Esempio n. 1
0
    def show_score_probs(verif):
        """
        CommandLine:
            python -m ibeis.algo.graph.demo DummyVerif.show_score_probs --show

        Example:
            >>> # ENABLE_DOCTEST
            >>> from ibeis.algo.graph.demo import *  # NOQA
            >>> import ibeis
            >>> infr = ibeis.AnnotInference(None)
            >>> verif = DummyVerif(infr)
            >>> verif.show_score_probs()
            >>> ut.show_if_requested()
        """
        import plottool as pt
        dist = verif.score_dist
        n = 100000
        for key in verif.dummy_params.keys():
            probs = dist(shape=[n],
                         rng=verif.rng,
                         a_max=1,
                         a_min=0,
                         **verif.dummy_params[key])
            color = verif.infr._get_truth_colors()[key]
            pt.plt.hist(probs, bins=100, label=key, alpha=.8, color=color)
        pt.legend()
Esempio n. 2
0
    def find_opt_ratio(pblm):
        """
        script to help find the correct value for the ratio threshold

            >>> from ibeis.algo.verif.vsone import *  # NOQA
            >>> pblm = OneVsOneProblem.from_empty('PZ_PB_RF_TRAIN')
            >>> pblm = OneVsOneProblem.from_empty('GZ_Master1')
        """
        # Find best ratio threshold
        pblm.load_samples()
        infr = pblm.infr
        edges = ut.emap(tuple, pblm.samples.aid_pairs.tolist())
        task = pblm.samples['match_state']
        pos_idx = task.class_names.tolist().index(POSTV)

        config = {'ratio_thresh': 1.0, 'sv_on': False}
        matches = infr._exec_pairwise_match(edges, config)

        import plottool as pt
        pt.qtensure()
        thresholds = np.linspace(0, 1.0, 100)
        pos_truth = task.y_bin.T[pos_idx]
        ratio_fs = [m.local_measures['ratio'] for m in matches]

        aucs = []
        # Given the current correspondences: Find the optimal
        # correspondence threshold.
        for thresh in ut.ProgIter(thresholds, 'computing thresh'):
            scores = np.array([fs[fs < thresh].sum() for fs in ratio_fs])
            roc = sklearn.metrics.roc_auc_score(pos_truth, scores)
            aucs.append(roc)
        aucs = np.array(aucs)
        opt_auc = aucs.max()
        opt_thresh = thresholds[aucs.argmax()]

        if True:
            pt.plt.plot(thresholds, aucs, 'r-', label='')
            pt.plt.plot(opt_thresh,
                        opt_auc,
                        'ro',
                        label='L opt=%r' % (opt_thresh, ))
            pt.set_ylabel('auc')
            pt.set_xlabel('ratio threshold')
            pt.legend()
Esempio n. 3
0
def compare_data(Y_list_):
    import ibeis
    qreq_ = ibeis.testdata_qreq_(
        defaultdb='Oxford',
        a='oxford',
        p='smk:nWords=[64000],nAssign=[1],SV=[False],can_match_sameimg=True,dim_size=None'
    )
    qreq_.ensure_data()

    gamma1s = []
    gamma2s = []

    print(len(Y_list_))
    print(len(qreq_.daids))

    dinva = qreq_.dinva
    bady = []
    for Y in Y_list_:
        aid = Y.aid
        gamma1 = Y.gamma
        if aid in dinva.aid_to_idx:
            idx = dinva.aid_to_idx[aid]
            gamma2 = dinva.gamma_list[idx]
            gamma1s.append(gamma1)
            gamma2s.append(gamma2)
        else:
            bady += [Y]
            print(Y.nid)
            # print(Y.qual)

    # ibs = qreq_.ibs
    # z = ibs.annots([a.aid for a in bady])

    import plottool as pt
    ut.qtensure()
    gamma1s = np.array(gamma1s)
    gamma2s = np.array(gamma2s)
    sortx = gamma1s.argsort()
    pt.plot(gamma1s[sortx], label='script')
    pt.plot(gamma2s[sortx], label='pipe')
    pt.legend()
Esempio n. 4
0
def ewma():
    import plottool as pt
    import ubelt as ub
    import numpy as np
    pt.qtensure()

