Esempio n. 1
0
def main():

    # 2d where some fxpt not on every path.  happens at glancing nullclines
    network_sizes, num_samples, test_data=fe.load_test_data('dl2.npz')
    N, s = 2, 1
    W = test_data['N_%d_W_%d'%(N,s)]
    samp = 10
    ang = np.linspace(0,np.pi,samp)
    C = np.array([np.sin(ang),np.cos(ang)])
    v_ax = plt.subplot(1,2,1)
    a_ax = plt.subplot(1,2,2)
    for a in [0]:#range(samp):
        status, fxV, VA, c, deltas, s_mins = rd.traverse(W, c=C[:,[a]])
        print(a, fxV.shape[1])
        ptr.plot(v_ax, VA[:N,:], '-', c=str(1.0*a/samp))
        ptr.scatter(v_ax, fxV, c='r')
        a_ax.plot(VA[N,:], '-', c=str(1.0*a/samp))
        a_ax.plot(range(VA.shape[1]),np.zeros(VA.shape[1]),'--b')
    # nullclines
    v = np.linspace(-1,1,100)[1:-1]
    v_ax.plot(v, (np.arctanh(v)-W[0,0]*v)/W[0,1], '-b')
    v_ax.plot((np.arctanh(v)-W[1,1]*v)/W[1,0], v, '-b')
    ptr.set_lims(v_ax, np.array([[-2,2],[-2,2]]))
    ptr.set_lims(a_ax, np.array([[0,VA.shape[1]],[-.5,.5]]))
    plt.show()
Esempio n. 2
0
def percent_timeout(xlabel, data, fix=None):
    xs = list(set(int(d[xlabel]) for d in data if d[xlabel] != xlabel))
    timeouts = []
    distribs = []
    averages = []
    for x in xs:
        count = 0
        times = []
        total = 0
        for d in data:
            if d[xlabel] == xlabel: continue
            if int(d[xlabel]) != int(x): continue
            if fix is not None and int(d[fix[0]]) != int(d[fix[0]]): continue
            total += 1
            times.append(min(float(d["time"]), args.timeout))
            if d["succeed"] != "true": count += 1
        if len(times) == 0:
            continue
        timeouts.append(float(count) / float(total))
        distribs.append(times)
        averages.append(sum(times) / len(times))
    title_prc = "Percent_Timeout_100Edits_32bits_%s" % xlabel
    title_avg = "Mean_Time_100Edits_32bits_%s" % xlabel
    title_viol = "Violin_100Edits_32bits_%s" % xlabel
    if fix is not None:
        app_str = str(fix[0]) + str(fix[1])
        title_prc += app_str
        title_avg += app_str
    assert len(xs) == len(averages)
    plotter.scatter(args.output,
                    xs,
                    timeouts,
                    title_prc,
                    xlabel,
                    "% timeout",
                    ylim=(0.0, 1.0))
    plotter.scatter(args.output,
                    xs,
                    averages,
                    title_avg,
                    xlabel,
                    "time(s)",
                    ylim=(0.0, args.timeout))
    plotter.violins(args.output,
                    xs,
                    distribs,
                    title_viol,
                    xlabel,
                    "time (s)",
                    ylim=(0.0, args.timeout))
Esempio n. 3
0
def plot_scatter(x, y, label, data, maxy=None, fix=None):
    xs = []
    ys = []
    for d in data:
        if d[fix[0]] == fix[0]: continue
        if fix is None or int(d[fix[0]]) == int(fix[1]):
            xs.append(int(d[x]))
            if maxy is not None and float(d[y]) > float(maxy):
                ys.append(float(maxy))
            else:
                ys.append(float(d[y]))
    print "data for", fix, len(xs), len(ys)
    if maxy is None:
        ylim = None
    else:
        ylim = (0, maxy)
    plotter.scatter(args.output, xs, ys, label, x, y, ylim=ylim)
Esempio n. 4
0
def scatter_color(xlabel, ylabel, data, maxtime, xlim=None, ylim=None):
    xs = []
    ys = []
    cs = []
    for d in random.sample(data, k=10000):
        if d[xlabel] == xlabel: continue
        xs.append(float(d[xlabel]))
        ys.append(float(d[ylabel]))
        time = float(d["time"])
        if time > maxtime:
            time = maxtime
        cs.append(time)
    title = "{}_vs_{}_vs_time".format(xlabel, ylabel)
    print "generating"
    plotter.scatter(args.output,
                    xs,
                    ys,
                    title,
                    xlabel,
                    ylabel,
                    ylim=ylim,
                    xlim=xlim,
                    colors=cs)
Esempio n. 5
0
def fiber_fig():
    """
    Show an example of a directional fiber for a two-neuron network
    """
    # mpl.rcParams['mathtext.default'] = 'regular'
    mpl.rcParams['mathtext.default'] = 'it'
    mpl.rcParams.update({'font.size': 18})
    mpl.rcParams['pdf.fonttype'] = 42
    mpl.rcParams['ps.fonttype'] = 42
    W = np.array([[1.5, 0.05], [-0.01, 1.5]])
    c = np.array([[1.], [2]])
    _, fxV, VA, _, _, _, _ = rfx.traverse(W, c=c)
    fxV, _ = rfx.post_process_fxpts(W, fxV)
    VA = np.concatenate((-VA[:2, ::-1], VA[:2, :]), axis=1)
    plt.figure(figsize=(7, 7))
    ptr.plot(plt.gca(), VA[:2, :], '-k')
    ptr.scatter(plt.gca(), fxV, 75, c=((0, 0, 0), ))
    V = ptr.lattice([-1.25, -1.25], [1.25, 1.25], 20)
    C = np.tanh(W.dot(V)) - V
    ptr.quiver(plt.gca(),
               V,
               C,
               scale=.008,
               units='dots',
               width=1,
               color=((.7, .7, .7), ),
               headwidth=7)
    V = VA[:2, :]
    V = V[:, ((-1.25 < V) & (V < 1.25)).all(axis=0)]
    C = np.tanh(W.dot(V)) - V
    ptr.quiver(plt.gca(), V, C, scale=.005, units='dots', width=2, headwidth=5)
    plt.xlim([-1.25, 1.25])
    plt.xlabel('$v_1$', fontsize=24)
    plt.ylim([-1.25, 1.25])
    plt.ylabel('$v_2$', fontsize=24, rotation=0)
    # plt.tight_layout()
    plt.show()
Esempio n. 6
0
def c_space_fig():
    """
    Plot both the set of bad c and some nearby fibers
    """
    mpl.rcParams['mathtext.default'] = 'regular'
    # mpl.rcParams.update({'figure.autolayout': True})
    mpl.rcParams.update({'font.size': 14})
    mpl.rcParams['pdf.fonttype'] = 42
    mpl.rcParams['ps.fonttype'] = 42

