Esempio n. 1
0
def channel_analytics(message):

    # Slack user web API token
    token = os.environ.get('USER_TOKEN')

    users_endpoint=urlopen('https://slack.com/api/users.list?token='+token+'&pretty=1').read()
    users_endpoint_result = json.loads(users_endpoint)
    users_arr = []
    for i in users_endpoint_result['members']:
        data = []
        data.append(i['name'])
        data.append(i['id'])
        users_arr.append(data)

    count_dict = defaultdict(int)
    len_user_arr = len(users_arr)
    channel_endpoint = urlopen('https://slack.com/api/channels.history?token='+token+'&channel=C1R5Z1FT3&count=1000&pretty=1').read()
    channel_endpoint_result = json.loads(channel_endpoint)
    for i in channel_endpoint_result['messages']:
        for j in range(0,len_user_arr):
            if i['user'] == users_arr[j][1]:
                count_dict[users_arr[j][1]] += 1

    pprint(count_dict)
    pprint(count_dict[users_arr[0][1]])

    labels=[users_arr[0][0],users_arr[1][0],users_arr[2][0],users_arr[3][0],users_arr[4][0],users_arr[5][0],users_arr[6][0],users_arr[7][0]]

    values=[count_dict[users_arr[0][1]],count_dict[users_arr[1][1]],count_dict[users_arr[2][1]],count_dict[users_arr[3][1]],count_dict[users_arr[4][1]],count_dict[users_arr[5][1]],count_dict[users_arr[6][1]], count_dict[users_arr[7][1]]]

    trace=go.Pie(labels=labels,values=values)
    py.iplot([trace])

    message.reply('https://plot.ly/~simmeringc/39/')
Esempio n. 2
0
def graph(lstmin, lstmax, lstmean, lstname):
    """printgraph"""
    trace0 = go.Scatter(
        x = lstname,
        y = lstmin,
        name = 'คะเเนนน้อยสุด',
        mode = 'lines+markers',
        line = dict(
        color = ('rgb(255, 0, 0)'),
        width = 2)
    )
    trace1 = go.Scatter(
        x = lstname,
        y = lstmax,
        name = 'คะเเนนมากสุด',
        mode = 'lines+markers',
        line = dict(
            color = ('rgb(255, 255, 0)'),
            width = 2)
    )
    trace2 = go.Scatter(
        x = lstname,
        y = lstmean,
        name = 'คะเเนนเฉลี่ย',
        mode = 'lines+markers',
        line = dict(
        color = ('rgb(51, 255, 51)'),
        width = 2)
    )
    data = [trace0, trace1, trace2]
    layout = dict(title = 'คะเเนนของเเต่ละคณะ',
                  yaxis = dict(title = 'คะเเนน'),
                  )
    fig = dict(data=data, layout=layout)
    py.iplot(fig, filename='styled-line')
def ribbon2(spectra, alpha, title):
    import plotly.plotly as py
    import plotly.graph_objs as go

    import numpy as np

    traces = []
    y_raw = spectra[:, 0]
    sample_size = spectra.shape[1]
    for i in range(0, sample_size):
        print i
        z_raw = spectra[:, i]
        x = []
        y = []
        z = []
        ci = int(255/sample_size*i) # ci = "color index"
        for j in range(0, len(z_raw)):
            z.append([z_raw[j], z_raw[j]])
            y.append([alpha[j], alpha[j]])
            x.append([i, i+1])
        traces.append(dict(
            xsrc="xsrc",
            z=z,
            x=x,
            y=y,
            colorscale=[ [i, 'rgb(%d,%d,255)'%(ci, ci)] for i in np.arange(0,1.1,0.1) ],
            showscale=False,
            type='surface',
        ))

    #traces = traces[::-1]

    fig = go.Figure( data=traces, layout={'title':'Pyramid Gradient MFS'})
    py.iplot(fig, filename='ribbon-plot-python')
def plot_graph(var1, var2):
    '''
    input: Receives two string variables from django
         Receives scatter, list of 9 lists, each interior list with an x, y, and neighborhood get_scatter_array 
         Receives colors, an ordered list corresponding with the interior lists of scatter
    output: Creates a trace for each of 9 lists , append to data file and creating scatterplot 
    '''
    scatter, colors = get_scatter_array(var1, var2)
    graph_title = var1 + ' vs ' + var2
    data = []

    for i, val in enumerate(scatter):
        trace = create_trace(i, val, colors)
        if trace:
          data.append(trace)
    layout = go.Layout(
    showlegend = False,
    title = graph_title,
    hovermode = 'closest',
    xaxis = dict(
        title = var1,
        ticklen = 5,
        zeroline = False,
        gridwidth = 2,
    ),
    yaxis = dict(
        title = var2,
        ticklen = 5,
        gridwidth = 2,
    ),
  )

    fig = go.Figure(data=data, layout=layout)
    py.iplot(fig, filename='healthy-neighborhoods')
Esempio n. 5
0
 def plot(self):
     fig = pytls.make_subplots(shared_xaxes=True, rows=30, cols=1)
     for colname in self.normalized.columns.values:
         fig.append_trace({'x': self.normalized.index, 'y': self.normalized[colname],
                           'type':'scatter', 'name': self.PRETTYCOLNAMES[colname][0]},
                           self.PRETTYCOLNAMES[colname][1], 1)
     py.iplot(fig,filename='biostampy')
Esempio n. 6
0
    def setup_metric_streams(self, local_stream_ids, metric_name, num_channels):

        for i in range(num_channels):
            stream_id = local_stream_ids[i]
            self.stream_ids.append(stream_id)
            py_stream = py.Stream(stream_id)
            py_stream.open()
            self.py_streams.append(py_stream)

            go_stream = go.Stream(token=stream_id, maxpoints=self.max_points)
            self.go_streams.append(go_stream)

        traces = []
        for i in range(num_channels):
            channel_name = "channel_%s" % i
            go_stream = self.go_streams[i]

            trace = go.Scatter(
                x=[],
                y=[],
                mode='splines',
                stream=go_stream,
                name=channel_name
            )
            traces.append(trace)

        data = go.Data(traces)
        layout = go.Layout(title=metric_name)
        fig = go.Figure(data=data, layout=layout)
        py.iplot(fig, filename=metric_name)
def vignereLength(ciphertext, minv=2, maxv=50, filename=None):
    lowest_distance = 1000000
    best_length = 0
    lengths = []
    scores = []
    for ks in range(minv, maxv):
        distance = vignereScore(ks)
        lengths.append(ks)
        scores.append(distance)
        # print("size={} dist={}".format(ks, distance))
        if distance < lowest_distance:
            best_length = ks
            lowest_distance = distance
    if filename:
        fig = dict(
            data = [go.Scatter(
                x = lengths,
                y = scores
            )],
            layout = dict(
                title = "Averaged Hamming distance between ciphertext blocks ",
                xaxis = dict(title = 'Line'),
                yaxis = dict(title = 'Hamming distance (avg)'),
             )
        )
        py.iplot(fig, filename=filename)
    return best_length
def value_investing_investigate(filename):
    with open('tools/plotly_credentials.json', 'r') as creds:
        credentials = json.load(creds)

    py.sign_in(credentials['plotly']['username'],
               credentials['plotly']['key'])
    # plot top industries (selected by market cap), make sure
    # enough to colors in colors_array of make_plotly_data fun
    top = 10

    stats = pd.read_csv(filename + '.csv')

    top_sorted = get_most_popular('industry', stats, top)

    title = "Value Investing Strategy (find companies with pb <1 and peg <1)."
    x_title = "Price/Book Value"
    y_title = "Price/Earnings/Growth"

    data = make_plotly_data(stats, top_sorted)

    layout = set_layout(title, x_title, y_title)

    fig = go.Figure(data=data, layout=layout)

    fig = hover_over_text(fig, stats, top_sorted)

    fig = add_data_source_note(fig)

    py.iplot(fig, filename=filename)
Esempio n. 9
0
    def plotly_graph(self, gx, filename, image_filename):
        axis=dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title='')
        trace1=go.Scatter3d(x=gx.Xe,y=gx.Ye,z=gx.Ze, mode='lines',
                            line=go.Line(color='rgb(125,125,125)', width=1), hoverinfo='none')
        trace2=go.Scatter3d(x=gx.Xn,y=gx.Yn,z=gx.Zn, mode='markers',name='artwork',
                         marker=go.Marker(symbol='diamond',size=6,color=gx.group,colorscale='Viridis',
                                       line=go.Line(color='rgb(50,50,50)', width=0.5)),
                         text=gx.labels, hoverinfo='text',)

        layout_grid = go.Layout(title="",
                                width=1000, height=1000, showlegend=False,
                                scene=go.Scene( xaxis=go.XAxis(axis),yaxis=go.YAxis(axis),zaxis=go.ZAxis(axis)),
                                margin=go.Margin(t=35,b=0), hovermode='closest',
                                paper_bgcolor='rgb(233,233,233)',
                                annotations=go.Annotations([
                                    go.Annotation(
                                       showarrow=False,
                                       text="",
                                       xref='paper',yref='paper',x=0,y=0.01,xanchor='left',yanchor='bottom',
                                       font=go.Font(size=14) )
                                ]), )

        data=go.Data([trace1, trace2])
        fig=go.Figure(data=data, layout=layout_grid)
        py.iplot(fig, filename=filename)
        py.image.save_as(fig, filename=image_filename)
        return fig
Esempio n. 10
0
 def plot_pca(self, ncomponents=6):
     pca_df = self.get_pca_dataframe(ncomponents=ncomponents)
     fig = pytls.make_subplots(shared_xaxes=True, rows=ncomponents, cols=1)
     for col in range(0, ncomponents):
         fig.append_trace({'x': pca_df.index, 'y': pca_df[col],
                           'type':'scatter', 'name': ("Component " + str(col+1))},
                          col+1, 1)
     py.iplot(fig, filename=('biostampy-pca:' + str(ncomponents)))
def make_graph(data, filename, layout=go.Layout()):
    fig = go.Figure(data=data, layout=layout)

    if ONLINE:
        py.iplot(fig, filename=filename)
    else:
        filename = './graphs/{}.png'.format(filename)
        py.image.save_as(fig, filename=filename)
def plotly_daily_by_week():

	plotly_name = 'My Electricity Use Visualizations/Heatmap Daily by Week'
	