    # Investigate the span parameter
    span = 20
    alpha = 2 / (span + 1)

    # how long does it take for the estimation to hit 0?
    # (ie, it no longer cares about the initial 1?)
    # about 93 iterations to get to 1e-4
    # about 47 iterations to get to 1e-2
    # about 24 iterations to get to 1e-1
    # 20 iterations goes to .135
    data = ([1] + [0] * 20 + [1] * 40 + [0] * 20 + [1] * 50 + [0] * 20 +
            [1] * 60 + [0] * 20 + [1] * 165 + [0] * 20 + [0])
    mave = []

    iter_ = iter(data)
    current = next(iter_)
    mave += [current]
    for x in iter_:
        current = (alpha * x) + (1 - alpha) * current
        mave += [current]

    if False:
        pt.figure(fnum=1, doclf=True)
        pt.plot(data)
        pt.plot(mave)

    np.where(np.array(mave) < 1e-1)

    import sympy as sym

    # span, alpha, n = sym.symbols('span, alpha, n')
    n = sym.symbols('n', integer=True, nonnegative=True, finite=True)
    span = sym.symbols('span', integer=True, nonnegative=True, finite=True)
    thresh = sym.symbols('thresh', real=True, nonnegative=True, finite=True)
    # alpha = 2 / (span + 1)

    a, b, c = sym.symbols('a, b, c', real=True, nonnegative=True, finite=True)
    sym.solve(sym.Eq(b**a, c), a)

    current = 1
    x = 0
    steps = []
    for _ in range(10):
        current = (alpha * x) + (1 - alpha) * current
        steps.append(current)

    alpha = sym.symbols('alpha', real=True, nonnegative=True, finite=True)
    base = sym.symbols('base', real=True, finite=True)
    alpha = 2 / (span + 1)
    thresh_expr = (1 - alpha)**n
    thresthresh_exprh_expr = base**n
    n_expr = sym.ceiling(sym.log(thresh) / sym.log(1 - 2 / (span + 1)))

    sym.pprint(sym.simplify(thresh_expr))
    sym.pprint(sym.simplify(n_expr))
    print(sym.latex(sym.simplify(n_expr)))

    # def calc_n2(span, thresh):
    #     return np.log(thresh) / np.log(1 - 2 / (span + 1))

    def calc_n(span, thresh):
        return np.log(thresh) / np.log((span - 1) / (span + 1))

    def calc_thresh_val(n, span):
        alpha = 2 / (span + 1)
        return (1 - alpha)**n

    span = np.arange(2, 200)
    n_frac = calc_n(span, thresh=.5)
    n = np.ceil(n_frac)
    calc_thresh_val(n, span)

    pt.figure(fnum=1, doclf=True)
    ydatas = ut.odict([('thresh=%f' % thresh,
                        np.ceil(calc_n(span, thresh=thresh)))
                       for thresh in [1e-3, .01, .1, .2, .3, .4, .5]])
    pt.multi_plot(
        span,
        ydatas,
        xlabel='span',
        ylabel='n iters to acheive thresh',
        marker='',
        # num_xticks=len(span),
        fnum=1)
    pt.gca().set_aspect('equal')

    def both_sides(eqn, func):
        return sym.Eq(func(eqn.lhs), func(eqn.rhs))

    eqn = sym.Eq(thresh_expr, thresh)
    n_expr = sym.solve(eqn,
                       n)[0].subs(base,
                                  (1 - alpha)).subs(alpha, (2 / (span + 1)))

    eqn = both_sides(eqn, lambda x: sym.log(x, (1 - alpha)))
    lhs = eqn.lhs

    from sympy.solvers.inequalities import solve_univariate_inequality

    def eval_expr(span_value, n_value):
        return np.array(
            [thresh_expr.subs(span, span_value).subs(n, n_) for n_ in n_value],
            dtype=np.float)

    eval_expr(20, np.arange(20))

    def linear(x, a, b):
        return a * x + b

    def sigmoidal_4pl(x, a, b, c, d):
        return d + (a - d) / (1 + (x / c)**b)

