+1], e[2][k+1]],
                        i=[7, 0, 0, 0, 4, 4, 6, 6, 4, 0, 3, 2],
                        j=[3, 4, 1, 2, 5, 6, 5, 2, 0, 1, 6, 3],
                        k=[0, 7, 2, 3, 6, 7, 1, 1, 5, 5, 7, 6],
                        color='00FFFF',
                        opacity=h_adj[i][j][k]*0.5
                    )
                )

    layout = ptrap_layout(title='test xray')
    fig = go.Figure(data=go.Data(cube_list), layout=layout)
    iplot(fig)
Esempio n. 18
0
def go_offline(offline=True):
    if offline:
        py_offline.init_notebook_mode()
        py_offline.__PLOTLY_OFFLINE_INITIALIZED = True
    else:
        py_offline.__PLOTLY_OFFLINE_INITIALIZED = False
Esempio n. 19
0
# coding:utf8

# 这里可以找到各种图例 https://plot.ly/python/

import plotly.offline as py
py.init_notebook_mode()  # Otherwise, the figure will not be depicted.
import plotly.graph_objs as go

py.iplot(go.Data([go.Scatter(x=X, y=Y,)]))  # 直接在interactive地在jupyter里显示

py.plot(fig, filename='the_graph.html')  # 或者直接保存成文件
# 之后可以用加载html的方式显示出来
with open(html_path) as f:
    display(HTML(f.read()))


# convert matplot to plotly
# https://plot.ly/matplotlib/modifying-a-matplotlib-figure/
# https://plot.ly/matplotlib/
#
# plot...
py.iplot_mpl(plt.gcf())






# plot stacked
traces = []
cum = None
Esempio n. 20
0
def set_notebook_mode():
    from plotly.offline import init_notebook_mode, iplot
    global pplot
    pplot = iplot
    init_notebook_mode(connected=True)
Esempio n. 21
0
def mu2e_plot3d_ptrap_anim(df_group1, x, y, z, df_xray, df_group2=None, color=None, title=None):
    """Generate 3D scatter plots, with a slider widget typically for visualizing 3D positions of
    charged particles.

    Generate a 3D scatter plot for a given DF and three columns. Due to the large number of points
    that are typically plotted, :mod:`matplotlib` is not supported. A slider widget is generated,
    corresponding to the evolution in time.

    Notes:
        * Currently many options are hard-coded.
        * Use `g.plot(fig)` after executing this function.
    Args:
        df_group1 (pandas.DataFrame): The input DF, must contain columns with labels corresponding
        to the 'x', 'y', and 'z' args.
        x (str): Name of the first variable.
        y (str): Name of the second variable.
        z (str): Name of the third variable.
        df_xray: (:class:`pandas.DataFrame`): A seperate DF, representing the geometry of the
            material that is typically included during particle simulation.
        df_group2: (:class:`pandas.DataFrame`, optional): A seperate DF, representing the geometry
            of the material that is typically included during particle simulation.
        color (optional): Being implemented...
        title (str, optional): Title.

    Returns:
        (g, fig) for plotting.
    """
    init_notebook_mode()
    layout = ptrap_layout(title=title)

    class time_shifter:
        def __init__(self, group2=False, color=False):
            self.x = df_group1[df_group1.sid == sids[0]][x]
            self.y = df_group1[df_group1.sid == sids[0]][y]
            self.z = df_group1[df_group1.sid == sids[0]][z]
            self.group2 = group2
            self.docolor = color
            if self.docolor:
                self.color = df_group1[df_group1.sid == sids[0]].p

            if self.group2:
                self.x2 = df_group2[df_group2.sid == sids[0]][x]
                self.y2 = df_group2[df_group2.sid == sids[0]][y]
                self.z2 = df_group2[df_group2.sid == sids[0]][z]
                if self.docolor:
                    self.color2 = df_group2[df_group2.sid == sids[0]].p

        def on_time_change(self, name, old_value, new_value):
            try:
                self.x = df_group1[df_group1.sid == sids[new_value]][x]
                self.y = df_group1[df_group1.sid == sids[new_value]][y]
                self.z = df_group1[df_group1.sid == sids[new_value]][z]
                if self.docolor:
                    self.color = df_group1[df_group1.sid == sids[new_value]].p
            except:
                self.x = []
                self.y = []
                self.z = []
                if self.docolor:
                    self.color = []

            if self.group2:
                try:
                    self.x2 = df_group2[df_group2.sid == sids[new_value]][x]
                    self.y2 = df_group2[df_group2.sid == sids[new_value]][y]
                    self.z2 = df_group2[df_group2.sid == sids[new_value]][z]
                    if self.docolor:
                        self.color2 = df_group2[df_group2.sid == sids[new_value]].p
                except:
                    self.x2 = []
                    self.y2 = []
                    self.z2 = []
                    if self.docolor:
                        self.color2 = []
            self.replot()

        def replot(self):
            if self.docolor:
                g.restyle({'x': [self.x], 'y': [self.y], 'z': [self.z],
                           'marker': dict(size=5, color=self.color,
                                          opacity=1, colorscale='Viridis', cmin=0, cmax=100,
                                          showscale=True,
                                          line=dict(color='black', width=1),
                                          colorbar=dict(title='Momentum (MeV)', xanchor='left'))
                           },
                          indices=[0])
            else:
                g.restyle({'x': [self.x], 'y': [self.y], 'z': [self.z]}, indices=[0])
            if self.group2:
                if self.docolor:
                    g.restyle({'x': [self.x2], 'y': [self.y2], 'z': [self.z2],
                               'marker': dict(size=5, color=self.color2,
                                              opacity=1, colorscale='Viridis', cmin=0, cmax=100,
                                              symbol='x',
                                              showscale=True,
                                              line=dict(color='black', width=1),
                                              colorbar=dict(title='Momentum (MeV)',
                                                            xanchor='left')),
                               },
                              indices=[1])
                else:
                    g.restyle({'x': [self.x2], 'y': [self.y2], 'z': [self.z2]}, indices=[1])
    try:
        g1_name = df_group1.name
    except:
        g1_name = 'Group 1'

    group2 = False
    if isinstance(df_group2, pd.DataFrame):
        group2 = True
        try:
            g2_name = df_group2.name
        except:
            g2_name = 'Group 1'

    if group2:
        if len(df_group1.sid.unique()) > len(df_group2.sid.unique()):
            sids = np.sort(df_group1.sid.unique())
        else:
            sids = np.sort(df_group2.sid.unique())
    else:
        sids = np.sort(df_group1.sid.unique())

    scats = []
    if color:
        mdict = dict(size=5, color=df_group1[df_group1.sid == sids[0]].p, opacity=1,
                     colorscale='Viridis', cmin=0, cmax=100,
                     showscale=True,
                     line=dict(color='black', width=1),
                     colorbar=dict(title='Momentum (MeV)', xanchor='left'))
    else:
        mdict = dict(size=5, color='red', opacity=0.7)

    init_scat = go.Scatter3d(
        x=df_group1[df_group1.sid == sids[0]][x],
        y=df_group1[df_group1.sid == sids[0]][y],
        z=df_group1[df_group1.sid == sids[0]][z],
        mode='markers',
        # marker=dict(size=5, color='red', opacity=0.7),
        marker=mdict,
        name=g1_name,
    )
    scats.append(init_scat)

    if group2:
        if color:
            mdict2 = dict(size=5, color=df_group2[df_group2.sid == sids[0]].p, opacity=1,
                          colorscale='Viridis', cmin=0, cmax=100,
                          showscale=True,
                          line=dict(color='black', width=1),
                          colorbar=dict(title='Momentum (MeV)', xanchor='left'))
        else:
            mdict2 = dict(size=5, color='blue', opacity=0.7)
        init_scat2 = go.Scatter3d(
            x=df_group2[df_group2.sid == sids[0]][x],
            y=df_group2[df_group2.sid == sids[0]][y],
            z=df_group2[df_group2.sid == sids[0]][z],
            mode='markers',
            marker=mdict2,
            name=g2_name)
        scats.append(init_scat2)

    xray_maker(df_xray, scats)

    p_slider = widgets.IntSlider(min=0, max=500, value=0, step=1, continuous_update=False)
    p_slider.description = 'Time Shift'
    p_slider.value = 0
    p_state = time_shifter(group2, color)
    p_slider.on_trait_change(p_state.on_time_change, 'value')

    fig = go.Figure(data=scats, layout=layout)
    g = GraphWidget('https://plot.ly/~BroverCleveland/70/')
    display(g)
    display(p_slider)
    return g, fig
Esempio n. 22
0
def inter_rater():
    dict = {}
    for dir in directories:
        dict[dir] = None
    import numpy as np

    for dir in directories:
        arr = []
        for i in range(1, 19):
            data = pd.read_csv(result_path + dir + "/" + str(i) + "_head.csv")
            arr.append(data["label"].values.tolist())
        dict[dir] = np.array(arr)

    from sklearn.metrics import cohen_kappa_score
    kappas = []
    for (userA, dataA) in dict.iteritems():
        for (userB, dataB) in dict.iteritems():
            dataA = dataA.ravel().ravel()
            dataB = dataB.ravel().ravel()

            kappas.append(cohen_kappa_score(dataA, dataB))

        kappas.append(0)


    n_users = len(dict.items())

    data =  np.array(kappas).reshape((n_users, n_users+1))
    annotations = []
    keys = dict.keys()

    anons = [x[0:2] for x in keys]

    ys = keys
    # ys.append("empty")
    xs = keys
    xs.append("reference")
    print xs
    print ys
    for (x,row) in enumerate(data):
        for (y, v) in enumerate(row):
            v= float("{0:.2f}".format(v))
            annotations.append(Annotation(text=str(v), x=xs[y],y=keys[x], showarrow=False))

    init_notebook_mode()
    trace = Heatmap(z = data, x=xs, y=keys, colorscale=[[0, "red"],[1,"green"]])#"Greys"
    data = [trace]
    layout = Layout(
        title="Cohen-Kappa score per subject pairs",
        xaxis=XAxis(
            title="Anonimized subject"
        ),
        yaxis = YAxis(
            title= "Anonimized subject"
        ),
        showlegend=False,
        height=600,
        width=600,
        annotations=annotations,
    )
    fig = Figure(data=data, layout=layout)
    plot(fig)
Esempio n. 23
0
from sframe import SFrame
from sframe import SArray
from sframe import aggregate as agg

# In[4]:

#--------------------------------------------------
import plotly as plotly
print "Plotly version", plotly.__version__  # version >1.9.4 required
import plotly.graph_objs as go
from plotly import tools

# plotly.offline.init_notebook_mode() # run at the start of every notebook
from plotly.offline import download_plotlyjs, init_notebook_mode, iplot  #, plot  # Difference .plot / .iplot ???
init_notebook_mode(
)  # run at the start of every ipython notebook to use plotly.offline
# this injects the plotly.js source files into the notebook
#--------------------------------------------------
# %matplotlib inline
# import matplotlib.pyplot as plt
# import seaborn as sns
#--------------------------------------------------

# ---
# # Read data into SFrames

# In[4]:

usersSF = SFrame.read_csv("%s/users.dat" % DATADIR,
                          delimiter='::',
                          header=False,
Esempio n. 24
0
 def plot(self, mode='weights'):
     plotly.init_notebook_mode(connected=True)
     if mode == 'weights':
         self.plot_weights()
     elif mode == 'bias':
         self.plot_bias()
Esempio n. 25
0
class JSWidget(widgets.DOMWidget):
    """
    A widget for plotting and updating graphs OFFLINE in IPython Notebooks.
    """
    _view_name = Unicode('JSView').tag(sync=True)
    _view_module = Unicode('JSViewModule').tag(sync=True)
    _message = Unicode().tag(sync=True)
    _new_graph_id = Unicode().tag(sync=True)
    _uid_dict = {}  # used for on_completion