	

	daily_totals = pd.DataFrame(np.zeros([len(elec['USAGE'].resample('W-MON', how='sum')),7]),
                            index = elec['USAGE'].resample('W-MON', how='sum').index)

	# Drop the last two rows to ensure each row is a full week
	daily_totals = pd.DataFrame(np.zeros([len(elec['USAGE'].resample('W-MON', how='sum')),7]),
	                            index = elec['USAGE'].resample('W-MON', how='sum').index)

	daily_totals.drop(daily_totals.tail(2).index, inplace=True)

	for j in range(len(daily_totals)):
	    for i in range(7):
	        #print i, j
	        daily_totals[i].ix[j] = elec['USAGE'].resample('D', how='sum').ix[(daily_totals.ix[j].name + pd.to_timedelta(i, unit='d'))]

	daily_totals.columns = ['Mon','Tues','Wed','Thurs','Fri','Sat','Sun']

	daily_totals.sort_index(ascending=False, inplace=True)

	data = Data([
	    Heatmap(
	        y = daily_totals.columns,
	        x = daily_totals.index,
	        z = np.transpose(np.array(daily_totals)),
	        colorscale='YIOrRd',
	        reversescale=True,
	        colorbar = ColorBar(
	        	title = 'Kilowatt-Hours',
        		titleside='right'
        	)
	    )
	])

	layout = Layout(
	    yaxis = YAxis(tickangle=0),
	    autosize = False,
	    width = 800,
	    height = 300,
	    margin=Margin(
	        l=50,
	        r=50,
	        b=50,
	        t=50,
	        pad=4
	    )
	)

	#plot_url = py.plot(data, layout=layout, filename='Daily_Totals_by_Week')
	fig = Figure(data=data, layout=layout)
	py.iplot(fig, filename=plotly_name)
	
	print "Sent to Plotly: ", plotly_name
Esempio n. 13
0
def build_plotly_table(plotly_df):
    plotly_df = plotly_df[['Passer_Name', 'Receiver_Name', 'Assists']]
    plotly_df = plotly_df.sort_values(by='Assists', ascending=False)
    plotly_df = plotly_df.head(25)
    plotly_df.columns = ['Passer', 'Receiver', 'Assists']
    plotly_df = plotly_df.as_matrix()
    plotly_df = np.insert(plotly_df, 0, np.array(('Passer', 'Receiver', 'Assists')), 0)

    table = FF.create_table(plotly_df)
    py.iplot(table, filename='assist_pairs')
Esempio n. 14
0
def plotly_notebook(traces, filename=None, title=None):
    if filename is None:
        filename = "plotly_graph"
    fig = Figure(data=Data(traces),
                 layout=Layout(title=title, plot_bgcolor="rgb(217, 217, 217)",
                               showlegend=True,
                               xaxis=XAxis(showgrid=False, zeroline=False,
                                           showticklabels=False),
                               yaxis=YAxis(showgrid=False, zeroline=False,
                                           showticklabels=False)))
    py.iplot(fig, filename=filename)
def fig1():
    trace1 = Scatter(
            x=df['LifeExpectancy'],
            y=df['GNP'],
            text=country_names,
            mode='markers'
    )
    layout = Layout(
            xaxis=XAxis(title='Life Expectancy'),
            yaxis=YAxis(type='log', title='GNP')
    )
    data = Data([trace1])
    fig = Figure(data=data, layout=layout)
    py.iplot(fig, filename='world GNP vs life expectancy')
 def graph_vector_space(self):
     """ 3D Scatter plot of first 3 word features with Plotly"""
     vocab = OrderedDict(sorted(self.vocabulary.items(), key = lambda t: t[1]))
     W_D = np.concatenate((self.WI, self.D), axis=0)
     
     text = vocab.keys()
     for i in range(len(self.sentences)):
         text.append('S' + str(i+1))
     
     trace1 = Scatter3d(
         x = W_D.T[0],
         y = W_D.T[1],
         z = W_D.T[2],
         mode ='markers+text',
         text = text,
         marker = Marker(
             size = 8,
             line = Line(
                 color = 'rgba(217, 217, 217, 0.14)',
                 width = 0.5
             ),
             opacity = 0.8
         )
     )
     data = Data([trace1])
     layout = Layout(
         margin = Margin(
             l = 0,
             r = 0,
             b = 0,
             t = 0
         )
     )
     fig = Figure(data = data, layout = layout)
     return py.iplot(fig)
    def graph_vector_space(self):
        """ 3D Scatter plot of first 3 word features with Plotly"""
        vocab = OrderedDict(sorted(self.vocabulary.items(), key = lambda t: t[1]))

        trace1 = Scatter3d(
            x = self.WI.T[0],
            y = self.WI.T[1],
            z = self.WI.T[2],
            mode ='markers+text',
            text = vocab.keys(),
            marker = Marker(
                size = 8,
                line = Line(
                    color = 'rgba(217, 217, 217, 0.14)',
                    width = 0.5
                ),
                opacity = 0.8
            )
        )
        data = Data([trace1])
        layout = Layout(
            margin = Margin(
                l = 0,
                r = 0,
                b = 0,
                t = 0
            )
        )
        fig = Figure(data = data, layout = layout)
        return py.iplot(fig)
Esempio n. 18
0
def pyplot(fig, ci=True, legend=True):
    # Convert mpl fig obj to plotly fig obj, resize to plotly's default
    py_fig = tls.mpl_to_plotly(fig, resize=True)
    
    # Add fill property to lower limit line
    if ci == True:
        style1 = dict(fill='tonexty')
        # apply style
        py_fig['data'][2].update(style1)
        
        # Change color scheme to black
        py_fig['data'].update(dict(line=Line(color='black')))
    
    # change the default line type to 'step'
    py_fig['data'].update(dict(line=Line(shape='hv')))
    # Delete misplaced legend annotations 
    py_fig['layout'].pop('annotations', None)
    
    if legend == True:
        # Add legend, place it at the top right corner of the plot
        py_fig['layout'].update(
            showlegend=True,
            legend=Legend(
                x=1.05,
                y=1
            )
        )
        
    # Send updated figure object to Plotly, show result in notebook
    return py.iplot(py_fig)
def drop_down_scatter(data_df):
    

    parser = {}
    loop_list = []
    #list([dict(arg=[],lable=,method='restyle',),dict(,,,)])
    #stopped here
    default_list = [False] * len(data_df.columns.tolist())
    plotly_tuple = ()
    counter=0
    button_list = []
    #for column in data_df.columns

    for column in data_df.columns:
        temp_df = data_df[column].dropna()
        name = 'trace' + str(counter)
        parser[name] = Scatter(
           x=temp_df.index, y=temp_df.values, name=temp_df.name)

        loop_list.append(parser[name])
        counter = counter + 1

    counter = 0
    loop_list_menus = []
    for column in data_df.columns:
        loop_list_menus = default_list.copy()
        loop_list_menus[counter] = True
        counter = counter + 1
        button_list.append(dict(args=['visible', loop_list_menus],label=column,method='restyle'))
    

    
    layout = Layout(title='C1 Ratio Adj. 1st of Month Roll',autosize=False,margin=go.Margin(l=5,r=50,pad=0),
                    
                    updatemenus=list([dict(
                                            x=-0.5,
                                            y=5,
                                            yanchor='top',
                                            buttons=button_list)]))


    fig = Figure(data=loop_list,layout=layout)
    

