Esempio n. 1
0
def plot_full(x_all, z_all, b_all):
    fig, ax = plt.subplots()
    fig.tight_layout()
    handles = Plotter.plot_trajectory(ax, x_all)
    handles.extend(Plotter.plot_observed_ball_trajectory(ax, z_all))
    handles.extend(Plotter.plot_filtered_trajectory(ax, b_all))
    ax.legend(handles=handles, loc='upper left')
    ax.set_aspect('equal')
    plt.show()
Esempio n. 2
0
# u_all = model.u.repeated(ca.DMatrix.zeros(model.nu, 15))
# u_all[:, 'v'] = 5

# Initial state is drawn from N(m0, S0)
# model.init_x0()

# Simulate
x_all = Simulator.simulate_trajectory(model, u_all)
z_all = Simulator.simulate_observed_trajectory(model, x_all)
b_all = Simulator.filter_observed_trajectory(model, z_all, u_all)

# Plot 2D
fig, ax = plt.subplots(figsize=(10, 10))
fig.tight_layout()
Plotter.plot_trajectory(ax, x_all)
Plotter.plot_observed_ball_trajectory(ax, z_all)
Plotter.plot_filtered_trajectory(ax, b_all)

# Plot 3D
# fig_3D = plt.figure(figsize=(10, 10))
# ax_3D = fig_3D.add_subplot(111, projection='3d')
# Plotter.plot_trajectory_3D(ax_3D, x_all)
#
# plt.show()


# ============================================================================
#                         Model predictive control
# ============================================================================
# ----------------------------- Simulation --------------------------------- #
# Create models for simulation and planning