    # Inject JSWidget.js.
    js_widget_code = resource_string(__name__, 'JSWidget.js').decode('utf-8')
    display(Javascript(js_widget_code))

    # Inject plotly.js (included in plotly).
    init_notebook_mode(connected=False)

    def __init__(self, initial_height=None, initial_width=None, **kwargs):
        super(JSWidget, self).__init__(**kwargs)

        self._switch = False
        self.on_msg(self._handle_msg)

        id = str(uuid.uuid4())
        self._graph_id = id
        self._new_graph_id = id  # sends id to JS

        self._cur_height = initial_height or 600
        self._cur_width = initial_width or '100%'

        self._event_handlers = {}
        self._unsent_msgs = deque()

        self._displayed = False

    def _ipython_display_(self, **kwargs):
        if self._displayed:
            print("You can't display the same widget more than once!")
        else:
            super(JSWidget, self)._ipython_display_(**kwargs)
            self._displayed = True

            # We can finally send the unsent messages.
            while self._unsent_msgs:
                msg = self._unsent_msgs.popleft()
                self._send_message(msg)

    def _send_message(self, message):
        if self._displayed:
            self._message = json.dumps([self._switch, message],
                                       cls=utils.PlotlyJSONEncoder)
            self._switch = not self._switch
        else:
            # We can't send the message until the widget has been displayed.
            self._unsent_msgs.append(message)

    def _handle_msg(self, message):  # ouch: don't change this name!
        content = message['content']['data']['content']
        ctype = content['type']
        if ctype == 'on':
            self._event_handlers[content.event_name]()
        elif ctype == 'on_completion':
            callback = self._uid_dict.pop(content['on_completion_id'], False)
            if callback:
                callback()
        else:
            raise ValueError('Unrecognized ctype: ' + ctype)

    def on(self, event_name, handler, drop_trace_data=True, remove=False):
        """
        See https://plot.ly/javascript/plotlyjs-events/

        handler will be passed a structure data which contains several
        information relative to the event.
        If `drop_trace_data` is True, then all the fields `data` and
        `full_data`, if present, will be dropped. This is useful for efficiency
        reasons.
        """
        dispatcher = self._event_handlers.get(event_name)
        if remove:
            if not dispatcher or event_name not in dispatcher.callbacks:
                raise Exception('tried to remove a handler never registered')
            dispatcher.register_callback(handler, remove=True)
        else:
            if dispatcher:
                dispatcher.register_callback(handler)
            else:
                dispatcher = widgets.CallbackDispatcher()
                self._event_handlers[event_name] = dispatcher

                # The first registration must be done on the frontend as well.
                message = {
                    'method': 'on',
                    'event_name': event_name,
                    'drop_trace_data': drop_trace_data,
                    'graphId': self._graph_id
                }
                self._send_message(message)

    def clear_plot(self):
        """
        Note:
            This calls newPlot which unregisters all your event handlers.
        """
        message = {
            'method': 'newPlot',
            'data': [],
            'layout': {},
            'graphId': self._graph_id,
            'delay': 0,
        }
        self._send_message(message)

        # newPlot unregisters all the event handlers.
        self._event_handlers.clear()

    def new_plot(self,
                 figure_or_data,
                 validate=True,
                 on_completion=None,
                 delay=0):
        """
        See https://plot.ly/javascript/plotlyjs-function-reference/
        Note that JS functions are in camelCase.

        The only difference is that you need to pass a figure if you want to
        specify a layout.

        Note:
            newPlot unregisters all your event handlers.
        """
        on_completion_id = None
        if on_completion:
            on_completion_id = str(uuid.uuid4())
            self._uid_dict[on_completion_id] = on_completion

        figure = tools.return_figure_from_figure_or_data(
            figure_or_data, validate)
        message = {
            'method': 'newPlot',
            'data': figure.get('data', []),
            'layout': figure.get('layout', {}),
            'graphId': self._graph_id,
            'delay': delay,
            'on_completion_id': on_completion_id,
        }
        self._send_message(message)

        # newPlot unregisters all the event handlers.
        self._event_handlers.clear()

    def restyle(self, update, indices=None):
        """
        See https://plot.ly/javascript/plotlyjs-function-reference/
        Note that JS functions are in camelCase.
        """
        message = {
            'method': 'restyle',
            'update': update,
            'graphId': self._graph_id
        }
        if indices:
            message['indices'] = indices
        self._send_message(message)

    def relayout(self, layout):
        """
        See https://plot.ly/javascript/plotlyjs-function-reference/
        Note that JS functions are in camelCase.
        """
        message = {
            'method': 'relayout',
            'update': layout,
            'graphId': self._graph_id
        }
        self._send_message(message)

    def add_traces(self, traces, new_indices=None):
        """
        See https://plot.ly/javascript/plotlyjs-function-reference/
        Note that JS functions are in camelCase.
        """
        message = {
            'method': 'addTraces',
            'traces': traces,
            'graphId': self._graph_id
        }
        if new_indices:
            message['newIndices'] = new_indices
        self._send_message(message)

    def delete_traces(self, indices):
        """
        See https://plot.ly/javascript/plotlyjs-function-reference/
        Note that JS functions are in camelCase.
        """
        message = {
            'method': 'deleteTraces',
            'indices': indices,
            'graphId': self._graph_id
        }
        self._send_message(message)

    def move_traces(self, current_indices, new_indices=None):
        """
        See https://plot.ly/javascript/plotlyjs-function-reference/
        Note that JS functions are in camelCase.
        """
        message = {
            'method': 'moveTraces',
            'currentIndices': current_indices,
            'graphId': self._graph_id
        }
        if new_indices:
            message['newIndices'] = new_indices
        self._send_message(message)

    def download_image(self, format, width, height, filename):
        """
        See https://plot.ly/javascript/plotlyjs-function-reference/
        Note that JS functions are in camelCase.
        """
        message = {
            'method':
            'downloadImage',
            'imageProperties':
            dict(format=format, width=width, height=height, filename=filename)
        }
        self._send_message(message)
Esempio n. 26
0
#
import numpy as np
import pandas as pd
import re
import nltk

#plotly
from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
from chart_studio.grid_objs import Grid, Column
import plotly.graph_objs as go
import chart_studio.plotly as py
from plotly import tools

init_notebook_mode(connected=True)

#LDA
import pyLDAvis
import pyLDAvis.gensim

nltk.download('stopwords')
from nltk.corpus import stopwords

stop = stopwords.words('english')
pyLDAvis.enable_notebook()
from gensim import corpora, models

from scipy import stats

import warnings
@author: Soumen Sarkar
"""

import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
import warnings

warnings.filterwarnings("ignore")
import io
import plotly.offline as py  #visualization

py.init_notebook_mode(connected=True)  #visulatization
import plotly.graph_objs as go  #visualization
import plotly.tools as tls  #visualization
import plotly.figure_factory as ff

accident = pd.read_csv(
    'D:/Kaggle-DataSet/Barcelona-Dataset/accidents_2017/accidents_2017.csv')
accident.head()
#accident.columns=[col.replace(' ', '_').lower() for col in accident.columns]
accident.columns = [col.replace(' ', '_') for col in accident.columns]

print("Rows     :", accident.shape[0])
print("Columns    :", accident.shape[1])
print("\nFeatures :  \n", accident.columns.tolist())
print("\nMissing Values:  ", accident.isnull().sum().values.sum())
print("\nUnique Values:   \n", accident.nunique())
Esempio n. 28
0
    def plotplotly_mean_stdev(self,
                              xaxis_label="Time",
                              yaxis_label="Value",
                              title=None,
                              show_title=False,
                              show_legend=True,
                              included_species_list=[],
                              return_plotly_figure=False,
                              ddof=0,
                              **layout_args):
        """
        Plot a plotly graph depicting the mean and standard deviation of a results object

        :param xaxis_label: The label for the x-axis
        :type xaxis_label: str

        :param yaxis_label: The label for the y-axis
        :type yaxis_label: str

        :param title: The title of the graph
        :type title: str

        :param show_title: If True, title will be shown on graph.
        :type show_title: bool

        :param show_legend: Default True, if False, legend will not be shown on graph.
        :type show_legend: bool

        :param included_species_list: A list of strings describing which species to include. By default displays all
            species.
        :type included_species_list: list

        :param return_plotly_figure: Whether or not to return a figure dicctionary of data(graph object traces) and
            layout which may be edited by the user
        :type return_plotly_figure: bool

        :param ddof: Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents
            the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population standard deviation
            where ddof is 0.
        :type ddof: int

        :param **layout_args: Optional additional arguments to be passed to plotlys layout constructor.
        :type **layout_args: dict
        """

        # Backwards compatibility with xaxis_label argument (which duplicates plotly's xaxis_title argument)
        if layout_args.get('xaxis_title') is not None:
            xaxis_label = layout_args.get('xaxis_title')
            layout_args.pop('xaxis_title')
        if layout_args.get('yaxis_title') is not None:
            yaxis_label = layout_args.get('yaxis_title')
            layout_args.pop('yaxis_title')

        average_trajectory = self.average_ensemble().data[0]
        stddev_trajectory = self.stddev_ensemble(ddof=ddof).data[0]
        from plotly.offline import init_notebook_mode, iplot
        import plotly.graph_objs as go

        init_notebook_mode(connected=True)

        if not show_title:
            title = 'Mean and Standard Deviation'
        else:
            if title is None:
                title = (self._validate_title(show_title) +
                         " - Mean and Standard Deviation")

        trace_list = []
        for species in average_trajectory:
            if species != 'time':

                if species not in included_species_list and included_species_list:
                    continue

                upper_bound = []
                lower_bound = []
                for i in range(0, len(average_trajectory[species])):
                    upper_bound.append(average_trajectory[species][i] +
                                       stddev_trajectory[species][i])
                    lower_bound.append(average_trajectory[species][i] -
                                       stddev_trajectory[species][i])

                # Append upper_bound list to trace_list
                trace_list.append(
                    go.Scatter(name=species + ' Upper Bound',
                               x=average_trajectory['time'],
                               y=upper_bound,
                               mode='lines',
                               marker=dict(color="#444"),
                               line=dict(width=1, dash='dot'),
                               legendgroup=str(average_trajectory[species]),
                               showlegend=False))
                trace_list.append(
                    go.Scatter(
                        x=average_trajectory['time'],
                        y=average_trajectory[species],
                        name=species,
                        fillcolor='rgba(68, 68, 68, 0.2)',
                        fill='tonexty',
                        legendgroup=str(average_trajectory[species]),
                    ))

                # Append lower_bound list to trace_list
                trace_list.append(
                    go.Scatter(name=species + ' Lower Bound',
                               x=average_trajectory['time'],
                               y=lower_bound,
                               mode='lines',
                               marker=dict(color="#444"),
                               line=dict(width=1, dash='dot'),
                               fillcolor='rgba(68, 68, 68, 0.2)',
                               fill='tonexty',
                               legendgroup=str(average_trajectory[species]),
                               showlegend=False))

        layout = go.Layout(showlegend=show_legend,
                           title=title,
                           xaxis_title=xaxis_label,
                           yaxis_title=yaxis_label,
                           legend={'traceorder': 'normal'},
                           **layout_args)
        fig = dict(data=trace_list, layout=layout)

        if return_plotly_figure:
            return fig
        else:
            iplot(fig)
Esempio n. 29
0
    def plotplotly(self,
                   index=None,
                   xaxis_label="Time",
                   yaxis_label="Value",
                   title=None,
                   show_title=False,
                   show_legend=True,
                   multiple_graphs=False,
                   included_species_list=[],
                   return_plotly_figure=False,
                   **layout_args):
        """ Plots the Results using plotly. Can only be viewed in a Jupyter Notebook.