    
    
    py.iplot(fig,filename='drop_down_chart')
Esempio n. 20
0
def scatter_df_plotly(df, x, y, z, text_fnct = hover_all, 
                      streaming = True, filename= None):
    """
    a wrapper function for `plotlyi.graph_objs.Scatter` on `pandas.Dataframe`

    usage:
    =====
    d

    """
    layout = Layout(
        title='colour map: %s' % z,
        hovermode='closest',  # (!) hover -> closest data pt
        showlegend=False,     # remove legend (info in hover)
        autosize=False,       # turn off autosize
        width=650,            # plot width
        height=500,           # plot height
        xaxis=XAxis(
            title= x,
            titlefont=Font(
                family='Courier New, monospace',
                size=14,
                color='#7f7f7f'
            )
        ),
        yaxis=YAxis(
            title= y,
            titlefont=Font(
                family='Courier New, monospace',
                size=14,
                color='#7f7f7f'
            )
        )
    )
#    print('marker sizes:')
#    print(rescale_marker(df[z], square = True))
    SC = Scatter(x=df[x], y = df[y],
                    mode='markers',
                    marker = Marker(size = rescale_marker(df[z], square = True),
                                 color = df[z],
                                 colorscale = 'Jet',
                                 sizeref = 1,
                                 sizemode = 'area')
                )

    FIG = Figure(data = Data([SC]) , layout=layout )   
    #FIG['layout'].update( )
    
    if text_fnct is not None:
        FIG['data'][0].update(text = \
        df.apply(lambda ds: text_fnct(ds, x=x, y=y,z=z), axis = 1).tolist()  )

    if not streaming:
        if filename is not None:
            return py.plot(FIG, filename = filename)
        else:
            return py.plot(FIG)
    else:
        return py.iplot(FIG)
Esempio n. 21
0
def main():
	py.sign_in('rowan.coleman', '9m36u5ly1v')

	time_range = datetime.datetime.now() - datetime.timedelta(days=3)
	
	filename = 'evohome.db'
	filepath = os.path.join(sys.path[0],filename)

	engine = create_engine('sqlite:///%s' % filepath)
	Base = automap_base()
	Base.prepare(engine,reflect=True)
	temp = Base.classes.temperatures
		
	session = Session(engine)
	
	graph_data = []

	#Find all uniqe zones
	for zone_row in session.query(temp.name,temp.thermostat,temp.id).distinct():
		if zone_row.thermostat == 'DOMESTIC_HOT_WATER':
			zone_name = 'Hot Water'
		else:
			zone_name = zone_row.name
		print zone_name
		#Find temperatures within the time range
		x = []
		temp_y = []
		setpoint_y = []
		for row in session.query(temp).filter(temp.timestamp >= time_range).filter(temp.id == zone_row.id):
			#print row.timestamp,row.temp,row.setpoint
			x.append(row.timestamp)
			temp_y.append(row.temp)
			setpoint_y.append(row.setpoint)

		temp_trace = go.Scatter(x = x, y = temp_y, mode = 'lines', name = zone_name)
		graph_data.append(temp_trace)
		
		#if zone_row.thermostat == 'DOMESTIC_HOT_WATER':
			#continue
		#setpoint_trace = go.Scatter(x = x, y = setpoint_y, mode = 'lines', name = zone_name + '-setpoint', opacity=0.5)
		#graph_data.append(setpoint_trace)
		
	#print graph_data
	py.iplot(graph_data, filename='line-mode')
def plot_bar(data_df):
    
    new_df = pd.DataFrame(data=data_df.values[0], index=data_df.columns.tolist(),columns=['1 year return']).sort(columns='1 year return',ascending=False)

    data = [go.Bar(
                x= new_df.index.values,
                y= new_df[new_df.columns[0]].values
                #orientation = 'h'
    
    
    )]

   
    layout = go.Layout(title='1 Year Total Return as of ' + data_df.index[0].strftime('%m-%d-%Y'),
                       yaxis=dict(tickformat = '%'))
                       

    fig = go.Figure(data=data,layout=layout)
    py.iplot(fig,filename='one_yr_total_return')   
Esempio n. 23
0
def plotlysurface(zdata, extent, mpl_axes, mpl_cb, colorscale):
    x = np.linspace(extent[0], extent[1], zdata.shape[0])
    y = np.linspace(extent[2], extent[3], zdata.shape[1])
    cblabel = mpl_cb
    title = mpl_axes.get_title()
    xlabel = mpl_axes.get_xlabel()
    ylabel = mpl_axes.get_ylabel()
    plotdata = [
        pyg.Heatmap(
            z=zdata.tolist(),
            x=x,
            y=y,
            colorscale=colorscale,
            colorbar=dict(title=cblabel, titleside="right", len=1.058, outlinewidth=0),
        )
    ]
    layout = pyg.Layout(title=title, xaxis=dict(title=xlabel), yaxis=dict(title=ylabel))
    fig = pyg.Figure(data=plotdata, layout=layout)
    py.iplot(fig, filename=title)
Esempio n. 24
0
def histplot(feature):

    # Add histogram data and feature labels
    x = tracks[feature]
    data = Data([
            Histogram(
                x=x
            )
        ])
    return py.iplot(data)
Esempio n. 25
0
def iplot(data_or_figure,validate=True,world_readable=False,filename='',online=None):
	if offline.is_offline() and not online:
		show_link = auth.get_config_file()['offline_show_link']
		link_text = auth.get_config_file()['offline_link_text']
		return offline.py_offline.iplot(data_or_figure,show_link=show_link,link_text=link_text)
	else:
		if 'layout' in data_or_figure:
			validate = False if 'shapes' in data_or_figure['layout'] else True
		return py.iplot(data_or_figure,validate=validate,world_readable=world_readable,
						filename=filename)
Esempio n. 26
0
def positive_graph(data, candidate):
	'''
    INPUT DataFrame, string
    OUTPUT plotly graph
    '''
	data = Data([
	    Bar(
	        y=data['pos_keys'],
	        x=data['pos_percent'],
	        text=data['pos_example'],
	        orientation = 'h',
	        marker=Marker(
	            color='rgb(224, 102, 102)',
	            opacity=0.6,       
	        ),
	        opacity=0.6, 
     
	    )
	    
	])

	layout = Layout(
	    title='Positive Sentiment',
	    xaxis=XAxis(
	        title='Proportion of comments',
	        titlefont=Font(
	            family='Courier New, monospace',
	            size=18,
	            color='#7f7f7f'
	        )
	    ),
	    
	    width=900,
	    height=600,

	    margin=Margin( # set frame to plotting area margins
	        t=100,     #   top,
	        b=100,     #   bottom,
	        r=10,      #   right,  
	        l=250#   left
	    ),

	    yaxis=YAxis(
	        title='',
	        titlefont=Font(
	            family='Courier New, monospace',
	            size=18,
	            color='#7f7f7f'
	        )
	    )
	)

	fig = Figure(data=data, layout=layout)
	return py.iplot(fig, validate=False, filename= candidate + '_pos')
def value_investing_strategy_check(filename1, filename2):
    with open('tools/plotly_credentials.json', 'r') as creds:
        credentials = json.load(creds)

    py.sign_in(credentials['plotly']['username'],
               credentials['plotly']['key'])

    initial_state = pd.read_csv(filename1 + '.csv')
    #
    # pb,industry,peg,name,mc
    # 1.61,Health Care,2.24,Allergan plc,117460000000.0
    #

    final_state = pd.read_csv(filename2 + '.csv')
    #
    # name,mc,industry,pb,r,peg
    # Allergan plc,100260000000.0,Health Care,1.4,-0.13221840299542262,1.34
    #

    py.iplot(fig, filename=('comapre' + filename1 + 'and' + filename2))
Esempio n. 28
0
def plotly_monthtags(mcounts):
    ml=mcounts.index.tolist()[:25]
    mln=mcounts.txt.tolist()[:25]

    ml.reverse()
    mln.reverse()    
    trace0 = go.Bar(
        y = ml,
        x = mln,
    marker=dict(
        color='rgba(50, 171, 96, 0.6)',
        line=dict(
            color='rgba(50, 171, 96, 1.0)',
            width=1),
    ),
    name='',
    orientation='h'
    )

    
    data = [trace0]
    
    # Edit the layout 
    layout = dict(
    title = 'Hot topics on Kashmir this September',
    xaxis = dict(title = 'Impressions'),
    
        margin=dict(
        l=200,
        r=50,
        t=70,
        b=70
    ))
                  
    
    # Plot and embed in ipython notebook!
    # options in the graph such as displaying edit text and other tools 
    # can be hidden in iframe options in HTMS
    fig = dict(data=data, layout=layout)
    py.iplot(fig,filename='styled-line')
Esempio n. 29
0
def iplot(data_or_figure,validate=True,sharing=None,filename='',online=None,**kwargs):
	"""
	Plots a figure in IPython

	data_or_figure : figure
		Plotly figure to be charted
	validate : bool
		If True then all values are validated before 
		it is charted
	sharing : string
		Sets the sharing level permission
			public - anyone can see this chart
			private - only you can see this chart
			secret - only people with the link can see the chart
	filename : string
		Name to be used to save the file in the server
	online : bool
		If True then charts are rendered in the server 