    N = 3
    num_C = 8 # should be even or else land exactly on W[i,:]c=0

    # known loop:
    W = np.array([[ 1.20005258, -0.09232104, -0.12745533],
              [-0.03161879,  1.26916341, -0.11257691],
              [-0.03246188,  0.08548894,  1.24386724]])
    # c1 = np.array([[.7,.5,2]]).T
    #c2 = np.array([[.1,1.5,2]]).T
    c1 = np.array([[.3,.7,.7]]).T
    c2 = np.array([[.7,.5,.7]]).T

    # # Random W, C
    # W = 1.1*np.eye(N) + 0.1*np.random.randn(N,N)
    # c1 = mldivide(W, np.array([[+0.5,0.3,1]]).T)
    # c2 = mldivide(W, np.array([[-0.5,0.3,1]]).T)
    interp = np.arange(num_C)/(num_C-1.0)
    C = c1*interp[np.newaxis,:] + c2*(1-interp[np.newaxis,:])
    C = C/np.sqrt((C*C).sum(axis=0))
    bright_cap = .7

    # show c space partition
    if not os.path.exists('lork_c_3d_data.npz'):
        _ = find_low_rank_c_3d_data(W)
    npz = np.load('lork_c_3d_data.npz')
    
    fig = plt.figure(figsize=(4.5,9))
    ax = fig.add_subplot(2,1,1,projection='3d')
    for colorful in range(0):
        colors = ['b','g','r','c','m','y','k','w']
        # numerical
        for s in npz['signs'].shape[1]:
            # if colors[s] not in ['b','m','y']: continue
            # if s not in [0,4,5]: continue
            # for p in range(len(c_path[s])):
            for p in range(npz['lens'][s]):
                c_path_s_p = npz['c_path_%d_%d'%(s,p)]
                pltr.plot(ax, c_path_s_p, colors[s])
                #pltr.quiver(ax, a_path[s][p], c_path_s_p)
                # pltr.plot(ax, c_path_s_p + 0.05*a_path[s][p], 'k--')
                pltr.plot(ax, -c_path_s_p, colors[s])
                # pltr.plot(ax, -c_path_s_p - 0.05*a_path[s][p], 'k--')
                # pltr.plot(ax, c_path_inf[s][p], colors[s])
                # pltr.plot(ax, -c_path_inf[s][p], colors[s])
            # pltr.plot(ax, c[s], colors[s]+'+')
        # Wc = 0
        angles = np.linspace(0,2*np.pi,100)
        for i in range(N):
            _, _, Z = np.linalg.svd(W[[i],:]) # for null-space
            c_i = Z[-2:,:].T.dot(np.array([np.sin(angles), np.cos(angles)]))
            pltr.plot(ax, c_i, 'k--')
    for summary in range(1):
        # numerical
        for s in range(npz['signs'].shape[1]):
            if s not in [0,4,5]: continue
            for p in range(npz['lens'][s]):
                c_path_s_p = npz['c_path_%d_%d'%(s,p)]
                pltr.plot(ax, c_path_s_p, 'k')
                pltr.plot(ax, -c_path_s_p, 'k')
                # if c_path[s][p].shape[1] > 0:
                #     print(c_path[s][p].shape)
                #     print(int(c_path[s][p].shape[1]/2))
                #     print(c_path[s][p][:,[int(c_path[s][p].shape[1]/2)]])
                #     print(['%d,%d'%(s,p)])