        :param index: If not none, the index of the Trajectory to be plotted.
        :type index: int

        :param xaxis_label: The label for the x-axis
        :type xaxis_label: str

        :param yaxis_label: The label for the y-axis
        :type yaxis_label: str

        :param title: The title of the graph
        :type title: str

        :param show_title: If True, title will be shown on graph.
        :type show_title: bool

        :param show_legend: Default True, if False, legend will not be shown on graph.
        :type show_legend: bool

        :param multiple_graphs: IF each trajectory should have its own graph or if they should overlap.
        :type multiple_graphs: bool

        :param included_species_list: A list of strings describing which species to include. By default displays all
            species.
        :type included_species_list: list

        :param return_plotly_figure: Whether or not to return a figure dictionary of data(graph object traces) and
            layout which may be edited by the user
        :type return_plotly_figure: bool

        :param **layout_args: Optional additional arguments to be passed to plotlys layout constructor.
        :type **layout_args: dict
        """

        from plotly.offline import init_notebook_mode, iplot
        import plotly.graph_objs as go

        # Backwards compatibility with xaxis_label argument (which duplicates plotly's xaxis_title argument)
        if layout_args.get('xaxis_title') is not None:
            xaxis_label = layout_args.get('xaxis_title')
            layout_args.pop('xaxis_title')
        if layout_args.get('yaxis_title') is not None:
            yaxis_label = layout_args.get('yaxis_title')
            layout_args.pop('yaxis_title')

        init_notebook_mode(connected=True)

        from collections.abc import Iterable
        trajectory_list = []
        if isinstance(index, Iterable):
            for i in index:
                trajectory_list.append(self.data[i])
        elif isinstance(index, int):
            trajectory_list.append(self.data[index])
        else:
            trajectory_list = self.data

        number_of_trajectories = len(trajectory_list)

        if title is None:
            title = self._validate_title(show_title)

        fig = dict(data=[], layout=[])

        if len(trajectory_list) < 2:
            multiple_graphs = False

        if multiple_graphs:

            from plotly import subplots

            fig = subplots.make_subplots(print_grid=False,
                                         rows=int(number_of_trajectories / 2) +
                                         int(number_of_trajectories % 2),
                                         cols=2)

            for i, trajectory in enumerate(trajectory_list):
                if i > 0:
                    trace_list = _plotplotly_iterate(
                        trajectory,
                        trace_list=[],
                        included_species_list=included_species_list,
                        show_labels=False)
                else:
                    trace_list = _plotplotly_iterate(
                        trajectory,
                        trace_list=[],
                        included_species_list=included_species_list)

                for k in range(0, len(trace_list)):
                    if i % 2 == 0:
                        fig.append_trace(trace_list[k], int(i / 2) + 1, 1)
                    else:
                        fig.append_trace(trace_list[k], int(i / 2) + 1, 2)

                fig['layout'].update(autosize=True,
                                     height=400 * len(trajectory_list),
                                     showlegend=show_legend,
                                     title=title)
        else:
            trace_list = []
            for i, trajectory in enumerate(trajectory_list):
                if i > 0:
                    trace_list = _plotplotly_iterate(
                        trajectory,
                        trace_list=trace_list,
                        included_species_list=included_species_list,
                        show_labels=False)
                else:
                    trace_list = _plotplotly_iterate(
                        trajectory,
                        trace_list=trace_list,
                        included_species_list=included_species_list)

            layout = go.Layout(showlegend=show_legend,
                               title=title,
                               xaxis_title=xaxis_label,
                               yaxis_title=yaxis_label,
                               **layout_args)

            fig['data'] = trace_list
            fig['layout'] = layout

        if return_plotly_figure:
            return fig
        else:
            iplot(fig)
import pandas as pd
import numpy as np
import plotly.offline as plt
import plotly.graph_objs as go
plt.init_notebook_mode()
import os
import random
import math
from tqdm import tqdm
from sklearn.metrics import mean_squared_error
from scipy.stats import spearmanr
import theano
theano.config.compute_test_value = 'raise'
from multiprocessing import Pool, cpu_count

DATA_DIR = "../data/"
SONGS_FILE = "songs.csv"
NFEATURE = 15 #Number of Features
S = 50 #Hyper Parameter
totReco = 0 #Number of total recommendation till now
startConstant = 5 #for low penalty in starting phase

###Read data
Songs = pd.read_csv(DATA_DIR + SONGS_FILE, index_col=0)

ratedSongs = set()


def compute_utility(user_features, song_features, epoch, s=S):
    """ Compute utility U based on user preferences and song preferences """
    user_features = user_features.copy()
import networkx as nx

from mpl_toolkits.basemap import Basemap
import plotly.plotly as py
from plotly.graph_objs import *
py.sign_in('vpreston', 'tcx2wn8rfb')

from plotly.offline import download_plotlyjs, init_notebook_mode, iplot
from plotly.offline import plot
from plotly.graph_objs import Scatter
init_notebook_mode()


############### Imports above to be added to the beginning

m = Basemap()
def make_scatter(x,y):
    return Scatter(x=x,y=y,mode='lines',line=Line(color='black'),name=' ')

def polygons_to_traces(poly_paths, N_poly):
    ''' 
    pos arg 1. (poly_paths): paths to polygons
    pos arg 2. (N_poly): number of polygon to convert
    '''
    traces = []  # init. plotting list 

    for i_poly in range(N_poly):
        poly_path = poly_paths[i_poly]
        
        # get the Basemap coordinates of each segment
        coords_cc = np.array(
Esempio n. 32
0
summary_file = os.path.join(basecall_dir, "sequencing_summary.txt")
html_outfile = os.path.join(basecall_dir, "pycoQC_summary_plots.html")
min_pass_qual = min_qscore

# In[13]:

from pycoQC.pycoQC import pycoQC
from pycoQC.pycoQC_plot import pycoQC_plot

# Import helper functions from pycoQC
from pycoQC.common import jhelp

# Import and setup plotly for offline plotting in Jupyter
from plotly.offline import plot, iplot, init_notebook_mode

init_notebook_mode(connected=False)

# ## Init pycoQC

# In[14]:

p = pycoQC(summary_file, html_outfile=html_outfile)

# In[15]:

html_outfile

# In[16]:

fig = p.summary()
iplot(fig, show_link=False)
Esempio n. 33
0
    def display_curve(self,
                      curve='ROC curve',
                      title=None,
                      model_line=None,
                      random_line=None,
                      legend=None):
        """
        Plot the selected curve of this model

        Args:
            curve (str): curve to be diplayed, options are 'ROC curve', 'Gain curve', 'Lift curve', 'Purity curve' and
                'Precision Recall'. Default is 'ROC curve'.
            title (str): Title of the diagram. Default is a custom model name
            model_line (dict): display options of model line, ex: dict(color=('rgb(205, 12, 24)'), dash='dash', width=1).
                Default is a blue line. see https://plot.ly/python/line-and-scatter/
            random_line (dict): display options of random line. Default is a red dash line.
            legend (dict): legend options, ex: dict(orientation="h") or dict(x=-.1, y=1.2).
                Default is at the right of the diagram. see https://plot.ly/python/legend/

        Returns:
            plot of the curve
        """

        try:
            import plotly.graph_objs as go
            import plotly.offline as py
            from plotly.offline import init_notebook_mode
        except ImportError as E:
            raise ApiException(
                'Plotly external package is required for this operation, please execute "!pip install plotly" and restart the kernel',
                str(E))

        if curve not in [
                'ROC curve', 'Gain curve', 'Lift curve', 'Purity curve',
                'Precision Recall'
        ]:
            print('Unexpected curve type : {}, valid options are : {}'.format(
                curve,
                "'ROC curve', 'Gain curve', 'Lift curve', 'Purity curve', 'Precision Recall'"
            ))
            return

        self.__load_confusion_matrix()

        x, y, x_name, y_name = self.__get_x_y_info(curve)

        init_notebook_mode(connected=False)
        if model_line:
            roc = go.Scatter(x=x,
                             y=y,
                             name='{}'.format(self.name),
                             mode='lines',
                             line=model_line)
        else:
            roc = go.Scatter(x=x,
                             y=y,
                             name='{}'.format(self.name),
                             mode='lines')

        data = [roc]
        random_line_arg = random_line or dict(
            color=('rgb(205, 12, 24)'), dash='dash', width=1)
        if curve == 'ROC curve' or curve == 'Gain curve':
            random = go.Scatter(x=[0, 1],
                                y=[0, 1],
                                name='Random',
                                mode='lines',
                                line=random_line_arg)
        elif curve == 'Lift curve':
            random = go.Scatter(x=[0, 1],
                                y=[1, 1],
                                name='Random',
                                mode='lines',
                                line=random_line_arg)
        else:
            random = None

        if random:
            data.append(random)

        default_title = '{} of {}'.format(curve, self.name)
        if curve == 'ROC curve' or curve == 'Precision Recall':
            default_title = '{} (AUC = {:0.2f})'.format(
                default_title, self.__json_confusion_matrix[curve][-1]['auc'])
        curve_title = title or default_title

        layout = dict(
            title=curve_title,
            xaxis=dict(title=x_name, range=[0, 1]),
            yaxis=dict(title=y_name, range=[0, max(y) + 0.05]),
        )
        if legend:
            layout['legend'] = legend

        fig = dict(data=data, layout=layout)
        py.iplot(fig, validate=False)
Esempio n. 34
0
# **This notebook will always be a work in progress.** Please leave any comments about further improvements to the notebook! Any feedback or constructive criticism is greatly appreciated!.** If you like it or it helps you , you can upvote and/or leave a comment :).**

# ### Problem Statement
# ---------------------------------------
# For the locations in which Kiva has active loans, our objective is to pair Kiva's data with additional data sources to estimate the welfare level of borrowers in specific regions, based on shared economic and demographic characteristics.

# In[86]:

import pandas as pd  # package for high-performance, easy-to-use data structures and data analysis
import numpy as np  # fundamental package for scientific computing with Python
import matplotlib
import matplotlib.pyplot as plt  # for plotting
import seaborn as sns  # for making plots with seaborn
color = sns.color_palette()
import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.offline as offline
offline.init_notebook_mode()
import plotly.tools as tls
import squarify
# Supress unnecessary warnings so that presentation looks clean
import warnings
warnings.filterwarnings("ignore")

# Print all rows and columns
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# In[87]:
Esempio n. 35
0
def widget_emso_qc(wf,
                   depth_range: List[float] = [-10, 10000],
                   range_test: List[float] = [-1000, 1000],
                   spike_window: int = 100,
                   spike_threshold: float = 3.5,
                   spike_influence: float = 0.5,
                   user: str = '',
                   password: str = '',
                   token: str = ''):
    """
    It makes a Jupyter Notebook Widget used to download EMSO data and make data
    quality control tests.