    def exponential(x, a, b, c):
        return a + b * np.exp(-c * x)

    import scipy.optimize

    # Determine how to choose span, such that you get to .01 from 1
    # in n timesteps
    thresh_to_span_to_n = []
    thresh_to_n_to_span = []
    for thresh_value in ub.ProgIter([.0001, .001, .01, .1, .2, .3, .4, .5]):
        print('')
        test_vals = sorted([2, 3, 4, 5, 6])
        n_to_span = []
        for n_value in ub.ProgIter(test_vals):
            # In n iterations I want to choose a span that the expression go
            # less than a threshold
            constraint = thresh_expr.subs(n, n_value) < thresh_value
            solution = solve_univariate_inequality(constraint, span)
            try:
                lowbound = np.ceil(float(solution.args[0].lhs))
                highbound = np.floor(float(solution.args[1].rhs))
                assert lowbound <= highbound
                span_value = lowbound
            except AttributeError:
                span_value = np.floor(float(solution.rhs))
            n_to_span.append((n_value, span_value))

        # Given a threshold, find a minimum number of steps
        # that brings you up to that threshold given a span
        test_vals = sorted(set(list(range(2, 1000, 50)) + [2, 3, 4, 5, 6]))
        span_to_n = []
        for span_value in ub.ProgIter(test_vals):
            constraint = thresh_expr.subs(span, span_value) < thresh_value
            solution = solve_univariate_inequality(constraint, n)
            n_value = solution.lhs
            span_to_n.append((span_value, n_value))

        thresh_to_n_to_span.append((thresh_value, n_to_span))
        thresh_to_span_to_n.append((thresh_value, span_to_n))

    thresh_to_params = []
    for thresh_value, span_to_n in thresh_to_span_to_n:
        xdata, ydata = [np.array(_, dtype=np.float) for _ in zip(*span_to_n)]

        p0 = (1 / np.diff((ydata - ydata[0])[1:]).mean(), ydata[0])
        func = linear
        popt, pcov = scipy.optimize.curve_fit(func, xdata, ydata, p0)
        # popt, pcov = scipy.optimize.curve_fit(exponential, xdata, ydata)

        if False:
            yhat = func(xdata, *popt)
            pt.figure(fnum=1, doclf=True)
            pt.plot(xdata, ydata, label='measured')
            pt.plot(xdata, yhat, label='predicteed')
            pt.legend()
        # slope = np.diff(ydata).mean()
        # pt.plot(d)
        thresh_to_params.append((thresh_value, popt))

    # pt.plt.plot(*zip(*thresh_to_slope), 'x-')

    # for thresh_value=.01, we get a rough line with slop ~2.302,
    # for thresh_value=.5, we get a line with slop ~34.66

    # if we want to get to 0 in n timesteps, with a thresh_value of
    # choose span=f(thresh_value) * (n + 2))
    # f is some inverse exponential

    # 0.0001, 460.551314197147
    # 0.001, 345.413485647860,
    # 0.01, 230.275657098573,
    # 0.1, 115.137828549287,
    # 0.2, 80.4778885203347,
    # 0.3, 60.2031233261536,
    # 0.4, 45.8179484913827,
    # 0.5, 34.6599400289520

    # Seems to be 4PL symetrical sigmoid
    # f(x) = -66500.85 + (66515.88 - -66500.85) / (1 + (x/0.8604672)^0.001503716)
    # f(x) = -66500.85 + (66515.88 - -66500.85)/(1 + (x/0.8604672)^0.001503716)

    def f(x):
        return -66500.85 + (66515.88 -
                            -66500.85) / (1 + (x / 0.8604672)**0.001503716)
        # return (10000 * (-6.65 + (13.3015) / (1 + (x/0.86) ** 0.00150)))

    # f(.5) * (n - 1)

    # f(
    solve_rational_inequalities(thresh_expr < .01, n)
Esempio n. 5
0
def iters_until_threshold():
    """
    How many iterations of ewma until you hit the poisson / biniomal threshold

    This establishes a principled way to choose the threshold for the refresh
    criterion in my thesis. There are paramters --- moving parts --- that we
    need to work with: `a` the patience, `s` the span, and `mu` our ewma.