	Other Kwargs
	============

		legend : bool
			If False then the legend will not be shown		
	"""
	valid_kwargs=['world_readable','legend']
	for key in list(kwargs.keys()):
		if key not in valid_kwargs:
			raise Exception("Invalid keyword : '{0}'".format(key))
	if 'legend' in kwargs:
		if 'layout' in data_or_figure:
			data_or_figure['layout'].update(showlegend=kwargs['legend'])
	if all(['world_readable' in kwargs,sharing is None]):
		sharing=kwargs['world_readable']
	if isinstance(sharing,bool):
			if sharing:
				sharing='public'
			else:
				sharing='private'
	if sharing is None:
		sharing=auth.get_config_file()['sharing']
	if offline.is_offline() and not online:
		show_link = auth.get_config_file()['offline_show_link']
		link_text = auth.get_config_file()['offline_link_text']
		return offline.py_offline.iplot(data_or_figure,show_link=show_link,link_text=link_text)
	else:
		if 'layout' in data_or_figure:
			validate = False if 'shapes' in data_or_figure['layout'] else validate
		if not filename:
			filename='Plotly Playground {0}'.format(time.strftime("%Y-%m-%d %H:%M:%S"))
		return py.iplot(data_or_figure,validate=validate,sharing=sharing,
						filename=filename)
def main():
    '''
    This the plot.ly sample choropleth method modified to use our Pubmed Data
    Sample: https://plot.ly/python/choropleth-maps/#world-choropleth-map
    '''

    df = pd.read_csv("country_M_code.csv")

    data = [ dict(
            type = "choropleth",
            locations = df["Code"],
            z = df["M>2"],
            text = df["Country"],
            autocolorscale = True,
            reversescale = False,
            marker = dict(
                line = dict (
                    color = "rgb(180, 180, 180)",
                    width = 0.5
                ) ),
            colorbar = dict(
                autotick = False,
                tickprefix = "",
                title = "M"),
          ) ]

    layout = dict(
        title = "Countries with M > 1",
        geo = dict(
            showframe = False,
            showcoastlines = False,
            projection = dict(
                type = "Mercator"
            )
        )
    )

    fig = dict( data=data, layout=layout )
    py.iplot( fig, validate=False, filename="M-world-map" )
Esempio n. 31
0
fig = ff.create_choropleth(
    fips=fips, values=values,
    binning_endpoints=endpts,
    colorscale=colorscale,
    show_state_data=False,
    show_hover=True, centroid_marker={'opacity': 0},
    asp=2.9, title='Rent by county in United States ',
    county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
    legend_title='rent in United States',
)


# In[35]:

py.iplot(fig, filename='choropleth_full_usa')


# <div class="alert alert-success">
# <b>The above map shows the distribution of rent and helps us to visualize which locations have concentration of higher rent prices.<br>
# So we have found that specific counties in California and NewYork have the highest rent prices
# eg - Santa Clara County of California
#     <div>

# ## <b>Finding 1:</b> rent vs debt

# In[36]:

import matplotlib.pyplot as pyplt
sns.set_context("notebook", font_scale=1.3)
Esempio n. 32
0
        width = 0.5
      ),
      label =  data['data'][0]['node']['label'],
      color =  data['data'][0]['node']['color']
    ),
    link = dict(
      source =  data['data'][0]['link']['source'],
      target =  data['data'][0]['link']['target'],
      value =  data['data'][0]['link']['value'],
      label =  data['data'][0]['link']['label']
  ))

layout =  dict(
    title = "Energy forecast for 2050<br>Source: Department of Energy & Climate Change, Tom Counsell via <a href='https://bost.ocks.org/mike/sankey/'>Mike Bostock</a>",
    font = dict(
      size = 10
    )
)

fig = dict(data=[data_trace], layout=layout)
py.iplot(fig, validate=False)









Esempio n. 33
0
        line=dict(width=2),
    ))

data = [trace0, trace1, trace2, trace3, trace4]
layout = go.Layout(
    title='Life Expectancy v. Per Capita GDP, 2007',
    xaxis=dict(
        title='GDP per capita (2000 dollars)',
        gridcolor='rgb(255, 255, 255)',
        range=[2.003297660701705, 5.191505530708712],
        type='log',
        zerolinewidth=1,
        ticklen=5,
        gridwidth=2,
    ),
    yaxis=dict(
        title='Life Expectancy (years)',
        gridcolor='rgb(255, 255, 255)',
        range=[36.12621671352166, 91.72921793264332],
        zerolinewidth=1,
        ticklen=5,
        gridwidth=2,
    ),
    paper_bgcolor='rgb(243, 243, 243)',
    plot_bgcolor='rgb(243, 243, 243)',
)

fig = go.Figure(data=data, layout=layout)
plotly.offline.plot(fig, filename='name.html')
py.iplot(fig, filename='life-expectancy-per-GDP-2007')
Esempio n. 34
0
def plot_feats():

    decs = [decade + 1 for decade in range(20)]

    # Initialization
    Y = dict()
    error_Y = dict()
    for feature in th[2:]:  # [D,I,F]

        Y[feature] = list()
        error_Y[feature] = list()

    feats = {
        'D': "Contextual diversity",
        'I': "Word informativeness",
        'F': "Word frequency"
    }

    ranges = {
        'D': [-0.0007, 0.000400],
        'I': [-0.0006, 0.003],
        'F': [-0.005, -0.0009]
    }

    # Get data
    for mdf in lms:

        for feature in th[2:]:

            # Coefficient
            coef = mdf.params[feature]
            Y[feature].append(coef)

            # Std. dev.
            std = mdf.bse[feature]
            error_Y[feature].append(std)

    # Plot (1 = 'all')
    choice = 1

    if choice == 1:

        traces = list()
        for feature in th[2:]:

            trace = go.Bar(x=decs,
                           y=Y[feature],
                           name=feats[feature],
                           error_y=dict(type='data',
                                        array=error_Y[feature],
                                        visible=True))

            traces.append(trace)

        layout = go.Layout(barmode='group', yaxis=dict(range=ranges[feature]))
        fig = go.Figure(data=traces, layout=layout)
        py.iplot(fig, filename="comb-bar")

    else:

        for feature in th[2:]:

            trace1 = go.Bar(x=decs,
                            y=Y[feature],
                            error_y=dict(type='data',
                                         array=error_Y[feature],
                                         visible=True))

            if feature == 'D':
                layout = go.Layout(xaxis=dict(title="Decades",
                                              showticklabels=True,
                                              range=[1, 20]),
                                   yaxis=dict(title="Coefficients (" +
                                              feats[feature] + ")",
                                              showticklabels=True,
                                              exponentformat='e',
                                              showexponent="all"))
            else:
                layout = go.Layout(xaxis=dict(title="Decades",
                                              showticklabels=True,
                                              range=[1, 20]),
                                   yaxis=dict(title="Coefficients (" +
                                              feats[feature] + ")",
                                              showticklabels=True,
                                              range=ranges[feature]))

            data = [trace1]
            fig = go.Figure(data=data, layout=layout)
            py.iplot(fig, filename=feature + '_bar')
    "#323268",
    "#3d4b94",
    "#3e6ab0",
    "#4989bc",
    "#60a7c7",
    "#85c5d3",
    "#b7e0e4",
    "#eafcfd"
]
#colorscale=cl.scales['7']['seq']['Purples']
#endpts = list(np.linspace(1, 12, len(colorscale) - 1))

fig = ff.create_choropleth(
    fips=fips,
    values=values,
    scope=['Oregon'],
    show_state_data=True,
    colorscale=colorscale,
    binning_endpoints=endpts,
    round_legend_values=True,
    plot_bgcolor='rgb(229,229,229)',
    paper_bgcolor='rgb(255,255,255)',
    legend_title='Population Per Square Mile by County in Oregon State',
    county_outline={
        'color': 'rgb(255,255,255)',
        'width': 0.5
    },
    exponent_format=True,
)
py.iplot(fig, filename='oregon_pop_density')
Esempio n. 36
0
    name='thalach'
)
trace8 = go.Box(
    y=heartDisease['exang'],
    name='exang'
)
trace9 = go.Box(
    y=heartDisease['oldpeak'],
    name='oldpeak'
)
trace10 = go.Box(
    y=heartDisease['heartdisease'],
    name='heart disease status'
)
plotdata = [trace0, trace1, trace2, trace3, trace4, trace5, trace6, trace7, trace8, trace9, trace10]
py.iplot(plotdata)