    Parameters
    ----------
        wf: WaterFrame
        depth_range: List[float]
            Range of depth
        user: str
            User for the EMSO ERIC API
        password: str
            Password for the EMSO ERIC API
        token: str
            Token for the EMSO ERIC API
        parameter: str
            Parameter
        range_test: List[float]
            Limits for the range test [min value, max value]
        spike_window: int
            Window for the spike test
        spike_threshold: float
            Float for the spike test
        spike_influence: float
            Influence of the bad data on the spike test

    Returns
    -------
        main_box: ipwidgets.VBox
            Jupyter notebook widget 
    """
    pyo.init_notebook_mode()

    # Layout config
    label_width = '7rem'
    sublabel_width = '5rem'
    checkbox_width = '8rem'

    def show_result(wf, parameter_in, chart_title=''):
        # Change name of flags
        wf2 = wf.copy()
        qc_labels = {0: 'No QC', 1: 'Good data', 4: 'Bad data'}
        wf2.data[f'{parameter_in}_QC'].replace(qc_labels, inplace=True)

        fig = wf2.iplot_line(
            parameter_in,
            # color=f'{parameter_in}_QC',
            marginal_y=None,
            line_shape='linear',
            rangeslider_visible=False,
            line_dash_sequence=['dot', 'dot'],
            title=chart_title,
        )
        # line_group='DEPTH')
        fig.show()

    # Sing in
    authentification_title = widgets.HTML('<b>Authentification</b>')
    user_label = widgets.Label('User:'******'Password:'******'or', layout=widgets.Layout(width=label_width))
    token_label = widgets.Label('Token:',
                                layout=widgets.Layout(width=label_width))
    input_token = widgets.Text(value=token)

    # map
    emso = mooda.EMSO(user=input_user.value,
                      password=input_password.value,
                      token=input_token.value)
    map_dict = emso.get_fig_map()
    pio.show(map_dict)

    # Platform code
    data_title = widgets.HTML('<b>Downloading data</b>')
    platform_label = widgets.Label('Platform code:',
                                   layout=widgets.Layout(width=label_width))
    platform_codes = emso.get_info_platform_code()
    input_platform = widgets.Dropdown(options=platform_codes,
                                      value=platform_codes[0],
                                      disabled=False)

    # Get metadata
    metadata_list = emso.get_metadata(platform_codes=[platform_codes[0]])
    try:
        metadata = metadata_list[0]
        parameter_list = metadata.get('parameters')
        if parameter_list is None:
            parameter_list = emso.get_info_parameter()
        depth_min = metadata.get('geospatial_vertical_min', depth_range[0])
        depth_max = metadata.get('geospatial_vertical_max', depth_range[1])
        start_date = metadata.get('time_coverage_start')
        if start_date:
            start_date = start_date.split('T')[0]
        end_date = metadata.get('time_coverage_end')
        if end_date:
            end_date = end_date.split('T')[0]
    except:
        parameter_list = emso.get_info_parameter()
        depth_min = depth_range[0]
        depth_max = depth_range[1]
        start_date = None
        end_date = None

    # Parameters
    parameters_label = widgets.Label('Parameters:',
                                     layout=widgets.Layout(width=label_width))
    input_parameters = widgets.SelectMultiple(options=parameter_list,
                                              rows=10,
                                              disabled=False,
                                              value=[parameter_list[0]])

    # Size
    size_label = widgets.Label('Size:',
                               layout=widgets.Layout(width=label_width))
    input_size = widgets.BoundedIntText(value=10, min=1, max=100000, step=1)

    # Depth
    depth_label = widgets.Label('Depth:',
                                layout=widgets.Layout(width=label_width))
    input_depth = widgets.FloatRangeSlider(value=[depth_min, depth_max],
                                           min=depth_min,
                                           max=depth_max,
                                           step=0.1,
                                           disabled=False,
                                           continuous_update=False,
                                           orientation='horizontal',
                                           readout=True,
                                           readout_format='.1f')

    # Time
    start_date_label = widgets.Label('Start date:',
                                     layout=widgets.Layout(width=label_width))
    input_start_date = widgets.DatePicker(
        disabled=False,
        min_date=date(int(start_date.split('-')[0]),
                      int(start_date.split('-')[1]),
                      int(start_date.split('-')[2])),
        max_date=date(int(end_date.split('-')[0]), int(end_date.split('-')[1]),
                      int(end_date.split('-')[2])),
        value=date(int(start_date.split('-')[0]),
                   int(start_date.split('-')[1]),
                   int(start_date.split('-')[2])))

    end_date_label = widgets.Label('End date:',
                                   layout=widgets.Layout(width=label_width))
    input_end_date = widgets.DatePicker(
        disabled=False,
        min_date=date(int(start_date.split('-')[0]),
                      int(start_date.split('-')[1]),
                      int(start_date.split('-')[2])),
        max_date=date(int(end_date.split('-')[0]), int(end_date.split('-')[1]),
                      int(end_date.split('-')[2])),
        value=date(int(end_date.split('-')[0]), int(end_date.split('-')[1]),
                   int(end_date.split('-')[2])))

    qc_label = widgets.HTML('<b>Data QC Tests - Select the test to run</b>')

    # Layout config
    checkbox_width = '8rem'
    # Reset flags
    # reset_label = widgets.Label('Reset flags:')
    reset_checkbox = widgets.Checkbox(
        description='Reset flags',
        style={'description_width': '0'},
        layout=widgets.Layout(width=checkbox_width))

    # Flat test
    flat_checkbox = widgets.Checkbox(
        description='Flat test',
        style={'description_width': '0'},
        layout=widgets.Layout(width=checkbox_width))
    window_label = widgets.Label('Window:',
                                 layout=widgets.Layout(width=sublabel_width))
    window_flat = widgets.IntText(value=2, disabled=False, color='black')

    # Range test
    # range_label = widgets.Label('Range test:')
    range_checkbox = widgets.Checkbox(
        description='Range test',
        style={'description_width': '0'},
        layout=widgets.Layout(width=checkbox_width))
    limit_label = widgets.Label('Limits:',
                                layout=widgets.Layout(width=sublabel_width))
    limits = widgets.FloatRangeSlider(value=[range_test[0], range_test[1]],
                                      min=range_test[0],
                                      max=range_test[1],
                                      step=0.1,
                                      disabled=False,
                                      continuous_update=False,
                                      orientation='horizontal',
                                      readout=True,
                                      readout_format='.1f')

    # Spike test
    # spike_label = widgets.Label('Spike test:')
    spike_checkbox = widgets.Checkbox(
        description='Spike test',
        style={'description_width': '0'},
        layout=widgets.Layout(width=checkbox_width))
    window_spike = widgets.IntText(value=spike_window,
                                   disabled=False,
                                   color='black')
    threshold_label = widgets.Label(
        'Threshold:', layout=widgets.Layout(width=sublabel_width))
    threshold = widgets.FloatText(value=spike_threshold,
                                  disabled=False,
                                  color='black')
    influence_label = widgets.Label(
        'Influence:', layout=widgets.Layout(width=sublabel_width))
    influence = widgets.FloatSlider(value=spike_influence,
                                    min=0,
                                    max=1,
                                    step=0.1,
                                    disabled=False,
                                    continuous_update=False,
                                    orientation='horizontal',
                                    readout=True,
                                    readout_format='.1f',
                                    slider_color='white')

    # Replace
    # replace_label = widgets.Label('Replace QC:')
    replace_checkbox = widgets.Checkbox(description='Replace flags',
                                        style={'description_width': '0'})

    def update_components(_):
        # Update all components
        emso = mooda.EMSO(user=input_user.value,
                          password=input_password.value,
                          token=input_token.value)
        # Get metadata
        metadata_list = emso.get_metadata(
            platform_codes=[input_platform.value])

        try:
            metadata = metadata_list[0]
            parameter_list = metadata.get('parameters')
            if parameter_list is None:
                parameter_list = emso.get_info_parameter()
            depth_min = metadata.get('geospatial_vertical_min', depth_range[0])
            depth_max = metadata.get('geospatial_vertical_max', depth_range[1])
            start_date = metadata.get('time_coverage_start')
            if start_date:
                start_date = start_date.split('T')[0]
            end_date = metadata.get('time_coverage_end')
            if end_date:
                end_date = end_date.split('T')[0]
        except:
            parameter_list = emso.get_info_parameter()
            depth_min = depth_range[0]
            depth_max = depth_range[1]
            start_date = None
            end_date = None

        # Parameters
        input_parameters.options = parameter_list

        # Depth
        input_depth.min = depth_min
        input_depth.max = depth_max
        input_depth.value = [depth_min, depth_max]

        # Time
        input_start_date.min_date = date(int(start_date.split('-')[0]),
                                         int(start_date.split('-')[1]),
                                         int(start_date.split('-')[2]))
        input_start_date.max_date = date(int(end_date.split('-')[0]),
                                         int(end_date.split('-')[1]),
                                         int(end_date.split('-')[2]))
        input_start_date.value = date(int(start_date.split('-')[0]),
                                      int(start_date.split('-')[1]),
                                      int(start_date.split('-')[2]))
        input_end_date.min_date = date(int(start_date.split('-')[0]),
                                       int(start_date.split('-')[1]),
                                       int(start_date.split('-')[2]))
        input_end_date.max_date = date(int(end_date.split('-')[0]),
                                       int(end_date.split('-')[1]),
                                       int(end_date.split('-')[2]))
        input_end_date.value = date(int(end_date.split('-')[0]),
                                    int(end_date.split('-')[1]),
                                    int(end_date.split('-')[2]))

    input_platform.observe(update_components, names='value')

    # Button
    button = widgets.Button(description='Get data')
    out = widgets.Output()
    out2 = widgets.Output()

    def on_button_clicked(_):
        # "linking function with output"
        with out:
            # what happens when we press the button
            clear_output()

            parameters = []
            for input_parameter in input_parameters.value:
                parameters.append(input_parameter.split('-')[0].strip())

            if input_start_date.value is None:
                start_time = ''
            else:
                start_time = str(input_start_date.value) + ' 00:00:00'

            if input_end_date.value is None:
                end_time = ''
            else:
                end_time = str(input_end_date.value) + ' 00:00:00'

            if input_token.value is None:
                token = ''
            else:
                token = input_token.value

            print('Downloading data, please wait')

            wf2 = mooda.from_emso(platform_code=input_platform.value,
                                  parameters=parameters,
                                  start_time=start_time,
                                  end_time=end_time,
                                  depth_min=input_depth.value[0],
                                  depth_max=input_depth.value[1],
                                  user=input_user.value,
                                  password=input_password.value,
                                  size=input_size.value,
                                  token=token)

            wf.data = wf2.data.copy()
            wf.metadata = wf2.metadata.copy()
            wf.vocabulary = wf2.vocabulary.copy()

            clear_output()
            display(wf)

        with out2:
            # what happens when we press the button
            clear_output()
            print('Making tests')

            for parameter_one in wf.parameters:

                if reset_checkbox.value:
                    wf.qc_replace(parameters=[parameter_one],
                                  to_replace=1,
                                  value=0)
                    wf.qc_replace(parameters=[parameter_one],
                                  to_replace=4,
                                  value=0)
                if flat_checkbox.value:
                    wf.qc_flat_test(window=window_flat.value,
                                    parameters=[parameter_one])
                if range_checkbox.value:
                    wf.qc_range_test(limits=limits.value,
                                     parameters=[parameter_one])
                if spike_checkbox.value:
                    wf.qc_spike_test(window=window_spike.value,
                                     influence=influence.value,
                                     threshold=threshold.value,
                                     parameters=[parameter_one])
                if replace_checkbox.value:
                    start = 0
                    if spike_checkbox.value:
                        start = window_spike.value
                    wf.qc_replace(parameters=[parameter_one], start=start)

                show_result(wf, parameter_one, f'Final result')