    `s` is a span paramter indicating how far we look back.

    `mu` is the average number of label-changing reviews in roughly the last
    `s` manual decisions.

    These numbers are used to estimate the probability that any of the next `a`
    manual decisions will be label-chanigng. When that probability falls below
    a threshold we terminate. The goal is to choose `a`, `s`, and the threshold
    `t`, such that the probability will fall below the threshold after a maximum
    of `a` consecutive non-label-chaning reviews. IE we want to tie the patience
    paramter (how far we look ahead) to how far we actually are willing to go.
    """
    import numpy as np
    import utool as ut
    import sympy as sym
    i = sym.symbols('i', integer=True, nonnegative=True, finite=True)
    # mu_i = sym.symbols('mu_i', integer=True, nonnegative=True, finite=True)
    s = sym.symbols('s', integer=True, nonnegative=True, finite=True)  # NOQA
    thresh = sym.symbols('tau', real=True, nonnegative=True,
                         finite=True)  # NOQA
    alpha = sym.symbols('alpha', real=True, nonnegative=True,
                        finite=True)  # NOQA
    c_alpha = sym.symbols('c_alpha', real=True, nonnegative=True, finite=True)
    # patience
    a = sym.symbols('a', real=True, nonnegative=True, finite=True)

    available_subs = {
        a: 20,
        s: a,
        alpha: 2 / (s + 1),
        c_alpha: (1 - alpha),
    }

    def dosubs(expr, d=available_subs):
        """ recursive expression substitution """
        expr1 = expr.subs(d)
        if expr == expr1:
            return expr1
        else:
            return dosubs(expr1, d=d)

    # mu is either the support for the poisson distribution
    # or is is the p in the binomial distribution
    # It is updated at timestep i based on ewma, assuming each incoming responce is 0
    mu_0 = 1.0
    mu_i = c_alpha**i

    # Estimate probability that any event will happen in the next `a` reviews
    # at time `i`.
    poisson_i = 1 - sym.exp(-mu_i * a)
    binom_i = 1 - (1 - mu_i)**a

    # Expand probabilities to be a function of i, s, and a
    part = ut.delete_dict_keys(available_subs.copy(), [a, s])
    mu_i = dosubs(mu_i, d=part)
    poisson_i = dosubs(poisson_i, d=part)
    binom_i = dosubs(binom_i, d=part)

    if True:
        # ewma of mu at time i if review is always not label-changing (meaningful)
        mu_1 = c_alpha * mu_0  # NOQA
        mu_2 = c_alpha * mu_1  # NOQA

    if True:
        i_vals = np.arange(0, 100)
        mu_vals = np.array(
            [dosubs(mu_i).subs({
                i: i_
            }).evalf() for i_ in i_vals])  # NOQA
        binom_vals = np.array(
            [dosubs(binom_i).subs({
                i: i_
            }).evalf() for i_ in i_vals])  # NOQA
        poisson_vals = np.array(
            [dosubs(poisson_i).subs({
                i: i_
            }).evalf() for i_ in i_vals])  # NOQA

        # Find how many iters it actually takes my expt to terminate
        thesis_draft_thresh = np.exp(-2)
        np.where(mu_vals < thesis_draft_thresh)[0]
        np.where(binom_vals < thesis_draft_thresh)[0]
        np.where(poisson_vals < thesis_draft_thresh)[0]

    sym.pprint(sym.simplify(mu_i))
    sym.pprint(sym.simplify(binom_i))
    sym.pprint(sym.simplify(poisson_i))

    # Find the thresholds that force termination after `a` reviews have passed
    # do this by setting i=a
    poisson_thresh = poisson_i.subs({i: a})
    binom_thresh = binom_i.subs({i: a})

    print('Poisson thresh')
    print(sym.latex(sym.Eq(thresh, poisson_thresh)))
    print(sym.latex(sym.Eq(thresh, sym.simplify(poisson_thresh))))

    poisson_thresh.subs({a: 115, s: 30}).evalf()

    sym.pprint(sym.Eq(thresh, poisson_thresh))
    sym.pprint(sym.Eq(thresh, sym.simplify(poisson_thresh)))

    print('Binomial thresh')
    sym.pprint(sym.simplify(binom_thresh))

    sym.pprint(sym.simplify(poisson_thresh.subs({s: a})))

    def taud(coeff):
        return coeff * 360

    if 'poisson_cache' not in vars():
        poisson_cache = {}
        binom_cache = {}