#we need to normalize the data

for item in heartDisease: #converts everything to floats
    heartDisease[item] = pd.to_numeric(heartDisease[item])

def normalize(heartDisease, toNormalize): #normalizes 
    result = heartDisease.copy()
    for item in heartDisease.columns:
        if (item in toNormalize):
            max_value = heartDisease[item].max()
            min_value = heartDisease[item].min()
            result[item] = (heartDisease[item] - min_value) / (max_value - min_value)
    return result
Esempio n. 37
0
    range=[-6, 6],
    showgrid=True,
    showline=True,
    zeroline=False,
    mirror='ticks',
    ticks='inside',
    linewidth=2,
    tickwidth=2,
)
layout = dict(title='P80 bands',
              width=500,
              height=700,
              xaxis=bandxaxis,
              yaxis=bandyaxis)
fig = go.Figure(data=data + vlines, layout=layout)
plt.iplot(fig, filename=structure + ' bands')

fig, ax = plot.subplots(figsize=(3, 4))

nodes = [0.0, 1.0000, 1.7071, 2.2071, 3.0731, 3.7802]
label = (r'$\Gamma$', r'$H$', r'$N$', r'$P$', r'$\Gamma$', r'$N$')

ax.set_xticks(node_x)
ax.set_xticklabels(label)

for n in range(len(nodes)):
    ax.axvline(x=nodes[n], linewidth=.3, color='black')

ax.set_title('P80 band structure')
ax.set_xlabel('Path in k-space')
ax.set_ylabel(r'$E$' + '–' + r'$E_f$')
import plotly.plotly as py

import numpy as np

data = [
    dict(
        visible=False,
        line=dict(color='#00CED1', width=6),  # 配置线宽和颜色
        name='𝜈 = ' + str(step),
        x=np.arange(0, 10, 0.01),  # x 轴参数
        y=np.sin(step * np.arange(0, 10, 0.01)))
    for step in np.arange(0, 5, 0.1)
]  # y 轴参数

data[10]['visible'] = True

py.iplot(data, filename='Single Sine Wave')
Esempio n. 39
0
                      mode="markers",
                      marker=dict(size=1, color="blue"))

layout = go.Layout(
    dict(
        title="Customer Attrition with Numeric Variables",
        scene=dict(camera=dict(up=dict(x=0, y=0, z=0),
                               center=dict(x=0, y=0, z=0),
                               eye=dict(x=1.25, y=1.25, z=1.25)),
                   xaxis=dict(title="monthly charges",
                              gridcolor='rgb(255, 255, 255)',
                              zerolinecolor='rgb(255, 255, 255)',
                              showbackground=True,
                              backgroundcolor='rgb(230, 230,230)'),
                   yaxis=dict(title="total charges",
                              gridcolor='rgb(255, 255, 255)',
                              zerolinecolor='rgb(255, 255, 255)',
                              showbackground=True,
                              backgroundcolor='rgb(230, 230,230)'),
                   zaxis=dict(title="tenure",
                              gridcolor='rgb(255, 255, 255)',
                              zerolinecolor='rgb(255, 255, 255)',
                              showbackground=True,
                              backgroundcolor='rgb(230, 230,230)')),
        height=600,
    ))

data = [trace1, trace2]
fig = go.Figure(data=data, layout=layout)
py.iplot(fig)
Esempio n. 40
0
print state_count.keys()
data1 = [go.Choropleth(
    colorscale = colorscale,
    autocolorscale = False,
    locations = state_count.keys(),
    z=state_count.values(),
    text=state_count.keys(),
    locationmode = 'USA-states',
    marker = go.choropleth.Marker(
        line = go.choropleth.marker.Line(
            color = 'rgb(255,255,225)',
            width = 2
        )),
    colorbar = go.choropleth.ColorBar(
        title = "No of Complaints")
)]

layout = go.Layout(
    title = go.layout.Title(
        text = 'Consumer Complaints by State<br>(Hover for breakdown)'
    ),
    geo = go.layout.Geo(
        scope = 'usa',
        projection = go.layout.geo.Projection(type = 'albers usa'),
        showlakes = True,
        lakecolor = 'rgb(0, 0, 255)'),
)

fig = go.Figure(data = data1, layout = layout)
py.iplot(fig, filename = 'd3-cloropleth-map')
Esempio n. 41
0
    x=[],
    y=[],
    mode='lines+markers',
    stream=stream_obj[i]         # (!) embed stream id, 1 per trace
)

data = go.Data([trace[i]])

# Add title to layout object
layout = go.Layout(title=map_sensor_id_to_title(i))

# Make a figure object
fig = go.Figure(data=data, layout=layout)

# Send fig to Plotly, initialize streaming plot, open new tab
py.iplot(fig, filename=map_sensor_id_to_title(i))

# We will provide the stream link object the same token that's associated with the trace we wish to stream to
s[i] = py.Stream(stream_id[i])

s[i].open()

def draw_to_plotly(jsonstr):
    """
    :param sensor_bundle:
    sensor_bundle[0] -> time
    sensor_bundle[1] -> ch4
    sensor_bundle[2] -> lpg
    sensor_bundle[3] -> co2
    sensor_bundle[4] -> dust
    sensor_bundle[5] -> temp
Esempio n. 42
0
def hmmPlot(results, uid, feats, br1, br2, br3, filename=''):
    for res in results:
        if uid in res.uid.unique():
            samp1 = res.loc[res.uid == uid].sort_values('ts').copy()
            break
#    obs1 = samp1.iloc[::max(1,int(samp1.shape[0]/50)),:].copy()
#    statemap = {0:"Stationary",1:"Walking",2:'Slow Moving',3:"Parking",4:"Traffic Light",5:"Driving"}
    samp1.reset_index(drop=True, inplace=True)
    ft = np.vectorize(datetime.fromtimestamp)

    def sft(dt):
        return datetime.strftime(dt, '%H:%M:%S')

    vsft = np.vectorize(sft)
    samp1['time'] = vsft(ft(samp1.ts / 1000))
    br1_flg = np.array(
        [any(x in y for x in br1) * 5.0 for y in samp1.fp_brand.values])
    br2_flg = np.array(
        [any(x in y for x in br2) * 5.0 for y in samp1.fp_brand.values])
    br1_txt = [[br1[x] for x in br1 if x in y] for y in samp1.fp_brand.values]
    br1_txt = pd.Series([x[0] if x else "" for x in br1_txt])
    br2_txt = np.array([[br2[x] for x in br2 if x in y]
                        for y in samp1.fp_brand.values])
    br2_txt = pd.Series([x[0] if x else "" for x in br2_txt])
    br3_txt = np.array([[br3[x] for x in br3 if x in y]
                        for y in samp1.fp_brand.values])
    br3_txt = pd.Series([x[0] if x else "" for x in br3_txt])
    samp1['text'] = samp1.time + " " + br1_txt + br2_txt + br3_txt + " "
    for i in range(len(feats)):
        samp1['text'] = samp1['text'] + feats[i] + ":" + samp1[feats[i]].map(
            str) + " "
    statemap = {0: "Stationary", 1: "Driving"}
    cdict = {0: 'darkgoldenrod', 1: 'royalblue'}

    mapbox_access_token = 'pk.eyJ1Ijoid2VpcWluZ3kiLCJhIjoiY2ppZG56N3lnMGRtMzN3cXZ4bm95dmtxNyJ9.fe7Jmdf44QWOnGCLKsTReg'
    samp1_m = samp1[['lat', 'long']].copy().values

    rec = {}
    for i in range(samp1_m.shape[0]):
        ll = tuple(samp1_m[i])
        if ll not in rec:
            rec[ll] = tuple([ll[0] + 0.00003, ll[1]])
        else:
            samp1_m[i] = rec[ll]
            rec[ll] = tuple([rec[ll][0] + 0.00003, rec[ll][1]])

    data = [
        go.Scattermapbox(lat=samp1['lat'],
                         lon=samp1['long'],
                         mode='lines+markers',
                         marker=dict(size=5 + br1_flg + br2_flg,
                                     opacity=1,
                                     color=samp1.hs.map(cdict)),
                         hovertext=samp1.hs.map(statemap) + " " +
                         samp1['text']),
        go.Scattermapbox(
            lat=samp1_m[:, 0] + 0.00002,
            lon=samp1_m[:, 1],
            mode='text',
            text=[
                str(x) + " " + samp1.time.values[x]
                for x in range(samp1_m.shape[0])
            ],
            marker=dict(size=5, opacity=1, color='darkblue'),
        ),
        go.Scattermapbox(
            lat=samp1_m[:, 0] + 0.00002,
            lon=samp1_m[:, 1],
            mode='text',
            text=[
                str(x) + " " + samp1.time.values[x]
                for x in range(samp1_m.shape[0])
            ],
            marker=dict(size=5, opacity=1, color='darkblue'),
        )
    ]
    layout = go.Layout(
        autosize=True,
        hovermode='closest',
        mapbox=dict(accesstoken=mapbox_access_token,
                    bearing=0,
                    center=dict(lat=samp1.lat.mean(), lon=samp1.long.mean()),
                    pitch=0,
                    zoom=11),
    )

    fig = dict(data=data, layout=layout)
    py.iplot(fig, filename=filename + " " + uid)
Esempio n. 43
0
cuisine_pie_values = []
for value in cuisine_dict.values():
    cuisine_pie_values.append(value)

data = {
    'data': [{
        'labels': cuisine_pie_keys,
        'values': cuisine_pie_values,
        'type': 'pie'
    }],
    'layout': {
        'title': "Cuisine Types of Athens' Restaurants"
    }
}

py.iplot(data, filename='basic-line')