    # linking button and function together using a button's method
    button.on_click(on_button_clicked)
    user_box = widgets.HBox([user_label, input_user])
    password_box = widgets.HBox([password_label, input_password])
    token_box = widgets.HBox([token_label, input_token])
    platform_box = widgets.HBox([platform_label, input_platform])
    parameters_box = widgets.HBox([parameters_label, input_parameters])
    size_box = widgets.HBox([size_label, input_size])
    depth_box = widgets.HBox([depth_label, input_depth])
    start_date_box = widgets.HBox([start_date_label, input_start_date])
    end_date_box = widgets.HBox([end_date_label, input_end_date])
    reset_box = widgets.HBox([reset_checkbox])
    flat_box = widgets.HBox([flat_checkbox, window_label, window_flat])
    range_box = widgets.HBox([range_checkbox, limit_label, limits])
    spike_window_column = widgets.HBox([window_label, window_spike])
    spike_threshold_column = widgets.HBox([threshold_label, threshold])
    spike_influence_column = widgets.HBox([influence_label, influence])
    spike_column = widgets.VBox(
        [spike_window_column, spike_threshold_column, spike_influence_column])
    spike_box = widgets.HBox([spike_checkbox, spike_column])
    replace_box = widgets.HBox([replace_checkbox])

    main_box = widgets.VBox([
        authentification_title, user_box, password_box, or_label, token_box,
        data_title, platform_box, parameters_box, size_box, depth_box,
        start_date_box, end_date_box, qc_label, reset_box, flat_box, range_box,
        spike_box, replace_box, button, out, out2
    ])

    return main_box
Esempio n. 36
0
import plotly.graph_objs as go
import numpy as np
from ipywidgets import interact
from plotly import offline
offline.init_notebook_mode()


#%%

fig = go.FigureWidget()
scatt = fig.add_scatter()
fig
xs=np.linspace(0, 6, 100)

#%%
@interact(a=(1.0, 4.0, 0.01), b=(0, 10.0, 0.01), color=['red', 'green', 'blue'])
def update(a=3.6, b=4.3, color='blue'):
    with fig.batch_update():
        scatt.x=xs
        scatt.y=np.sin(a*xs-b)
        scatt.line.color=color
#%%
from plotly import offline
offline.init_notebook_mode()

offline.iplot([{"y": [1, 2, 1]}])
Esempio n. 37
0
    def fs_plot_data(self, plot_type = 'mpl', bz_linewidth= 0.9, axis_labels = True, symmetry_labels = True, color_list = None, title_str = None):
        """Function for producing a plot of the Fermi surface.
        Will edit this to allow for custom plotting options.
        """

        meshes = []

        if plot_type == 'mpl':

            fig = plt.figure(figsize=(10, 10))
            ax = fig.add_subplot(111, projection='3d')

            rlattvec =  self._brillouin_zone._rlattvec
        
            # specify the colour list for plotting the bands. 
            # Below is the deafult, can be overidden by specifying 'colour' in calling function.
            if color_list is None:
                color_list = plt.cm.Set1(np.linspace(0, 1, 9))

            # create a mesh for each electron band which has an isosurface at the Fermi energy.
            # mesh data is generated by a marching cubes algorithm when the FermiSurface object is created.
            for i, band in enumerate(self._fermi_surface._iso_surface,  0):
                
                verts = band[0]
                faces = band[1]

                grid = [np.array([item[0] for item in verts]), np.array([item[1] for item in verts]), np.array([item[2] for item in verts])]
                
                # reposition the vertices so that the cente of the Brill Zone is at (0,0,0)
                # include if want gamma at centre of plot, along with "rearrange_data method in bulk_objects"
                # verts -= np.array([grid[0].max()/2,grid[1].max()/2,grid[2].max()/2])

                # create a mesh and add it to the plot
                mesh = Poly3DCollection(verts[faces], linewidths=0.1)
                mesh.set_facecolor(color_list[i])
                mesh.set_edgecolor('lightgray')
                ax.add_collection3d(mesh)

            # add the Brillouin Zone outline to the plot
            corners = self._recip_cell._faces

            ax.add_collection3d(Line3DCollection(corners, colors='k', linewidths=bz_linewidth))

            # add high-symmetry points to the plot

            sym_pts = self._symmetry_pts

            x, y, z = zip(*sym_pts[0])

            # Placeholders for the high-symmetry points in cartesian coordinates
            x_cart, y_cart, z_cart = [], [], []

            # Convert high-symmetry point coordinates into cartesian, and shift to match mesh position
            for i in x:
                if i < 0:
                    i = np.linalg.norm([rlattvec[:,0]])*((0.5+i)+0.5)
                else:
                    i = np.linalg.norm(rlattvec[:,0])*(i)
                x_cart.append(i)

            for i in y:
                if i < 0:
                    i = np.linalg.norm(rlattvec[:,1])*((0.5+i)+0.5)
                else:
                    i = np.linalg.norm(rlattvec[:,1])*(i)
                y_cart.append(i)

            for i in z:
                if i < 0:
                    i = np.linalg.norm(rlattvec[:,2])*((0.5+i)+0.5)
                else:
                    i = np.linalg.norm(rlattvec[:,2])*(i)
                z_cart.append(i)

            ax.scatter(x_cart, y_cart, z_cart, s=10, c='k')

            for i, txt in enumerate(sym_pts[1]):
                ax.text(x_cart[i],y_cart[i],z_cart[i],  '%s' % (txt), size=15, zorder=1, color='k')

            ax.axis('off')
        
            if title_str is not None:
                plt.title(title_str)
        
            ax.set_xlim(0, np.linalg.norm(rlattvec[:,0])+1)
            ax.set_ylim(0, np.linalg.norm(rlattvec[:,1])+1)
            ax.set_zlim(0, np.linalg.norm(rlattvec[:,2])+1)
        
            plt.tight_layout()
            plt.show()

        elif plot_type == 'plotly':

            init_notebook_mode(connected=True)

            # plotly.tools.set_credentials_file(username='******', api_key='PiOwBRIRWKGJWIFXe1vT')

            rlattvec = self._recip_cell._rlattvec

            # Different colours
        
            # colors = [
            #             '#1f77b4',  # muted blue
            #             '#ff7f0e',  # safety orange
            #             '#2ca02c',  # cooked asparagus green
            #             '#d62728',  # brick red
            #             '#9467bd',  # muted purple
            #             '#8c564b',  # chestnut brown
            #             '#e377c2',  # raspberry yogurt pink
            #             '#7f7f7f',  # middle gray
            #             '#bcbd22',  # curry yellow-green
            #             '#17becf',   # blue-teal
            #             '#00FFFF'   #another blue teal
            #             '#1f77b4',  # muted blue
            #             '#ff7f0e',  # safety orange
            #             '#2ca02c',  # cooked asparagus green
            #             '#d62728',  # brick red
            #             '#9467bd',  # muted purple
            #             '#8c564b',  # chestnut brown
            #             '#e377c2',  # raspberry yogurt pink
            #             '#7f7f7f',  # middle gray
            #             '#bcbd22',  # curry yellow-green
            #             '#17becf',   # blue-teal
            #             '#00FFFF'   #another blue teal
            #             ]

            colors = cl.scales['11']['qual']['Set3']
        
            # create a mesh for each electron band which has an isosurface at the Fermi energy.
            # mesh data is generated by a marching cubes algorithm when the FermiSurface object is created.
            for i, band in enumerate(self._fermi_surface._iso_surface,  0):

                
                verts = band[0]
                faces = band[1]

                
                grid = [np.array([np.abs(item[0]) for item in verts]), np.array([np.abs(item[1]) for item in verts]), np.array([np.abs(item[2]) for item in verts])]
                
                x, y, z = zip(*verts)

                I, J, K = ([triplet[c] for triplet in faces] for c in range(3))

                trace = go.Mesh3d(x=x,
                         y=y,
                         z=z,
                         color=colors[i], opacity = 0.9, 
                         i=I,
                         j=J,
                         k=K)
                meshes.append(trace)

            # add the Brillouin Zone outline to the plot
            corners = self._recip_cell._faces
       
            for facet in corners:
                x, y, z = zip(*facet)
        
                trace = go.Scatter3d(x=x, y=y, z=z, mode = 'lines',
                                    line=dict(
                                    color='black',
                                    width=3
                                    ))

                meshes.append(trace)

            # add the high symmetry points to the plot
            sym_pts = self._symmetry_pts

            # Get text labels into Latex form

            labels = []

            for i in sym_pts[1]:
                labels.append(sympy.latex(i))

            x, y, z = zip(*sym_pts[0])

            # Placeholders for the high-symmetry points in cartesian coordinates
            x_cart, y_cart, z_cart = [], [], []

            # Convert high-symmetry point coordinates into cartesian, and shift to match mesh position
            for i in x:
                if i < 0:
                    i = np.linalg.norm([rlattvec[:,0]])*((0.5+i)+0.5)
                else:
                    i = np.linalg.norm(rlattvec[:,0])*(i)
                x_cart.append(i)

            for i in y:
                if i < 0:
                    i = np.linalg.norm(rlattvec[:,1])*((0.5+i)+0.5)
                else:
                    i = np.linalg.norm(rlattvec[:,1])*(i)
                y_cart.append(i)

            for i in z:
                if i < 0:
                    i = np.linalg.norm(rlattvec[:,2])*((0.5+i)+0.5)
                else:
                    i = np.linalg.norm(rlattvec[:,2])*(i)
                z_cart.append(i)

            trace = go.Scatter3d(x=x_cart, y=y_cart, z=z_cart, 
                                mode='markers+text',
                                marker = dict(size = 5,
                                color = 'black'
                                ),
                                name='Markers and Text',
                                text = labels,
                                textposition='bottom center'
                            )

            meshes.append(trace)

            # Specify plot parameters

            layout = go.Layout(scene = dict(xaxis=dict(title = '',
                                showgrid=True,
                                zeroline=True,
                                showline=False,
                                ticks='',
                                showticklabels=False), yaxis=dict(title = '',
                                showgrid=True,
                                zeroline=True,
                                showline=False,
                                ticks='',
                                showticklabels=False), 
                                zaxis=dict(title = '',
                                showgrid=True,
                                zeroline=True,
                                showline=False,
                                ticks='',
                                showticklabels=False)),
                                showlegend=False, title=go.layout.Title(
                                text=title_str,
                                xref='paper',
                                x=0
                                ))

            plot(go.Figure(data=meshes,layout= layout), include_mathjax='cdn')

        else:
            raise ValueError(
                "The type you have entered is not a valid option for the plot_type parameter."
                "Please enter one of {'mpl', 'plotly'} for a matplotlib or plotly-type plot" 
                " respectively. For an interactive plot 'plotly' is recommended.")
Esempio n. 38
0
def plotBoxes():
    import plotly.plotly as py
    import plotly.graph_objs as go