    S, A = np.meshgrid(np.arange(1, 150, 1), np.arange(0, 150, 1))

    import plottool as pt
    SA_coords = list(zip(S.ravel(), A.ravel()))
    for sval, aval in ut.ProgIter(SA_coords):
        if (sval, aval) not in poisson_cache:
            poisson_cache[(sval, aval)] = float(
                poisson_thresh.subs({
                    a: aval,
                    s: sval
                }).evalf())
    poisson_zdata = np.array([
        poisson_cache[(sval, aval)] for sval, aval in SA_coords
    ]).reshape(A.shape)
    fig = pt.figure(fnum=1, doclf=True)
    pt.gca().set_axis_off()
    pt.plot_surface3d(S,
                      A,
                      poisson_zdata,
                      xlabel='s',
                      ylabel='a',
                      rstride=3,
                      cstride=3,
                      zlabel='poisson',
                      mode='wire',
                      contour=True,
                      title='poisson3d')
    pt.gca().set_zlim(0, 1)
    pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8))
    fig.set_size_inches(10, 6)
    fig.savefig('a-s-t-poisson3d.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    for sval, aval in ut.ProgIter(SA_coords):
        if (sval, aval) not in binom_cache:
            binom_cache[(sval, aval)] = float(
                binom_thresh.subs({
                    a: aval,
                    s: sval
                }).evalf())
    binom_zdata = np.array([
        binom_cache[(sval, aval)] for sval, aval in SA_coords
    ]).reshape(A.shape)
    fig = pt.figure(fnum=2, doclf=True)
    pt.gca().set_axis_off()
    pt.plot_surface3d(S,
                      A,
                      binom_zdata,
                      xlabel='s',
                      ylabel='a',
                      rstride=3,
                      cstride=3,
                      zlabel='binom',
                      mode='wire',
                      contour=True,
                      title='binom3d')
    pt.gca().set_zlim(0, 1)
    pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8))
    fig.set_size_inches(10, 6)
    fig.savefig('a-s-t-binom3d.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    # Find point on the surface that achieves a reasonable threshold

    # Sympy can't solve this
    # sym.solve(sym.Eq(binom_thresh.subs({s: 50}), .05))
    # sym.solve(sym.Eq(poisson_thresh.subs({s: 50}), .05))
    # Find a numerical solution
    def solve_numeric(expr,
                      target,
                      solve_for,
                      fixed={},
                      method=None,
                      bounds=None):
        """
        Args:
            expr (Expr): symbolic expression
            target (float): numberic value
            solve_for (sympy.Symbol): The symbol you care about
            fixed (dict): fixed values of the symbol

        solve_numeric(poisson_thresh, .05, {s: 30}, method=None)
        solve_numeric(poisson_thresh, .05, {s: 30}, method='Nelder-Mead')
        solve_numeric(poisson_thresh, .05, {s: 30}, method='BFGS')
        """
        import scipy.optimize
        # Find the symbol you want to solve for
        want_symbols = expr.free_symbols - set(fixed.keys())
        # TODO: can probably extend this to multiple params
        assert len(want_symbols) == 1, 'specify all but one var'
        assert solve_for == list(want_symbols)[0]
        fixed_expr = expr.subs(fixed)

        def func(a1):
            expr_value = float(fixed_expr.subs({solve_for: a1}).evalf())
            return (expr_value - target)**2

        if not fixed:
            a1 = 0
        else:
            a1 = list(fixed.values())[0]
        # if method is None:
        #     method = 'Nelder-Mead'
        #     method = 'Newton-CG'
        #     method = 'BFGS'
        result = scipy.optimize.minimize(func,
                                         x0=a1,
                                         method=method,
                                         bounds=bounds)
        if not result.success:
            print('\n')
            print(result)
            print('\n')
        return result

