Esempio n. 1
0
def main(argv, input_break, target_break, apply_target, S, max_epoch, lr, B=1):
    if (len(argv) != 3):
        print('Error en la entrada')

    [_, model, data] = argv

    # lectura y pre procesamiento de datos
    (input, target) = load_dataset(data, input_break, target_break,
                                   apply_target)

    if (not path.exists(model + '.p')):
        # entrenamiento
        errors, W = train(input, target, S, max_epoch, lr, B)

        plot_error(errors)
        pickle.dump(errors, open(model + '_errors.p', 'wb'))
        pickle.dump(W, open(model + '.p', 'wb'))
    else:
        # testing

        # carga de modelo entrenado
        W = pickle.load(open(model + '.p', 'rb'))

        # testeo
        r, Y, Z = test(input, target, S, W)

        if Z.shape[1] == 1:
            print('precisión: {}  (aciertos/total)'.format(r))
        else:
            print('error cuadratico medio: {}'.format(r))
Esempio n. 2
0
    def exp(self, S, max_epoch, lr, train_break, test_break, B):
        errors = self.train(S, max_epoch, lr, train_break, B)
        prec, Y, Z = self.test(test_break)
        plot_target_1(Y, Z)
        plot_error(errors)
        V = []
        J = []
        Y = np.array(Y)
        Z = np.array(Z)
        for i in range(len(Y)):
            if (Y[i] > -0.95 and Y[i] < 0.95) or not (np.sign(Y[i]) == Z[i]):
                V.append(Y[i])
                J.append(Z[i])
        plot_scat_1(Y, Z)
        plot_scat_1(V, J)
        print('precision: {}'.format(prec))

        return errors
Esempio n. 3
0
from dataset import load_dataset
from hebbiano import Hebbiano
from plotter import plot, plot_error

data, labels = load_dataset('./dataset/tp2_training_dataset.csv')

data_train = data[:700]
labels_train = labels[:700]

data_test = data[700:]
labels_test = labels[700:]

modelo = Hebbiano(data_train)

errors = modelo.train('oja', 9, 0.00001, 0.001, 1500, 100)

plot_error(errors)
plot(modelo.test(data_train), labels_train)
plot(modelo.test(data_test), labels_test)
Esempio n. 4
0
 def exp_2(self, S, max_epoch, lr, train_break, test_break, B):
     errors = self.train(S, max_epoch, lr, train_break, B)
     ecm, Y, Z = self.test(test_break)
     plot_error(errors)
     print('error cuadratico medio: {}'.format(ecm))
     return errors