#E). QQ Plots (answer in next cell)

import scipy.stats as stats

stats.probplot(food_df.Rating, dist="norm", plot=plt)
plt.title('QQ Plot of Rating')
plt.show()

stats.probplot(food_df.Number_of_Reviews, dist="norm", plot=plt)
plt.title('QQ Plot of Reviews')
plt.show()

stats.probplot(food_df.Number_of_Photos, dist="norm", plot=plt)
plt.title('QQ Plot of Photos')
Esempio n. 44
0
    tempLat = latStr[:2]
    tempLong = lonStr[:3]

    data = Data([
        Scattermapbox(
            lat=[float(latitude)],
            lon=[float(longitude)],
            mode='markers',
            marker=Marker(size=14),
            text=['BROCKTON'],
        )
    ])

    layout = Layout(
        autosize=True,
        hovermode='closest',
        mapbox=dict(
            accesstoken=
            'pk.eyJ1IjoicHZvbmxlaCIsImEiOiJjamYzOHZ6bmswNnkyMnlsdHptYjlkNGM2In0.Eu3jSih10cgvdG-FiYWF4w',
            #pk.eyJ1IjoicHZvbmxlaCIsImEiOiJjamYzOHZ6bmswNnkyMnlsdHptYjlkNGM2In0.Eu3jSih10cgvdG - FiYWF4w
            bearing=0,
            center=dict(lat=float(tempLat), lon=float(tempLong)),
            pitch=0,
            zoom=5),
    )

    fig = dict(data=data, layout=layout)
    py.iplot(fig, filename='Stackoverflow Jobs')

print(location.address)
import plotly.plotly as py
import plotly.figure_factory as ff

df = [
    dict(Task='Day1', Start='2016-01-01', Finish='2016-01-01 6:00:00', Resource='Sleep'),
    dict(Task='Day1', Start='2016-01-01 7:00:00', Finish='2016-01-01 7:30:00', Resource='Food'),
    dict(Task='Day1', Start='2016-01-01 9:00:00', Finish='2016-01-01 11:25:00', Resource='Brain'),
    dict(Task='Day1', Start='2016-01-01 11:30:00', Finish='2016-01-01 12:00:00', Resource='Rest'),
    dict(Task='Day1', Start='2016-01-01 12:00:00', Finish='2016-01-01 13:00:00', Resource='Food'),
    dict(Task='Day1', Start='2016-01-01 13:00:00', Finish='2016-01-01 17:00:00', Resource='Brain'),
    dict(Task='Day1', Start='2016-01-01 17:30:00', Finish='2016-01-01 18:30:00', Resource='Cardio'), 
    dict(Task='Day1', Start='2016-01-01 18:30:00', Finish='2016-01-01 19:00:00', Resource='Rest'),
    dict(Task='Day1', Start='2016-01-01 19:00:00', Finish='2016-01-01 20:00:00', Resource='Food'),
    dict(Task='Day1', Start='2016-01-01 21:00:00', Finish='2016-01-01 23:59:00', Resource='Sleep')
]

colors = dict(Cardio = 'rgb(46, 137, 205)',
              Food = 'rgb(114, 44, 121)',
              Sleep = 'rgb(198, 47, 105)',
              Brain = 'rgb(58, 149, 136)',
              Rest = 'rgb(107, 127, 135)')

fig = ff.create_gantt(df, colors=colors, index_col='Resource', title='Daily Schedule',
                      show_colorbar=True, bar_width=0.2, showgrid_x=True, showgrid_y=True, group_tasks=True)
py.iplot(fig, filename='practiceganttplottime', world_readable=True)
Esempio n. 46
0
def sendfunc(rows7): 

    l = []

    for i in rows7:
        l.append(list(i))

    schema = [i[0] for i in l]

    nos = [i[1] for i in l]

    nos = [int(x) for x in nos]

    i = 0
    t = 0
    while i < len(nos):
        t += nos[i]
        i += 1

    P = [float(x/t*100) for x in nos]

    trace1 = go.Bar(
        y=[''],
        x=[P[0]], 
        name = (f"{schema[0]}"),
        text = (f"{nos[0]}"),
        textposition = 'auto',
        orientation = 'h',
        marker = dict(
            color = 'rgba(103, 240, 160, 0.75)',
            line = dict(
                color = '#43BD78',
                width = 3)
        )
    )
    trace2 = go.Bar(
        y=[''],
        x=[P[1]],
        name=(f"{schema[1]}"),
        text = (f"{nos[1]}"),
        textposition = 'auto',
        orientation = 'h',
        marker = dict(
            color = 'rgba(255, 172, 188, 0.75)',
            line = dict(
                color = '#E67188',
                width = 3)
        )
    )
    trace3 = go.Bar(
        y=[''],
        x=[P[2]],
        name=(f"{schema[2]}"),
        text = (f"{nos[2]}"),
        textposition = 'auto',
        orientation = 'h',
        marker = dict(
            color = 'rgba(177, 193, 216, 1.0)',
            line = dict(
                color = '#82A1D0',
                width = 3)
        )
    )
    trace4 = go.Bar(
        y=[''],
        x=[P[3]],
        name=(f"{schema[3]}"),
        text = (f"{nos[3]}"),
        textposition = 'auto',
        orientation = 'h',
        marker = dict(
            color = 'rgba(250, 184, 126, 0.75)',
            line = dict(
                color = '#DF8E47',
                width = 3)
        )
    )
    trace5 = go.Bar(
        y=[''],
        x=[P[4]],
        name=(f"{schema[4]}"),
        text = (f"{nos[4]}"),
        textposition = 'inside',
        orientation = 'h',
        marker = dict(
            color = '#C8A8CD',
            line = dict(
                color = '#9C7DA1',
                width = 3)
        )
    )
    data = [trace1, trace2, trace3, trace4, trace5]
    layout = go.Layout(
        autosize=False,
        width=700,
        height=110,
        barmode='stack',
        xaxis=dict(ticksuffix="%"),
        legend=dict(
            orientation="h", 
            x=0.06, 
            y=-0.27,
            font=dict(
                size=10.5
            )
        ),
        margin=go.layout.Margin(
            l=60,
            r=60,
            b=0,
            t=0,
            pad=0
        )
    )

    fig = go.Figure(data=data, layout=layout)
    py.iplot(fig, filename='marker-h-bar')

    pio.write_image(fig,'schemas_invsr.png')
Esempio n. 47
0
def plotGraph(X,W,labeledIndexes,vertex_opt,plot_filepath = None, online = False,
              interactive=False,title = "", plot_size = [1000,1000], edge_width = 0.5,labeled_only=False):
        """ Plots a GSSL graph.
        
        Creates a plot showing vertices connected by edges from the affinity matrix in 2D/3D.
        A number of different configurations is possible by the use of a vertexplotOpt object.
        
        Args:
            X (`NDArray[float].shape[N,D]`): A 2D or 3D matrix containing the vertex positions. 
            W (`NDArray[float].shape[N,N]`): Optional. The affinity matrix defining the graph.
            vertex_opt (vertexOptObject) : The size/color/group vertex configuration object.
            title (string, default = ``''``) : The title to be printed above the image.
            online (bool, default = ``False``) : whether to create an online plot
            interactive (bool, default = ``False``) : whether to open an interactive plot on the browser
            plot_size (`List[int].shape[2]`, default = ``[1000,1000]``) : size of the canvas for the plotting operation.
            edge_width (float, default = ``0.5``) : thickness of the edges.
        
        Raises:
            ValueError: ``if X.shape[1] not in [2, 3]``
            
        Returns:
            None
        
        """ 
        
        if plot_filepath is None:
            plot_filepath =  path.join(PLOT_FOLDER,str(datetime.datetime.now()) + ".png")
    
        plot_dim = X.shape[1]
        
        if plot_dim < 2 or plot_dim > 3:
            raise ValueError("plot_dim must be either 2 or 3")    
        if (not W is None) and W.shape[0] != X.shape[0]:
            raise ValueError("Shapes of W, X do not match")
                
        if plot_dim > X.shape[1]:
            #Add missing dimensions
            temp = np.zeros((X.shape[0],plot_dim))
            temp[0:X.shape[0],0:X.shape[1]] = X
            X = temp
        
        if not os.path.exists(os.path.dirname(plot_filepath)): 
            os.makedirs(os.path.dirname(plot_filepath))
        
        
        
     
        def axis(dim_num):
            M = np.max(X[:,dim_num])
            m = np.min(X[:,dim_num])
            x = (M-m)/2
            M = M + (M-x)*0.2
            m = m + (m-x)*0.2
            
             
            axis=dict(
                      showline=False,
                      zeroline=False,
                      showgrid=False,
                      showticklabels=False,
                      visible=True,
                      title='',
                      range = [m,M]
                      )
            return(axis)
        
        scene = {}
        scene["xaxis"] = dict(axis(0))
        scene["yaxis"] = dict(axis(1))
        if plot_dim == 3:
            scene["zaxis"] = dict(axis(2))
         
        
        layout = go.Layout(
                 title=title,
                 font=dict(family='Courier New, bold', size=30, color='black'),
                 width=plot_size[0],
                 height=plot_size[1],
                 legend=dict(x=0,
                    y=1,
                    traceorder='normal',
                    font=dict(
                        family='sans-serif',
                        size=30,
                        color='#000'
                    ),
                    bgcolor='#E2E2E2',
                    bordercolor='#FFFFFF',
                    borderwidth=2),
                     showlegend=True,
                     xaxis=scene["xaxis"],
                     yaxis=scene["yaxis"],
                             
                         
                     margin=dict(
                        t=100
                    ),
                    hovermode='closest',
                    annotations=[
                           dict(
                           showarrow=False,
                            text="</a>",
                            xref='paper',
                            yref='paper',
                            x=0,
                            y=0.1,
                            xanchor='left',
                            yanchor='bottom',
                            font=dict(
                            size=14
                            )
                            )
                ],    )     
        
        if "zaxis" in scene.keys():
            layout.update(go.Layout(zaxis=scene["zaxis"]))
        