    # Numeric measurments of thie line

    thresh_vals = [.001, .01, .05, .1, .135]
    svals = np.arange(1, 100)

    target_poisson_plots = {}
    for target in ut.ProgIter(thresh_vals, bs=False, freq=1):
        poisson_avals = []
        for sval in ut.ProgIter(svals, 'poisson', freq=1):
            expr = poisson_thresh
            fixed = {s: sval}
            want = a
            aval = solve_numeric(expr,
                                 target,
                                 want,
                                 fixed,
                                 method='Nelder-Mead').x[0]
            poisson_avals.append(aval)
        target_poisson_plots[target] = (svals, poisson_avals)

    fig = pt.figure(fnum=3)
    for target, dat in target_poisson_plots.items():
        pt.plt.plot(*dat, label='prob={}'.format(target))
    pt.gca().set_xlabel('s')
    pt.gca().set_ylabel('a')
    pt.legend()
    pt.gca().set_title('poisson')
    fig.set_size_inches(5, 3)
    fig.savefig('a-vs-s-poisson.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    target_binom_plots = {}
    for target in ut.ProgIter(thresh_vals, bs=False, freq=1):
        binom_avals = []
        for sval in ut.ProgIter(svals, 'binom', freq=1):
            aval = solve_numeric(binom_thresh,
                                 target,
                                 a, {
                                     s: sval
                                 },
                                 method='Nelder-Mead').x[0]
            binom_avals.append(aval)
        target_binom_plots[target] = (svals, binom_avals)

    fig = pt.figure(fnum=4)
    for target, dat in target_binom_plots.items():
        pt.plt.plot(*dat, label='prob={}'.format(target))
    pt.gca().set_xlabel('s')
    pt.gca().set_ylabel('a')
    pt.legend()
    pt.gca().set_title('binom')
    fig.set_size_inches(5, 3)
    fig.savefig('a-vs-s-binom.png',
                dpi=300,
                bbox_inches=pt.extract_axes_extents(fig, combine=True))

    # ----
    if True:

        fig = pt.figure(fnum=5, doclf=True)
        s_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for sval in s_vals:
            pp = poisson_thresh.subs({s: sval})

            a_vals = np.arange(0, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    a: aval
                }).evalf()) for aval in a_vals])  # NOQA

            pt.plot(a_vals, pp_vals, label='s=%r' % (sval, ))
        pt.legend()
        pt.gca().set_xlabel('a')
        pt.gca().set_ylabel('poisson prob after a reviews')
        fig.set_size_inches(5, 3)
        fig.savefig('a-vs-thresh-poisson.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

        fig = pt.figure(fnum=6, doclf=True)
        s_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for sval in s_vals:
            pp = binom_thresh.subs({s: sval})
            a_vals = np.arange(0, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    a: aval
                }).evalf()) for aval in a_vals])  # NOQA
            pt.plot(a_vals, pp_vals, label='s=%r' % (sval, ))
        pt.legend()
        pt.gca().set_xlabel('a')
        pt.gca().set_ylabel('binom prob after a reviews')
        fig.set_size_inches(5, 3)
        fig.savefig('a-vs-thresh-binom.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

        # -------

        fig = pt.figure(fnum=5, doclf=True)
        a_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for aval in a_vals:
            pp = poisson_thresh.subs({a: aval})
            s_vals = np.arange(1, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    s: sval
                }).evalf()) for sval in s_vals])  # NOQA
            pt.plot(s_vals, pp_vals, label='a=%r' % (aval, ))
        pt.legend()
        pt.gca().set_xlabel('s')
        pt.gca().set_ylabel('poisson prob')
        fig.set_size_inches(5, 3)
        fig.savefig('s-vs-thresh-poisson.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

        fig = pt.figure(fnum=5, doclf=True)
        a_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for aval in a_vals:
            pp = binom_thresh.subs({a: aval})
            s_vals = np.arange(1, 200)
            pp_vals = np.array(
                [float(pp.subs({
                    s: sval
                }).evalf()) for sval in s_vals])  # NOQA
            pt.plot(s_vals, pp_vals, label='a=%r' % (aval, ))
        pt.legend()
        pt.gca().set_xlabel('s')
        pt.gca().set_ylabel('binom prob')
        fig.set_size_inches(5, 3)
        fig.savefig('s-vs-thresh-binom.png',
                    dpi=300,
                    bbox_inches=pt.extract_axes_extents(fig, combine=True))