    trace0 = go.Box(
        y=[
            1.220966100692749,
            1.194838047027588,
            1.1900928020477295,
            1.1873359680175781,
            1.1871559619903564
        ],
        name='10 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace1 = go.Box(
        y=[
            3.0607070922851562,
            2.8704521656036377,
            2.8041749000549316,
            2.836987018585205,
            2.9370028972625732
        ],
        name='10 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace2 = go.Box(
        y=[
            2.177574872970581,
            2.158424139022827,
            2.41457200050354,
            2.20817494392395,
            2.299355983734131
        ],
        name='20 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace3 = go.Box(
        y=[
            5.638598918914795,
            5.547015905380249,
            5.462399005889893,
            5.517163038253784,
            5.487725019454956
        ],
        name='20 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace4 = go.Box(
        y=[
            4.118584156036377,
            4.858264923095703,
            4.982507944107056,
            5.070256948471069,
            4.854703903198242
        ],
        name='40 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace5 = go.Box(
        y=[
            12.242072105407715,
            11.051261901855469,
            11.07240915298462,
            11.05888319015503,
            11.168780088424683
        ],
        name='40 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace6 = go.Box(
        y=[
            8.297120094299316,
            10.70746111869812,
            11.330874919891357,
            11.29092288017273,
            11.357799053192139
        ],
        name='80 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace7 = go.Box(
        y=[
            25.65382409095764,
            22.612013816833496,
            22.563922882080078,
            22.958635807037354,
            23.199914932250977
        ],
        name='80 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace8 = go.Box(
        y=[
            16.710778951644897,
            23.12172794342041,
            23.15219497680664,
            23.376353979110718,
            23.672327041625977
        ],
        name='160 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace9 = go.Box(
        y=[
            55.71610999107361,
            50.11128902435303,
            51.42167401313782,
            52.32876491546631,
            53.01005816459656
        ],
        name='160 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    # trace10 = go.Box(
    #     y=[
    #         25.571568965911865,
    #         36.26844000816345,
    #         36.47072696685791,
    #         36.47522687911987,
    #         36.80563712120056
    #     ],
    #     name='240 Hosts',
    #     marker=dict(
    #         color='rgb(8, 81, 156)',
    #     ),
    #     boxmean='sd'
    # )
    # trace11 = go.Box(
    #     y=[
    #         88.68352913856506,
    #         80.14780402183533,
    #         82.73843598365784,
    #         84.35875296592712,
    #         86.76403188705444
    #     ],
    #     name='240 Container',
    #     marker=dict(
    #         color='rgb(10, 140, 208)',
    #     ),
    #     boxmean='sd'
    # )
    # trace12 = go.Box(
    #     y=[
    #         30.141373872756958,
    #         42.5898220539093,
    #         43.233330965042114,
    #         44.23212289810181,
    #         44.816850900650024
    #     ],
    #     name='280 Hosts',
    #     marker=dict(
    #         color='rgb(8, 81, 156)',
    #     ),
    #     boxmean='sd'
    # )
    # trace13 = go.Box(
    #     y=[
    #         107.80886006355286,
    #         96.45325303077698,
    #         99.27463698387146,
    #         102.14648795127869,
    #         104.41336393356323
    #     ],
    #     name='280 Container',
    #     marker=dict(
    #         color='rgb(10, 140, 208)',
    #     ),
    #     boxmean='sd'
    # )
    trace14 = go.Box(
        y=[
            34.71859788894653,
            48.50111699104309,
            49.38033485412598,
            51.087302923202515,
            51.66889476776123
        ],
        name='320 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace15 = go.Box(
        y=[-1],
        name='320 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    data = [trace0, trace1, trace2, trace3, trace4, trace5, trace6, trace7, trace8, trace9, trace14, trace15]
    layout = go.Layout(title='Startzeiten von Hosts bzw. Containern mit einem Worker', showlegend=False, yaxis=dict(
            title="Startzeit in Sekunden"
        ))
    figure = go.Figure(data=data, layout=layout)
    # py.plot(figure, auto_open=False)
    # py.iplot(figure, filename='svg75')
    from plotly.offline import init_notebook_mode, plot
    init_notebook_mode()
    plot(figure, image='svg', filename='einWorker.html')
Esempio n. 39
0
def track_plot_list(list_of_df=[], **kwargs):

    global pivot, shift

    n_tracks = 1
    title = 'Track plots'
    path = 'chart.html'
    opacity = 0.5
    marker_size = 3
    line_size = 3
    len_list_df = len(list_of_df)
    list_of_colors = [
        'red', 'blue', 'green', 'magenta', 'chocolate', 'teal', 'indianred',
        'yellow', 'orange', 'silver'
    ]

    assert (len_list_df <= len(list_of_colors)
            ), 'The list must contain less than 10 dataframes.'

    if kwargs.get('n_tracks'):
        n_tracks = kwargs.get('n_tracks')
        if n_tracks > list_of_df[0].shape[0]:
            n_tracks = abs(list_of_df[0].shape[0])
            wrn_msg = (
                'The number of tracks to plot is greater than the number of tracks in '
                'the dataframe.\nn_tracks will be: ' + str(n_tracks) +
                ' (the number of tracks in the dataset)')
            warnings.warn(wrn_msg, RuntimeWarning, stacklevel=2)

    if kwargs.get('pivot'):
        pivot = kwargs.get('pivot')

    if kwargs.get('title'):
        title = kwargs.get('title')

    if kwargs.get('opacity'):
        opacity = kwargs.get('opacity')
        if opacity > 1.0:
            opacity = 1.0
            wrn_msg = ('The opacity value is greater than 1.0\n'
                       'The opacity value is will be set with 1.0 value.')
            warnings.warn(wrn_msg, RuntimeWarning, stacklevel=2)

    if kwargs.get('marker_size'):
        marker_size = abs(kwargs.get('marker_size'))

    if kwargs.get('line_size'):
        line_size = abs(kwargs.get('line_size'))

    dft_size = int(list_of_df[0].shape[1])
    len_xyz = int(dft_size / pivot)

    # Initializing lists of indexes
    selected_columns_x = np.zeros(len_xyz)
    selected_columns_y = np.zeros(len_xyz)
    selected_columns_z = np.zeros(len_xyz)

    # Generating indexes
    for i in range(len_xyz):
        selected_columns_x[i] = int(i * pivot + 0 + shift)
        selected_columns_y[i] = int(i * pivot + 1 + shift)
        selected_columns_z[i] = int(i * pivot + 2 + shift)

    # list of data to plot
    data = []
    track = [None] * n_tracks

    for i in range(len_list_df):
        try:
            #df_name = str(list_of_df[i].name)
            df_name = str(list_of_df[i].columns.name)
        except:
            df_name = 'track[' + str(i) + ']'
            warnings.warn(
                'For a better visualization, set the name of dataframe to plot:'
                '\nE.g.: df.name = \'track original\'',
                RuntimeWarning,
                stacklevel=2)

        for j in range(n_tracks):
            track[j] = go.Scatter3d(
                # Removing null values (zeroes) in the plot
                x=list_of_df[i].replace(0.0, np.nan).iloc[j,
                                                          selected_columns_x],
                y=list_of_df[i].replace(0.0, np.nan).iloc[j,
                                                          selected_columns_y],
                z=list_of_df[i].replace(0.0, np.nan).iloc[j,
                                                          selected_columns_z],
                name=df_name + ' ' + str(j),
                opacity=opacity,
                marker=dict(
                    size=marker_size,
                    opacity=opacity,
                    color=list_of_colors[i],
                ),
                line=dict(color=list_of_colors[i], width=line_size))
            # append the track[i] in the list for plotting
            data.append(track[j])
    layout = dict(
        #width    = 900,
        #height   = 750,
        autosize=True,
        title=title,
        scene=dict(xaxis=dict(gridcolor='rgb(255, 255, 255)',
                              zerolinecolor='rgb(255, 255, 255)',
                              showbackground=True,
                              backgroundcolor='rgb(230, 230,230)',
                              title='x (mm)'),
                   yaxis=dict(gridcolor='rgb(255, 255, 255)',
                              zerolinecolor='rgb(255, 255, 255)',
                              showbackground=True,
                              backgroundcolor='rgb(230, 230,230)',
                              title='y (mm)'),
                   zaxis=dict(gridcolor='rgb(255, 255, 255)',
                              zerolinecolor='rgb(255, 255, 255)',
                              showbackground=True,
                              backgroundcolor='rgb(230, 230,230)',
                              title='z (mm)'),
                   camera=dict(up=dict(x=1, y=1, z=-0.5),
                               eye=dict(
                                   x=-1.7428,
                                   y=1.0707,
                                   z=0.7100,
                               )),
                   aspectratio=dict(x=1, y=1, z=1),
                   aspectmode='manual'),
    )
    fig = go.Figure(data=data, layout=layout)
    init_notebook_mode(connected=True)
    if kwargs.get('path'):
        path = kwargs.get('path')
        fig.write_html(path, auto_open=True)
    else:
        iplot(fig)
Esempio n. 40
0
def systemLastVergleich():
    trace1 = Box(
        y=[174.05624198913574, 173.948890209198, 173.94454908370972, 173.9467408657074, 173.94518518447876,
           173.95012092590332, 173.95043110847473, 173.94655680656433, 174.53029203414917, 173.9404320716858,
           173.9495029449463, 173.95225501060486, 173.94485592842102, 173.94097995758057, 173.96589398384094,
           173.9597988128662, 173.94549107551575, 173.9661078453064, 174.53516697883606, 173.98816299438477],
        boxmean='sd',
        marker=Marker(
            color='rgb(8, 81, 156)'
        ),
        name='2 Mininet Hosts (1W)',
        ysrc='setchring:97:12cf8c'
    )
    trace2 = Box(
        y=[174.0329999923706, 173.96394085884094, 173.95319485664368, 173.95863509178162, 173.94559407234192,
           173.95078206062317, 173.96819806098938, 173.94542288780212, 174.57363319396973, 173.9398968219757,
           173.95656490325928, 173.9443531036377, 173.94898891448975, 173.95273303985596, 173.9473750591278,
           173.95579290390015, 173.95104503631592, 173.97713804244995, 174.54663395881653, 173.96244096755981],
        boxmean='sd',
        marker=Marker(
            color='rgb(10, 140, 208)'
        ),
        name='2 Ubuntu Container (1W)',
        ysrc='setchring:97:28e33b'
    )
    trace3 = Box(
        y=[87.11957716941833, 87.00569295883179, 87.00749588012695, 87.01642107963562, 87.00478601455688,
           87.01821398735046, 87.0056049823761, 87.00564479827881, 87.00377297401428, 87.00858116149902,
           87.01909303665161, 87.01344585418701, 87.00871896743774, 87.01720023155212, 87.00548887252808,
           87.00659012794495, 87.00090003013611, 87.62443900108337, 87.60383987426758, 87.0222909450531],
        boxmean='sd',
        marker=Marker(
            color='rgb(8, 81, 156)'
        ),
        name='2 Mininet Hosts (2W)',
        ysrc='setchring:97:755dbf'
    )
    trace4 = Box(
        y=[87.10864400863647, 87.03255987167358, 87.00552487373352, 87.00663709640503, 86.99984693527222,
           87.00633597373962, 87.00061416625977, 87.0000250339508, 86.99881911277771, 87.00222516059875,
           87.00338101387024, 87.00585508346558, 87.00474500656128, 87.01482605934143, 87.00232291221619,
           87.00039505958557, 87.00300908088684, 87.0094940662384, 87.60664296150208, 87.00194597244263],
        boxmean='sd',
        marker=Marker(
            color='rgb(10, 140, 208)'
        ),
        name='2 Ubuntu Container (2W)',
        ysrc='setchring:97:056208'
    )
    data = Data([trace1, trace2, trace3, trace4])
    layout = Layout(
        showlegend=False,
        title='CPU Benchmark Laufzeiten von Hosts bzw. Containern',
        yaxis=dict(
            range=[0, 180],
            showgrid=True,
            zeroline=True,
            title="Laufzeit in Sekunden"
        ),
        xaxis=dict(tickangle=45)
    )
    fig = Figure(data=data, layout=layout)
    from plotly.offline import init_notebook_mode, plot
    init_notebook_mode()
    plot(fig, image='svg', filename='SystemLastVergleich.html')
Esempio n. 41
0
# Visualization

# seaborn
import seaborn as sns
sns.set(rc={'figure.figsize':(10,5)})
import matplotlib.pyplot as plt
import matplotlib
# increase size of standar plots
plt.rcParams["figure.figsize"] = [10, 5]
#plt.style.use('ggplot')

# plotly
import plotly
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
init_notebook_mode(connected=True)

# plot save paths

print(f'''
python\t{sys.version}
---------------------
Versions:
----------------------
pandas      {pd.__version__}
numpy       {np.__version__}
matplotlib  {matplotlib.__version__}
seaborn     {sns.__version__}
plotly      {plotly.__version__}
----------------------
''')
Esempio n. 42
0
    def graph_from_table(table_name):
        '''
        This function creates an interactive plotly graph based on a Qtable taken as input.
        '''