        #Create Traces
        data = []
        
        if not W is None:
            trace_edge = _traceEdges(X=X, W=W,plot_dim=plot_dim, edge_width=edge_width)
            data = trace_edge
            
        trace_vertex = _traceVertex(X=X,labeledIndexes=labeledIndexes, plot_dim=plot_dim, v_opt = vertex_opt)
        data += trace_vertex
        
        #Create figure
        fig=go.Figure(data=data, layout=layout)
        
        
        LOG.info("Plotting graph ({}) ...".format(title),LOG.ll.OUTPUT)
        if online:
            try:
                py.iplot(fig)
            except plotly.exceptions.PlotlyRequestError:
                LOG.warn("Warning: Could not plot online",LOG.ll.OUTPUT)
                
        if interactive:
            pyoff.offline.plot(fig)
        pio.write_image(fig,plot_filepath)
        LOG.info("Plotting graph({})...Done!".format(title),LOG.ll.OUTPUT)
Esempio n. 48
0
    trace = dict(x=range(0, len(inData)),
                 y=inData[:, i],
                 stackgroup='one',
                 mode='lines',
                 line=dict(width=3, color=colors[i]),
                 name=labels[i])
    tracesList.append(trace)
layout = go.Layout(title='Genotypes Breakdown',
                   xaxis=dict(title='Time [days]',
                              titlefont=dict(size=20, color='#7f7f7f')),
                   yaxis=dict(title='Allele Frequency',
                              titlefont=dict(size=20, color='#7f7f7f')),
                   width=1500,
                   height=400)
fig = go.Figure(data=go.Data(tracesList), layout=layout)
py.iplot(fig, filename='stacked-area-plot-hover', validate=False)
plotly.offline.plot(fig, filename='alleleFrequency.html')

# Plot allele ratio dynamics ..................................................
tracesList = []
for i in range(0, len(labels)):
    trace = dict(x=range(0, len(inData)),
                 y=inData[:, i],
                 stackgroup='one',
                 groupnorm='fraction',
                 mode='lines',
                 line=dict(width=3, color=colors[i]),
                 name=labels[i])
    tracesList.append(trace)
layout = go.Layout(title='Genotypes Breakdown',
                   xaxis=dict(title='Time [days]',
Esempio n. 49
0
#add column that calculates growth from 1970-2017 for population
df_UrbSub_Pop['Growth'] = (df_UrbSub_Pop['2017'] -
                           df_UrbSub_Pop['1970']) / (df_UrbSub_Pop['1970'])
df_UrbSub_Emp['Growth'] = (df_UrbSub_Emp['2017'] -
                           df_UrbSub_Emp['1990']) / (df_UrbSub_Emp['1990'])

# In[16]:

data = [
    go.Bar(x=df_UrbSub_Pop.index,
           y=df_UrbSub_Pop['Growth'],
           name='Population Growth 1970-2017')
]

py.iplot(data, filename='basic-bar')

# In[21]:

trace1 = go.Bar(y=df.cbsa_code, x=df['2017'], name=df.index, orientation='h')
trace2 = go.Bar(
    y=df_PS.cbsa_code,
    x=df_PS['2017'],
    name=df_PS.index,
    orientation='h',
)

data = [trace1, trace2]

layout = go.Layout(barmode='stack',
                   #     shapes=rectangle
Esempio n. 50
0
    font=dict(family='Courier New, monospace', size=24, color='#000000'),
    xaxis=dict(
        domain=[0, 1.00],
        title='Time Period',
        titlefont=dict(family='Courier New, monospace',size=16,color='#000000')
    ),
    yaxis=dict(
        domain=[0, 1.00],
        title='Measurement',
        titlefont=dict(family='Courier New, monospace',size=16,color='#000000'),
    ))
              
    
    
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='IoT Predictive Maintenance Demo')

s_1 = py.Stream(stream_id=token_1)
s_2 = py.Stream(stream_id=token_2)


s_1.open()
s_2.open()

while True:
    stream_data(IoT_Demo_Topic,max)
# Close the stream when done plotting
s_1.close()
s_2.close() 

            colorscale = [[0.0, 'rgb(242,240,247)'],[0.2, 'rgb(218,218,235)'],[0.4, 'rgb(188,189,220)'],[0.6, 'rgb(158,154,200)'],[0.8, 'rgb(117,107,177)'],[1.0, 'rgb(84,39,143)']],
            autocolorscale = False,
            reversescale = True,
            marker = dict(
                line = dict (
                    color = 'rgb(180,180,180)',
                    width = 0.5
                ) ),
            colorbar = dict(
                autotick = False,
                tickprefix = '$',
                title = 'Spatial analysis of Replies'),
          ) ]

    layout = dict(
        title = 'Spatial analysis of Trump Tweets',
        geo = dict(
            showframe = False,
            showcoastlines = False,
            projection = dict(
                type = 'Mercator'
            )
        )
    )

    fig = dict( data=data, layout=layout )
    return fig
y,z=plotdata(tr['user'])
plot_worldmap(y,z,c)
py.iplot( fig, validate=False, filename='d3-world-map' )
#https://www.kaggle.com/shep312/plotlycountrycodes
Esempio n. 52
0
import plotly.plotly as py
import plotly.graph_objs as go

trace0 = go.Bar(x=[
    'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
    'Nov', 'Dec'
],
                y=[20, 14, 25, 16, 18, 22, 19, 15, 12, 16, 14, 17],
                name='Primary Product',
                marker=dict(color='rgb(49,130,189)'))
trace1 = go.Bar(x=[
    'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
    'Nov', 'Dec'
],
                y=[19, 14, 22, 14, 16, 19, 15, 14, 10, 12, 12, 16],
                name='Secondary Product',
                marker=dict(color='rgb(204,204,204)', ))

data = [trace0, trace1]
layout = go.Layout(barmode='group', )

fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='angled-text-bar')
Esempio n. 53
0
data['DataSource'].value_counts().plot(kind='bar')
plt.show()
data['Topic'].value_counts().plot(kind='bar')
plt.show()
data['DataValueType'].value_counts().plot(kind='bar')
plt.show()
data['StratificationCategory1'].value_counts().plot(kind='bar')
plt.show()
import plotly
plotly.tools.set_credentials_file(username='******', api_key='hghqq2ST4H5jQI09Apqa')
import networkx as nx
import plotly.plotly as py
import plotly.graph_objs as go
trace = go.Heatmap(z=data.YearStart,x= data['LocationAbbr'],y=data['Topic'])
d=[trace]
py.iplot(d, filename='basic-heatmap')
# plot Yearstart data with label bar
data_sorted = data.sort_values(by = 'YearStart', ascending = False)
ax = sns.countplot(x="YearStart", data=data)
total = float(len(data))
for p in ax.patches:
    height = p.get_height()
    ax.text(p.get_x()+p.get_width()/2,height, '{:1.0f}'.format(height),ha="center",rotation=90) 
plt.show()
# remove the insignificant data 
dataclear = data[data['YearStart']>= 2009]
for_alcohol = data[data.Topic == 'Alcohol']  
for_alcohol['Question'].value_counts().plot(kind='bar')
plt.show()
for_alcohol['DataValueType'].value_counts().plot(kind='bar')
plt.show()
Esempio n. 54
0
import csv
import plotly.plotly as py
import plotly.graph_objs as go

with open('voucher.csv') as csvfile:
    reader = csv.reader(csvfile, delimiter=";")
    for row in reader:
        eins = row[1]
        zwei = row[2]

trace = go.Table(header=dict(values=['A Scores', 'B Scores']),
                 cells=dict(values=[[100, 90, 80, 90], [95, 85, 75, 95]]))

data = [trace]
py.iplot(data, filename='basic_table')

# print(row[1])
                              # colorscale=pl_colorscale,
                              showscale=False,
                              line=dict(width=0.5,
                                        color='rgb(230,230,230)')),
                  showupperhalf=False)

axis = dict(showline=True,
            zeroline=False,
            gridcolor="#fff",
            ticklen=4)
layout = go.Layout(
  title='stomp std dev evaluation',
  dragmode='select',
  width=1500,
  height=1500,
  autosize=True,
  hovermode='closest',
  plot_bgcolor='rgba(240,240,240, 0.95)',
  xaxis1=dict(axis),
  xaxis2=dict(axis),
  xaxis3=dict(axis),
  xaxis4=dict(axis),
  yaxis1=dict(axis),
  yaxis2=dict(axis),
  yaxis3=dict(axis),
  yaxis4=dict(axis))


fig1 = dict(data=[trace1], layout=layout)
py.iplot(fig1, filename='std_devs_stomp')
Esempio n. 56
0
for i in range(len(lat)):
    for j in range(len(long)):
        coord = lat[i], long[j]
        list_lat.append(lat[i])
        list_long.append(long[j])
        grid.append(coord)

mapbox_access_token = "pk.eyJ1IjoibWF0ZXVzLW5vcm1hbmRlIiwiYSI6ImNqczF6cG9oMzIwNnc0NHFyd2VqbGpheHUifQ.OZYbhTGC7-BXFMUhEQXRNg"
data = [
    go.Scattermapbox(lat=list_lat,
                     lon=list_long,
                     mode='markers',
                     marker=dict(size=3))
]

layout = go.Layout(
    autosize=True,
    hovermode='closest',
    mapbox=dict(accesstoken=mapbox_access_token,
                bearing=0,
                center=dict(
                    lat=-9.551585,
                    lon=-35.775490,
                ),
                pitch=0,
                zoom=10),
)

fig = dict(data=data, layout=layout)
py.iplot(fig, filename='Coordenadas')
Esempio n. 57
0
def draw_network(graph):