    #---------------------
    # Plot out a table

    mu_i.subs({s: 75, a: 75}).evalf()
    poisson_thresh.subs({s: 75, a: 75}).evalf()

    sval = 50
    for target, dat in target_poisson_plots.items():
        slope = np.median(np.diff(dat[1]))
        aval = int(np.ceil(sval * slope))
        thresh = float(poisson_thresh.subs({s: sval, a: aval}).evalf())
        print('aval={}, sval={}, thresh={}, target={}'.format(
            aval, sval, thresh, target))

    for target, dat in target_binom_plots.items():
        slope = np.median(np.diff(dat[1]))
        aval = int(np.ceil(sval * slope))
        pass
Esempio n. 6
0
def flann_add_time_experiment():
    """
    builds plot of number of annotations vs indexer build time.

    TODO: time experiment

    CommandLine:
        python -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --db PZ_MTEST --show
        python -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --db PZ_Master0 --show
        utprof.py -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --show

        valgrind --tool=memcheck --suppressions=valgrind-python.supp python -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --db PZ_MTEST --no-with-reindex

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots._neighbor_experiment import *  # NOQA
        >>> import ibeis
        >>> #ibs = ibeis.opendb('PZ_MTEST')
        >>> result = flann_add_time_experiment()
        >>> # verify results
        >>> print(result)
        >>> ut.show_if_requested()

    """
    import ibeis
    import utool as ut
    import numpy as np
    import plottool as pt

    def make_flann_index(vecs, flann_params):
        flann = pyflann.FLANN()
        flann.build_index(vecs, **flann_params)
        return flann

    db = ut.get_argval('--db')
    ibs = ibeis.opendb(db=db)

    # Input
    if ibs.get_dbname() == 'PZ_MTEST':
        initial = 1
        reindex_stride = 16
        addition_stride = 4
        max_ceiling = 120
    elif ibs.get_dbname() == 'PZ_Master0':
        #ibs = ibeis.opendb(db='GZ_ALL')
        initial = 32
        reindex_stride = 32
        addition_stride = 16
        max_ceiling = 300001
    else:
        assert False
    #max_ceiling = 32
    all_daids = ibs.get_valid_aids()
    max_num = min(max_ceiling, len(all_daids))
    flann_params = ibs.cfg.query_cfg.flann_cfg.get_flann_params()

    # Output
    count_list,  time_list_reindex  = [], []
    count_list2, time_list_addition = [], []

    # Setup
    #all_randomize_daids_ = ut.deterministic_shuffle(all_daids[:])
    all_randomize_daids_ = all_daids
    # ensure all features are computed
    ibs.get_annot_vecs(all_randomize_daids_)

    def reindex_step(count, count_list, time_list_reindex):
        daids    = all_randomize_daids_[0:count]
        vecs = np.vstack(ibs.get_annot_vecs(daids))
        with ut.Timer(verbose=False) as t:
            flann = make_flann_index(vecs, flann_params)  # NOQA
        count_list.append(count)
        time_list_reindex.append(t.ellapsed)

    def addition_step(count, flann, count_list2, time_list_addition):
        daids = all_randomize_daids_[count:count + 1]
        vecs = np.vstack(ibs.get_annot_vecs(daids))
        with ut.Timer(verbose=False) as t:
            flann.add_points(vecs)
        count_list2.append(count)
        time_list_addition.append(t.ellapsed)

    def make_initial_index(initial):
        daids = all_randomize_daids_[0:initial + 1]
        vecs = np.vstack(ibs.get_annot_vecs(daids))
        flann = make_flann_index(vecs, flann_params)
        return flann

    WITH_REINDEX = not ut.get_argflag('--no-with-reindex')
    if WITH_REINDEX:
        # Reindex Part
        reindex_lbl = 'Reindexing'
        _reindex_iter = range(1, max_num, reindex_stride)
        reindex_iter = ut.ProgressIter(_reindex_iter, lbl=reindex_lbl, freq=1)
        for count in reindex_iter:
            reindex_step(count, count_list, time_list_reindex)