        # Putting this here so we don't have to worry about it in the notebooks
        init_notebook_mode(connected=True)

        types = ['scatter', 'line', 'bar']

        try:
            updated_table = table_name.get_changed_df()
        except NameError:
            print(
                "The variable " + str(name) +
                " does not exist. Please make sure you entered the correct table"
            )
            return

        def graph(x_axes, y_axes, kind, title='', y_name='', x_name=''):
            '''
            This function is to simplify creating a graph from an interactive Qtable and allows 
            us to use it with IPywidgets interactive
            '''
            # Choose plot type

            if kind == 'line':
                trace = Scatter(x=updated_table[x_axes],
                                y=updated_table[y_axes],
                                mode='lines+markers')
            if kind == 'bar':
                trace = Bar(x=updated_table[x_axes], y=updated_table[y_axes])

            if kind == 'scatter':
                trace = Scatter(x=updated_table[x_axes],
                                y=updated_table[y_axes],
                                mode='markers')

            # Choose axes stuff, as well as create defaults
            if x_name != '':
                x_lab = x_name
            else:
                x_lab = "Column: " + x_axes
            #
            if y_name != '':
                y_lab = y_name
            else:
                y_lab = "Column: " + y_axes

            layout = Layout(title=title,
                            xaxis=dict(title=x_lab),
                            yaxis=dict(title=y_lab))

            fig = Figure(data=Data([trace]), layout=layout)

            iplot(fig)

        # Now we need to specify our widgets
        x_widget = widgets.Dropdown(options=updated_table.columns.tolist(),
                                    value=updated_table.columns.tolist()[0],
                                    description='X axis data',
                                    disabled=False,
                                    width='250px')

        y_widget = widgets.Dropdown(options=updated_table.columns.tolist(),
                                    value=updated_table.columns.tolist()[1],
                                    description='Y axis data',
                                    disabled=False)
        kind_widget = widgets.Dropdown(options=types,
                                       value=types[0],
                                       description='Plot Type',
                                       disabled=False)

        title_widget = widgets.Text(value='',
                                    placeholder='Enter plot title',
                                    description='Plot title:',
                                    disabled=False,
                                    continuous_update=False)
        x_name_widget = widgets.Text(value='',
                                     placeholder='X axis title',
                                     description='X axis label:',
                                     disabled=False,
                                     continuous_update=False)
        y_name_widget = widgets.Text(value='',
                                     placeholder='Y axis title',
                                     description='Y axis label:',
                                     disabled=False,
                                     continuous_update=False)

        graph_widg = interactive(graph,
                                 x_axes=x_widget,
                                 y_axes=y_widget,
                                 kind=kind_widget,
                                 title=title_widget,
                                 x_name=x_name_widget,
                                 y_name=y_name_widget)
        box_layout = widg_layout(display='flex',
                                 flex_flow='column',
                                 align_items='center',
                                 border='solid',
                                 width='100%')

        # Set up widget layout.
        left_box = widgets.VBox([graph_widg.children[i] for i in range(3)])
        right_box = widgets.VBox([graph_widg.children[i] for i in range(3, 6)])

        widget_layout = widgets.HBox([left_box, right_box])

        # graph_widg.children[-1] is the output of interactive (plotly plot)
        to_display = widgets.VBox([graph_widg.children[-1], widget_layout],
                                  layout=box_layout)

        graph_widg.children = [to_display]

        display.display(graph_widg)
Esempio n. 43
0
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly
import plotly.graph_objs as go

init_notebook_mode(connected=True)
Esempio n. 44
0
# In[57]:


one_genre = movie_rel[movie_rel.count_of_genres == 1]
one_genre['budget'] = one_genre['budget'].astype('int')


# In[66]:


from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly
import plotly.graph_objs as go

init_notebook_mode(connected=True) #инициализация методов


# In[120]:


rcParams['figure.figsize'] = 8, 6
genre_vs_budget1 = one_genre.loc[:, ['genres_per_one', 'budget', 'year']].groupby(by=['genres_per_one'])[['budget']].sum()
#genre_vs_budget2 = one_genre.loc[:, ['genres_per_one', 'budget']].groupby(by=['genres_per_one']).sum()
#data = genre_vs_budget2.join(genre_vs_budget1)
genre_vs_budget1.plot(kind='bar', rot=45, label='year') 


# In[144]:

Esempio n. 45
0
def plotBoxes2():
    import plotly.plotly as py
    import plotly.graph_objs as go

    trace0 = go.Box(
        y=[
            1.35548996925354,
            1.3441359996795654,
            1.3321261405944824,
            1.3552589416503906,
            1.4191999435424805
        ],
        name='10 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace1 = go.Box(
        y=[
            3.0793659687042236,
            3.071715831756592,
            2.9316048622131348,
            2.977012872695923,
            3.0160839557647705
        ],
        name='10 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace2 = go.Box(
        y=[
            2.4199891090393066,
            2.305997133255005,
            2.3410701751708984,
            2.398021936416626,
            2.390981912612915
        ],
        name='20 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace3 = go.Box(
        y=[
            5.805190086364746,
            5.519806861877441,
            5.623938083648682,
            5.696949005126953,
            5.692356109619141
        ],
        name='20 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace4 = go.Box(
        y=[
            4.37345290184021,
            4.27826714515686,
            4.418522119522095,
            4.3067498207092285,
            4.399266004562378
        ],
        name='40 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace5 = go.Box(
        y=[
            10.92971396446228,
            10.761906862258911,
            10.886162996292114,
            11.101104974746704,
            10.988735914230347
        ],
        name='40 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace6 = go.Box(
        y=[
            8.743327856063843,
            8.655654907226562,
            8.607124090194702,
            8.785256147384644,
            8.714077949523926
        ],
        name='80 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace7 = go.Box(
        y=[
            22.36103916168213,
            22.424012899398804,
            22.47895622253418,
            22.36395001411438,
            22.528213024139404
        ],
        name='80 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    trace8 = go.Box(
        y=[
            18.521923065185547,
            18.818742036819458,
            18.903568029403687,
            19.197312116622925,
            19.296133041381836
        ],
        name='160 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace9 = go.Box(
        y=[
            46.878589153289795,
            47.398112058639526,
            47.66672992706299,
            48.80990219116211,
            49.06117510795593
        ],
        name='160 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    # trace10 = go.Box(
    #     y=[
    #         29.72091507911682,
    #         30.075870037078857,
    #         30.25898790359497,
    #         30.211423873901367,
    #         30.677078008651733
    #     ],
    #     name='240 Hosts',
    #     marker=dict(
    #         color='rgb(8, 81, 156)',
    #     ),
    #     boxmean='sd'
    # )
    # trace11 = go.Box(
    #     y=[
    #         74.89307904243469,
    #         74.9702980518341,
    #         76.87759709358215,
    #         78.20884490013123,
    #         79.46793007850647
    #     ],
    #     name='240 Container',
    #     marker=dict(
    #         color='rgb(10, 140, 208)',
    #     ),
    #     boxmean='sd'
    # )
    # trace12 = go.Box(
    #     y=[
    #         36.64970803260803,
    #         36.93167185783386,
    #         37.233668088912964,
    #         37.48106002807617,
    #         37.63134694099426
    #     ],
    #     name='280 Hosts',
    #     marker=dict(
    #         color='rgb(8, 81, 156)',
    #     ),
    #     boxmean='sd'
    # )
    # trace13 = go.Box(
    #     y=[
    #         89.43371391296387,
    #         92.05170917510986,
    #         93.3434431552887,
    #         95.22685503959656,
    #         96.73871803283691
    #     ],
    #     name='280 Container',
    #     marker=dict(
    #         color='rgb(10, 140, 208)',
    #     ),
    #     boxmean='sd'
    # )
    trace14 = go.Box(
        y=[
            42.13955593109131,
            35.43569993972778,
            35.852705001831055,
            35.9057719707489,
            36.216508865356445
        ],
        name='320 Hosts',
        marker=dict(
            color='rgb(8, 81, 156)',
        ),
        boxmean='sd'
    )
    trace15 = go.Box(
        y=[
            99.17356204986572,
            97.3440489768982,
            98.98178291320801,
            100.91142106056213,
            102.85055303573608
        ],
        name='320 Container',
        marker=dict(
            color='rgb(10, 140, 208)',
        ),
        boxmean='sd'
    )
    data = [trace0, trace1, trace2, trace3, trace4, trace5, trace6, trace7, trace8, trace9, trace14, trace15]
    layout = go.Layout(title='Startzeiten von Hosts bzw. Containern mit zwei Workern', showlegend=False,yaxis=dict(
            title="Startzeit in Sekunden"
        ))
    figure = go.Figure(data=data, layout=layout)
    # py.plot(figure, auto_open=False)
    from plotly.offline import init_notebook_mode, plot
    init_notebook_mode()
    plot(figure, image='svg', filename='zweiWorker.html')
Esempio n. 46
0
def simulate(planet_radius, star_radius, inclination, imsize=(400, 400)):
    
    if planet_radius > star_radius:
        print("Can the planet's radius really be greater than the stars radius?")
        return
    if star_radius > 200:
        print("Please choose the star's radius to be less than 200")
        return
    if planet_radius > 200:
        print("Please choose the planet's radius to be less than 200")
        return
    if inclination > 200:
        print("Please choose an inclination less than 200 or -200")
        return
    else:
        time, flux = lightcurve(planet_radius, star_radius, i=inclination, imsize=imsize)
        dfs = pd.DataFrame({'time': time, 'flux': flux, 'star_radius': star_radius, 'planet_radius': planet_radius})

        first_dip = np.where(np.diff(flux) < 0)[0][0]
        first_full = np.where(np.diff(flux) < 0)[0][-1]
        sec_dip = np.where(np.diff(flux) > 0)[0][0]
        sec_full = np.where(np.diff(flux) > 0)[0][-1]

        init_notebook_mode(connected = True)
        fig = go.Figure(
            data=[go.Scatter(x=dfs.time.values, y=dfs.flux.values,
                             mode="lines",
                             name="Imaginary Planet",
                             line=dict(width=2, color="blue")),
                  go.Scatter(x=dfs.time.values, y=dfs.flux.values,
                             mode="lines",
                             name="Light from a Star",
                             line=dict(width=2, color="blue"))],
            layout=go.Layout(
                xaxis=dict(range=[0, imsize[0]], autorange=False, zeroline=False),
                yaxis=dict(range=[0, 1.3], autorange=False, zeroline=False),
                title_text="Exoplanet Transit", hovermode="closest",
                xaxis_title='Time',
                yaxis_title='f, Flux',
                updatemenus=[dict(type="buttons",
                                  buttons=[dict(label="Play",
                                                method="animate",
                                                args=[None])])]),
            frames=[go.Frame(
                data=[go.Scatter(
                    x=[dfs.time.values[::5][k]],
                    y=[dfs.flux.values[::5][k]],
                    mode="markers",
                    marker=dict(color="red", size=10))])

                for k in range(dfs.time.values[::5].shape[0])]
        )

        fig.update_layout(
            showlegend=False,
            annotations=[
                dict(
                    x=time[first_dip],
                    y=flux[first_dip],
                    xref="x",
                    yref="y",
                    text="Planet starts to occult the star",
                    showarrow=True,
                    arrowhead=7,
                    ax=0,
                    ay=-40
                ),        
                dict(
                    x=time[first_full],
                    y=flux[first_full],
                    xref="x",
                    yref="y",
                    text="Planet is fully in front of the star",
                    showarrow=True,
                    arrowhead=7,
                    ax=0,
                    ay=-40
                ), 
                dict(
                    x=time[sec_dip],
                    y=flux[sec_dip],
                    xref="x",
                    yref="y",
                    text="Planet has reached the edge of the star",
                    showarrow=True,
                    arrowhead=7,
                    ax=0,
                    ay=40,