                #     pltr.text(ax, c_path[s][p][:,[int(c_path[s][p].shape[1]/2)]],['+%d,%d'%(s,p)])
                #     # pltr.text(ax, -c_path[s][p][:,[int(c_path[s][p].shape[1]/2)]],['-%d,%d'%(s,p)])
        # Wc = 0
        angles = np.linspace(0,2*np.pi,100)
        for i in range(N):
            _, _, Z = np.linalg.svd(W[[i],:]) # for null-space
            c_i = Z[-2:,:].T.dot(np.array([np.sin(angles), np.cos(angles)]))
            pltr.plot(ax, c_i, 'k--')

    # plt.xticks([-1,0,1])
    plt.yticks([-1,0,1])
    # ax.set_zticks([-1,0,1])

    pltr.set_lims(ax, 1*np.array([[1],[1],[1]])*np.array([[-1,1]]))
    # ax.set_xlabel('$c_1$')
    # ax.set_ylabel('$c_2$')
    # ax.set_zlabel('$c_3$')

    # ax.set_title('(a)')
    mpl.rcParams['mathtext.default'] = 'it'
    # mpl.rcParams['font.family'] = 'serif'
    # ax.set_title('$\frac{c}{||c||}\in\mathrm{\mathbb{S}}^2$')
    ax.set_title('$c/||c||\in\mathrm{\mathbf{S}}^2$') # mathbb incompatible with truetype

    pltr.scatter(ax, C, c=np.array([[bright_cap*g for _ in range(3)] for g in interp]),edgecolor='face')
    # pltr.scatter(ax, C, s=20, c=[str(bright_cap*g) for g in interp],edgecolor='face')
    # pltr.quiver(ax, c1, c1-c2)

    # ax.azim, ax.elev = 16, 51
    ax.azim, ax.elev = -74, 2

    # plt.show()
    # return None

    # show paths
    if not os.path.exists('brute_fiber_data.npz'):
        _ = c_space_fig_fiber_data()
    npz = np.load('brute_fiber_data.npz')
    #         npz['fxV_%d_%d'%(p,i)] = fxV[i]
    #         npz['VA_%d_%d'%(p,i)] = VA[i]
    #     npz['lens_%d'%p] = len(fxV)
    # np.savez('brute_fiber_data.npz',**npz)

    ax = fig.add_subplot(2,1,2,projection='3d')
    for p in range(0,len(interp),2):
        for i in range(npz['lens_%d'%p]):
            fxV_i = npz['fxV_%d_%d'%(p,i)]
            VA_i = npz['VA_%d_%d'%(p,i)]
            for s in [1]:#[-1,1]:
                col = np.array([bright_cap*interp[p] for _ in range(3)])
                pltr.plot(ax, s*VA_i[:N, (np.fabs(VA_i[:N,:]) < 3).all(axis=0)], color=col)
                pltr.plot(ax, s*fxV_i, 'ko')
        # ax.set_title('c_%d'%p)

    pltr.set_lims(ax, 1.5*np.array([[1,1,1]]).T*np.array([[-1,1]]))
    ax.azim, ax.elev = -94, 8
    # ax.set_xlabel('$v_1$') #,rotation=0)
    # ax.set_ylabel('$v_2$') #,rotation=0)
    # ax.set_zlabel('$v_3$') #,rotation=0)
    
    plt.xticks([-1,0,1])
    plt.yticks([-1,0,1])
    ax.set_zticks([-1,0,1])
    ax.set_title('$v\in\mathrm{\mathbf{R}}^3$')

    plt.tight_layout()
    plt.show()
Esempio n. 7
0
def c_space_fig_old():
    """
    Plot both the set of bad c and some nearby fibers
    """
    mpl.rcParams['mathtext.default'] = 'regular'
    # mpl.rcParams.update({'figure.autolayout': True})
    mpl.rcParams.update({'font.size': 14})