    G = nx.Graph()  #  G is an empty Graph

    my_edges = create_edges(graph)
    my_nodes = range(m * k)
    grouped_nodes = []
    for i in range(m):
        grouped_nodes.append([i * k + x for x in range(k)])

    pos = {}
    # generate m circular points
    for i in range(m):
        TempGraph = nx.Graph()
        TempGraph.add_nodes_from(grouped_nodes[i])
        new_dict = nx.circular_layout(TempGraph)
        #change each elem of new_dict into lists instead of numpy arrays
        #        for coords in new_dict:
        #            new_dict[coords] = list(new_dict[coords])

        t = float(i) / m  #goes from 0-1
        r = 4
        displacement = [
            r * math.sin(t * 2 * math.pi), r * math.cos(t * 2 * math.pi)
        ]
        for coords in new_dict:
            for i in [0, 1]:
                new_dict[coords][i] = new_dict[coords][i] + displacement[i]
            new_dict[coords] = list(new_dict[coords])
        pos.update(new_dict)

    G.add_nodes_from(my_nodes)

    G.add_edges_from(my_edges)

    #########
    #    G=nx.random_geometric_graph(200,0.125)
    #    pos=nx.get_node_attributes(G,'pos')# {nodeid: [x, y], ...

    #    dmin=1
    #    ncenter=0
    #    for n in pos:
    #        x,y=pos[n]
    #        d=(x-0.5)**2+(y-0.5)**2
    #        if d<dmin:
    #            ncenter=n
    #            dmin=d

    #    p=nx.single_source_shortest_path_length(G,ncenter)

    # Create edges
    edge_trace = go.Scatter(x=[],
                            y=[],
                            line=dict(width=0.5, color='#888'),
                            hoverinfo='none',
                            mode='lines')

    for edge in my_edges:  #G.edges():
        x0, y0 = pos[edge[0]][0], pos[edge[0]][1]  #G.node[edge[0]]['pos']
        x1, y1 = pos[edge[1]][0], pos[edge[1]][1]  #G.node[edge[1]]['pos']
        edge_trace['x'] += tuple([x0, x1, None])
        edge_trace['y'] += tuple([y0, y1, None])

    node_trace = go.Scatter(
        x=[],
        y=[],
        text=[],
        mode='markers',
        hoverinfo='text',
        marker=dict(
            showscale=True,
            # colorscale options
            #'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' |
            #'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' |
            #'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' |
            colorscale='YlGnBu',
            reversescale=True,
            color=[],
            size=10,
            colorbar=dict(thickness=15,
                          title='Node Connections',
                          xanchor='left',
                          titleside='right'),
            line=dict(width=2)))

    for key in pos:  #G.nodes():
        x, y = pos[key][0], pos[key][1]  #G.node[node]['pos']
        node_trace['x'] += tuple([x])
        node_trace['y'] += tuple([y])

    # Colour node points

    for node, adjacencies in enumerate(G.adjacency()):
        node_trace['marker']['color'] += tuple([len(adjacencies[1])])
        node_info = '# of connections: ' + str(len(adjacencies[1]))
        node_trace['text'] += tuple([node_info])

    # Create network graph

    fig = go.Figure(
        data=[edge_trace, node_trace],
        layout=go.Layout(
            title='<br>Network graph made with Python',
            titlefont=dict(size=16),
            showlegend=False,
            hovermode='closest',
            margin=dict(b=20, l=5, r=5, t=40),
            annotations=[
                dict(
                    text=
                    "Python code: <a href='https://plot.ly/ipython-notebooks/network-graphs/'> https://plot.ly/ipython-notebooks/network-graphs/</a>",
                    showarrow=False,
                    xref="paper",
                    yref="paper",
                    x=0.005,
                    y=-0.002)
            ],
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)))

    py.iplot(fig, filename='Ring group graph')
Esempio n. 58
0
@author: zww

@contact: [email protected]

@software: 2017/12/10 12:36

@file: vislize.py

@time: 2017/12/10 12:36

@desc:


'''
import plotly.plotly as py
import plotly.graph_objs as go

import pandas as pd

# Read data from a csv
z_data = pd.read_csv('data\zcdata.csv')

data = [go.Surface(z=z_data.as_matrix())]
layout = go.Layout(title='Mt Bruno Elevation',
                   autosize=False,
                   width=500,
                   height=500,
                   margin=dict(l=65, r=50, b=65, t=90))
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='elevations-3d-surface')
Esempio n. 59
0
def plotState(dat, uid, myhmm):
    try:
        samp1 = dat.loc[(dat.uid == uid)
                        & (np.isnan(dat.haflg))].sort_values('ts')
    except:
        samp1 = dat.loc[(dat.uid == uid)].sort_values('ts')


#    obs1 = samp1.iloc[::max(1,int(samp1.shape[0]/50)),:].copy()
    obs1 = samp1.copy()
    obs = np.array(obs1[['dspd', 'angle', 'td', 'dd', 'geo', 'cflg']])
    #    statemap = {0:"Stationary",1:"Walking",2:'Slow Moving',3:"Parking",4:"Traffic Light",5:"Driving"}
    statemap = {0: "Stationary", 1: "Driving"}

    mapbox_access_token = 'pk.eyJ1Ijoid2VpcWluZ3kiLCJhIjoiY2ppZG56N3lnMGRtMzN3cXZ4bm95dmtxNyJ9.fe7Jmdf44QWOnGCLKsTReg'
    samp1['hs'] = choice(myhmm.viterbi_k_log(obs, 20), 0)[1]
    try:
        samp1_g = samp1.loc[np.isnan(samp1.haflg)]
    except:
        samp1_g = samp1
    samp1_m = samp1_g[['lat', 'long']].copy().values
    rec = {}
    for i in range(samp1_m.shape[0]):
        ll = tuple(samp1_m[i])
        if ll not in rec:
            rec[ll] = tuple([ll[0] + 0.00003, ll[1]])
        else:
            samp1_m[i] = rec[ll]
            rec[ll] = tuple([rec[ll][0] + 0.00003, rec[ll][1]])

    data = [
        go.Scattermapbox(lat=samp1_g['lat'],
                         lon=samp1_g['long'],
                         mode='lines+markers',
                         marker=dict(size=5, opacity=1, color=samp1.hs),
                         hovertext=samp1_g.hs.map(statemap) + " " +
                         samp1_g['text']),
        go.Scattermapbox(
            lat=samp1_m[:, 0] + 0.00002,
            lon=samp1_m[:, 1],
            mode='text',
            text=[
                str(x) + " " + samp1.time.values[x]
                for x in range(samp1_m.shape[0])
            ],
            marker=dict(size=5, opacity=1, color='darkblue'),
        ),
        go.Scattermapbox(
            lat=samp1.loc[samp1.flg == 1]['lat'],
            lon=samp1.loc[samp1.flg == 1]['long'],
            mode='markers',
            text="Map Plot",
            marker=dict(size=10, opacity=1, color='burlywood'),
        )
    ]
    layout = go.Layout(
        autosize=True,
        hovermode='closest',
        mapbox=dict(accesstoken=mapbox_access_token,
                    bearing=0,
                    center=dict(lat=37.42, lon=-122.0945),
                    pitch=0,
                    zoom=11),
    )

    fig = dict(data=data, layout=layout)
    py.iplot(fig, filename='manual inspection')
Esempio n. 60
0
                    y=[20, 21, 22, 23],
                    text=[
                        'A</br>size: 40</br>sixeref: 2',
                        'B</br>size: 60</br>sixeref: 2',
                        'C</br>size: 80</br>sixeref: 2',
                        'D</br>size: 100</br>sixeref: 2'
                    ],
                    mode='markers',
                    marker=dict(
                        size=[400, 600, 800, 1000],
                        sizeref=0.2,
                        sizemode='area',
                    ))

data = [trace0, trace1, trace2]
py.iplot(data, filename='bubblechart-size-ref')

#-----------------------------------------------------------------------------------------------------------------#
#------------------------------------------CLASSIFIER CODE--------------------------------------------------------#
#-----------------------------------------------------------------------------------------------------------------#


def getRoundedPhotoData():
    traitFile = open("C:/Users/rrenv/Desktop/Level4Project/averageRatings.csv",
                     "r")
    for line in traitFile:
        line = line[:-1]
        values = line.split(",")
        traitValues = []
        if (values[0][:12] not in photoData):
            photoData[values[0][:12]] = []