                ),
                dict(
                    x=time[sec_full],
                    y=flux[sec_full],
                    xref="x",
                    yref="y",
                    text="Planet has stopped occulting the star",
                    showarrow=True,
                    arrowhead=7,
                    ax=0,
                    ay=-40
                )
            ]
        )
        return fig
import helper
import plotly.graph_objs as go
import plotly.offline as offline_py
offline_py.init_notebook_mode(connected=True)


def _generate_stock_trace(prices):
    return go.Scatter(
        name='Index',
        x=prices.index,
        y=prices,
        line={'color': helper.color_scheme['major_line']})


def _generate_traces(name_df_color_data):
    traces = []

    for name, df, color in name_df_color_data:
        traces.append(go.Scatter(
            name=name,
            x=df.index,
            y=df,
            mode='line',
            line={'color': color}))

    return traces


def plot_stock(prices, title):
    config = helper.generate_config()
    layout = go.Layout(title=title)
def plot_3d(df_real,
            model,
            name_x,
            name_y,
            name_z,
            name_pred,
            only_margin=False):
    from plotly.offline import init_notebook_mode, iplot
    import plotly.graph_objs as go
    import numpy as np
    import pandas as pd
    init_notebook_mode(connected=True)

    # 1 generate predictions cloud---------------------------------------
    d = model._parameters
    col_x = []
    col_y = []
    col_z = []
    col_pred = []
    last_a = None
    last_i3 = -1
    for i1 in range(100, 1000, 20):  # mass
        for i2 in np.arange(4, 10, 0.1):  # widths
            for i3 in range(0, 200, 2):  # color_scores
                col_x.append(i1)
                col_y.append(i2)
                col_z.append(i3)
                A = int(np.squeeze(model.predict(np.array([[i1], [i2],
                                                           [i3]]))))
                if only_margin:
                    if A == last_a or i3 < last_i3: col_pred.append(None)
                    else:
                        if len(col_pred) > 0: col_pred[-1] = last_a
                        col_pred.append(A)
                else:
                    col_pred.append(A)
                last_a = A
                last_i3 = i3
    df_model = pd.DataFrame({
        name_x: col_x,
        name_y: col_y,
        name_z: col_z,
        name_pred: col_pred
    })

    # 2 delete some values from cloud------------------------------------
    if not only_margin:
        df_model = df_model.sample(frac=1, random_state=0)
        df_model.reset_index(inplace=True, drop=True)
        df_model = df_model.iloc[-500:]

    # 3 plot-------------------------------------------------------------
    df0 = df_model[df_model['fruit_label'] == 0]
    df1 = df_model[df_model['fruit_label'] == 1]
    df2 = df_real[df_real['fruit_label'] == 0]
    df3 = df_real[df_real['fruit_label'] == 1]
    trace0 = go.Scatter3d(x=df0[name_x],
                          y=df0[name_y],
                          z=df0[name_z],
                          mode='markers',
                          marker=dict(color='rgb(100, 0, 0)',
                                      size=6,
                                      line=dict(
                                          color='rgba(217, 217, 217, 0.14)',
                                          width=0.5),
                                      opacity=1))
    trace1 = go.Scatter3d(x=df1[name_x],
                          y=df1[name_y],
                          z=df1[name_z],
                          mode='markers',
                          marker=dict(color='rgb(0, 100, 0)',
                                      size=6,
                                      symbol='circle',
                                      line=dict(color='rgb(204, 204, 204)',
                                                width=1),
                                      opacity=1))
    trace2 = go.Scatter3d(x=df2[name_x],
                          y=df2[name_y],
                          z=df2[name_z],
                          mode='markers',
                          marker=dict(color='rgb(255, 0, 0)',
                                      size=12,
                                      line=dict(
                                          color='rgba(217, 217, 217, 0.14)',
                                          width=0.5),
                                      opacity=1))
    trace3 = go.Scatter3d(x=df3[name_x],
                          y=df3[name_y],
                          z=df3[name_z],
                          mode='markers',
                          marker=dict(color='rgb(0, 255, 0)',
                                      size=12,
                                      symbol='circle',
                                      line=dict(color='rgb(204, 204, 204)',
                                                width=1),
                                      opacity=1))
    data = [trace0, trace1, trace2, trace3]
    layout = go.Layout(
        scene=dict(
            xaxis=dict(title=name_x),
            yaxis=dict(title=name_y),
            zaxis=dict(title=name_z),
        ),
        width=700,
        margin=dict(r=20, b=10, l=10, t=10),
    )
    fig = dict(data=data, layout=layout)
    iplot(fig, filename='elevations-3d-surface')
# coding: utf-8

# This document is a basic demonstration of the type of data analysis that I could do for your company.  It's not a full fledged and detailed analysis, but is more of a showing of my capabilities of using programming to do data analysis and create data visualizations.  

# In[1]:

import numpy as np
import pandas as pd
import plotly.plotly as py
import plotly.offline as ploff

from ggplot import *
from subprocess import check_output
#from plotly.offline import init_notebook_mode, plot

ploff.init_notebook_mode()


# We will be looking at **ACA US Health Insurance Marketplace** data on health and dental plans offered to individuals and small businesses over the years 2014-2016.
# 
# This data was initially released by the **Centers for Medicare & Medicaid Services (CMS)**, and downloaded from https://www.kaggle.com/hhsgov/health-insurance-marketplace where the zipped file was 734.9MB and took 4-5 minutes to download over a 150MBs internet connection. The uncompressed file came out to be 11.53GB.  This is pretty huge for my Macbook Air to handle, so we will only take a look at the Rates.csv (1.97GB) data set where each record relates to one issuer’s rates based on plan, geographic rating area, and subscriber eligibility requirements over plan years 2014, 2015, and 2016.  
# 
# A data dictionary can be found for this data set at https://www.cms.gov/CCIIO/Resources/Data-Resources/Downloads/Rate_DataDictionary_2016.pdf  
# 
# There are several variables in the Rates data set, and we'll only be reading in a subset of them for this quick exploration of the data.  In particular, we will explore the variables
# 
# * **BusinessYear** - year of the insurance plan, i.e., 2014, 2015, or 2016  
# * **StateCode** - state where the data record is from
# * **Age** - Age of the individuals plan, or FamilyOption if the plan covers an entire family, or fo the high end we simply have the age '65 or older'
# * **IndividualRate** - monthly premium rate for an individual
# * **Couple** - monthly premium for a couple
Esempio n. 50
0
def init_notebook_mode():
    plotly_offline.init_notebook_mode()
    global INTERACTIVE_MODE
    INTERACTIVE_MODE = True
Esempio n. 51
0
def go_offline():
	py_offline.init_notebook_mode()
	py_offline.__PLOTLY_OFFLINE_INITIALIZED=True
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in

import numpy as np  # linear algebra
import pandas as pd  # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import sklearn as sk
import xgboost as xgb
import seaborn as sns
import matplotlib.pyplot as plt
get_ipython().magic(u'matplotlib inline')

import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.tools as tls

import warnings
warnings.filterwarnings('ignore')

# Going to use these 5 base models for the stacking
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cross_validation import KFold
from sklearn.cross_validation import train_test_split

# In[ ]:
Esempio n. 53
0
#!/usr/bin/python3
# coding: utf-8

# 在执行脚本时,它将打开一个Web浏览器,并绘制绘图。
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot

from plotly.graph_objs import Scatter, Figure, Layout

plot([Scatter(x=[1, 2, 3], y=[3, 1, 6])])

# 在Jupyter Notebook环境中离线绘制图形。首先,您需要启动Plotly Notebook模式
init_notebook_mode(connected=True)

iplot([{"x": [1, 2, 3], "y": [3, 1, 6]}])

from plotly.graph_objs import *
import numpy as np

x = np.random.randn(2000)
y = np.random.randn(2000)
iplot([Histogram2dContour(x=x, y=y, contours=Contours(coloring='heatmap')),
       Scatter(x=x, y=y, mode='markers', marker=Marker(color='white', size=3, opacity=0.3))], show_link=False)

from plotly.graph_objs import *
import pandas as pd

df = pd.read_csv('https://plot.ly/~etpinard/191.csv')

iplot({
    'data': [
        Scatter(x=df['"{}{}"'.format(continent,', x')],
Esempio n. 54
0
def plotlyInteractive():
    pyo.init_notebook_mode(connected=True)
Esempio n. 55
0
def set_notebook_mode():
    pyo.init_notebook_mode(connected=True)
Esempio n. 56
0
def miplot(*args, **kwargs):
    configure_plotly_browser_state()
    init_notebook_mode(connected=False)
    iplot(*args, **kwargs)
Esempio n. 57
0
def go_offline(offline=True):
	if offline:
		py_offline.init_notebook_mode()
		py_offline.__PLOTLY_OFFLINE_INITIALIZED=True
	else:
		py_offline.__PLOTLY_OFFLINE_INITIALIZED=False
# + [markdown] run_control={"frozen": false, "read_only": false}
# <img src='__docs/__all/notebook_rules.png' />

# + [markdown] run_control={"frozen": false, "read_only": false}
# # Select Your IPTS

# + run_control={"frozen": false, "read_only": false}
from __code import system
from __code.bragg_edge import BraggEdge, Interface

system.System.select_working_dir(facility='SNS', instrument='SNAP')
from __code.__all import custom_style
custom_style.style()

from plotly.offline import plot, init_notebook_mode, iplot
init_notebook_mode()
# -

# ## Prepare UI engine

# + run_control={"frozen": false, "read_only": false}
# %gui qt

# + [markdown] run_control={"frozen": false, "read_only": false}
# # Select Raw Data Input Folder
#
# Data and time spectra files will be loaded

# + run_control={"frozen": false, "read_only": false}
o_bragg = BraggEdge(working_dir=system.System.get_working_dir())
o_bragg.select_working_folder()
# Load PySpark
sc = pyspark.SparkContext()
sqlContext = SQLContext(sc)

# Read the descriptor of a Dataiku dataset
intCS_ds = dataiku.Dataset("MyInternetClickStreamDataSet")

# And read it as a Spark dataframe
intCS_df = dkuspark.get_dataframe(sqlContext, intCS_ds)

# Discern a sample dataset from the source Spark dataset intCS_df
intCS_sdf = intCS_df.sample(False, 0.5, 10000)

# Initiate offline notebook mode
py.init_notebook_mode()

# Insantiate toPandas() and assign sampled Spark df to it
intCS_sdf_pandas = intCS_sdf.toPandas()

# Plot the Linechart
x = intCS_sdf_pandas['parsed_date_month'] #X axis dataset attribute
y0 = intCS_sdf_pandas['search_qty_sum'] #Y axis dataset attribute
y1 = intCS_sdf_pandas['sales_qty_sum'] # Y axis dataset attribute

Search_Quantity = go.Scatter(
x=x,
y=y0,
mode='line'
)
Sales_Quantity = go.Scatter(
Esempio n. 60
0
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

get_ipython().run_line_magic('matplotlib', 'inline')

import ipywidgets as widgets
from ipywidgets import interact

# Plotly plotting support
import plotly.offline as py

py.init_notebook_mode()
import plotly.graph_objs as go
import plotly.figure_factory as ff
import cufflinks as cf

cf.set_config_file(offline=True, world_readable=True, theme='ggplot')

# this file attempts to figure out the box walmart would have used and the dimenions of the box

# import all the files i need
wms_cwxl = pd.read_csv('wms_cwxl_with_itemsize.csv')

del wms_cwxl['Unnamed: 0.1']

# figure out the actual box used by walmart
box_type = {