    N = 3
    num_C = 8 # should be even or else land exactly on W[i,:]c=0

    # known loop:
    W = np.array([[ 1.20005258, -0.09232104, -0.12745533],
              [-0.03161879,  1.26916341, -0.11257691],
              [-0.03246188,  0.08548894,  1.24386724]])
    # c1 = np.array([[.7,.5,2]]).T
    #c2 = np.array([[.1,1.5,2]]).T
    c1 = np.array([[.3,.7,.7]]).T
    c2 = np.array([[.7,.5,.7]]).T

    # # Random W, C
    # W = 1.1*np.eye(N) + 0.1*np.random.randn(N,N)
    # c1 = mldivide(W, np.array([[+0.5,0.3,1]]).T)
    # c2 = mldivide(W, np.array([[-0.5,0.3,1]]).T)
    interp = np.arange(num_C)/(num_C-1.0)
    C = c1*interp[np.newaxis,:] + c2*(1-interp[np.newaxis,:])
    C = C/np.sqrt((C*C).sum(axis=0))
    bright_cap = .7

    print('low rank c...')
    # show c space partition
    fig = plt.figure(figsize=(11,6))
    ax = fig.add_subplot(1,2,1,projection='3d')
    _ = find_low_rank_c_3d(W)
    # ax.set_title('(a)')
    mpl.rcParams['mathtext.default'] = 'it'
    # mpl.rcParams['font.family'] = 'serif'
    ax.set_title('$c/||c||\in\mathrm{\mathbb{S}}^2$')

    pltr.scatter(ax, C, c=np.array([[bright_cap*g for _ in range(3)] for g in interp]),edgecolor='face')
    # pltr.scatter(ax, C, s=20, c=[str(bright_cap*g) for g in interp],edgecolor='face')
    # pltr.quiver(ax, c1, c1-c2)

    # ax.azim, ax.elev = 16, 51
    ax.azim, ax.elev = -74, 2

    # plt.show()
    # return None

    # show paths
    ax = fig.add_subplot(1,2,2,projection='3d')
    for p in range(2):
        print('fxpath brute %d...'%p)
        fxV, VA = rfx.brute_fiber(W, C[:,[p*-1]])

        for i in range(len(VA)):
            for s in [1]:#[-1,1]:
                pltr.plot(ax, s*VA[i][:N, (np.fabs(VA[i][:N,:]) < 3).all(axis=0)], color=str(bright_cap*interp[p*-1]))
                pltr.plot(ax, s*fxV[i], 'ko')
        # ax.set_title('c_%d'%p)

    pltr.set_lims(ax, 3*np.array([[1,1,1]]).T*np.array([[-1,1]]))
    ax.azim, ax.elev = -94, 8
    # ax.set_xlabel('$v_1$') #,rotation=0)
    # ax.set_ylabel('$v_2$') #,rotation=0)
    # ax.set_zlabel('$v_3$') #,rotation=0)
    ax.set_title('$v\in\mathrm{\mathbb{R}}^3$')

    plt.tight_layout()
    plt.show()
    # ax.xaxis.label.set_rotation(0)
    # ax.yaxis.label.set_rotation(0)
    # ax.zaxis.label.set_rotation(0)

    return fxV, VA, W, C
Esempio n. 8
0
        #if not (person[3:7] == '0713' and int(person[7:]) < 300):
        #    continue
        if audio not in ['06', '07']:
            continue
        print(person, label, filename)
        cnt += 1
        l, r = basic_endpoint_detection(sig, rate)
        #l,r= 0,len(sig)
        sig = preemphasis(sig, coeff=0.97)
        frames = to_frames(sig[l:r], rate)
        feature = pitch_feature(sig[l:r], rate)
        p.append((feature[0], feature[-1]))
        X.append(feature)
        labels.append(label)
        if cnt == 200: break
    scatter(p, labels, '111', True)

    cnt = 0
    p = []
    for idx, l, (sig, rate), label, filename in val_itr:
        reg = re.compile('(\d+)-(\d+)-(\d+).wav')
        audio = reg.match(filename).group(2)
        person = reg.match(filename).group(1)
        if audio not in ['06', '07']:
            continue
        print(person, label, filename)
        cnt += 1
        l, r = basic_endpoint_detection(sig, rate)
        sig = preemphasis(sig, coeff=0.97)
        frames = to_frames(sig[l:r], rate)
        feature = pitch_feature(sig[l:r], rate)