from sklearn.model_selection import cross_val_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from plotter import plot_cross_validation from sklearn import datasets import warnings warnings.filterwarnings('ignore') #------------------ digits = datasets.load_digits() X = digits.data Y = digits.target clf = LinearDiscriminantAnalysis() clf.fit(X, Y) n = 1 print(clf.predict(X[1:10])) print((X[1:3])) print(cross_val_score(clf, X, Y, cv=10)) print("Сравнение показателей ...") plot_cross_validation(X=X, y=Y, clf=clf, title="Linear Discriminant Analysis")
from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import cross_val_score from plotter import plot_cross_validation from sklearn import datasets import warnings warnings.filterwarnings('ignore') #------------------ data = datasets.load_iris() X=data.data Y=data.target clf = GaussianNB() partial = clf.partial_fit print(partial) clf.fit(X, Y) print(clf.predict(X[:5])) print((X[:5])) print(clf.partial_fit) print(cross_val_score(clf, X, Y, cv=10)) print("Сравнение показателей ...") plot_cross_validation(X=X, y=Y, clf=clf, title="Gaussian Naive Bayes")