    # Add Part
    flann = make_initial_index(initial)
    addition_lbl = 'Addition'
    _addition_iter = range(initial + 1, max_num, addition_stride)
    addition_iter = ut.ProgressIter(_addition_iter, lbl=addition_lbl)
    for count in addition_iter:
        addition_step(count, flann, count_list2, time_list_addition)

    print('---')
    print('Reindex took time_list_reindex %.2s seconds' % sum(time_list_reindex))
    print('Addition took time_list_reindex  %.2s seconds' % sum(time_list_addition))
    print('---')
    statskw = dict(precision=2, newlines=True)
    print('Reindex stats ' + ut.get_stats_str(time_list_reindex, **statskw))
    print('Addition stats ' + ut.get_stats_str(time_list_addition, **statskw))

    print('Plotting')

    #with pt.FigureContext:

    next_fnum = iter(range(0, 2)).next  # python3 PY3
    pt.figure(fnum=next_fnum())
    if WITH_REINDEX:
        pt.plot2(count_list, time_list_reindex, marker='-o', equal_aspect=False,
                 x_label='num_annotations', label=reindex_lbl + ' Time', dark=False)

    #pt.figure(fnum=next_fnum())
    pt.plot2(count_list2, time_list_addition, marker='-o', equal_aspect=False,
             x_label='num_annotations', label=addition_lbl + ' Time')

    pt
    pt.legend()
Esempio n. 7
0
def augment_nnindexer_experiment():
    """

    References:
        http://answers.opencv.org/question/44592/flann-index-training-fails-with-segfault/

    CommandLine:
        utprof.py -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment

        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_MTEST --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --show
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --show


        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --no-api-cache --nocache-uuids

        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_MTEST --show
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show

        # RUNS THE SEGFAULTING CASE
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show
        # Debug it
        gdb python
        run -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show
        gdb python
        run -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6


    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots._neighbor_experiment import *  # NOQA
        >>> # execute function
        >>> augment_nnindexer_experiment()
        >>> # verify results
        >>> ut.show_if_requested()

    """
    import ibeis
    # build test data
    #ibs = ibeis.opendb('PZ_MTEST')
    ibs = ibeis.opendb(defaultdb='PZ_Master0')
    if ibs.get_dbname() == 'PZ_MTEST':
        initial = 1
        addition_stride = 4
        max_ceiling = 100
    elif ibs.get_dbname() == 'PZ_Master0':
        initial = 128
        #addition_stride = 64
        #addition_stride = 128
        addition_stride = 256
        max_ceiling = 10000
        #max_ceiling = 4000
        #max_ceiling = 2000
        #max_ceiling = 600
    else:
        assert False
    all_daids = ibs.get_valid_aids(species='zebra_plains')
    qreq_ = ibs.new_query_request(all_daids, all_daids)
    max_num = min(max_ceiling, len(all_daids))

    # Clear Caches
    ibs.delete_flann_cachedir()
    neighbor_index_cache.clear_memcache()
    neighbor_index_cache.clear_uuid_cache(qreq_)

    # Setup
    all_randomize_daids_ = ut.deterministic_shuffle(all_daids[:])
    # ensure all features are computed
    #ibs.get_annot_vecs(all_randomize_daids_, ensure=True)
    #ibs.get_annot_fgweights(all_randomize_daids_, ensure=True)

    nnindexer_list = []
    addition_lbl = 'Addition'
    _addition_iter = list(range(initial + 1, max_num, addition_stride))
    addition_iter = iter(ut.ProgressIter(_addition_iter, lbl=addition_lbl,
                                         freq=1, autoadjust=False))
    time_list_addition = []
    #time_list_reindex = []
    addition_count_list = []
    tmp_cfgstr_list = []

    #for _ in range(80):
    #    next(addition_iter)
    try:
        memtrack = ut.MemoryTracker(disable=False)
        for count in addition_iter:
            aid_list_ = all_randomize_daids_[0:count]
            # Request an indexer which could be an augmented version of an existing indexer.
            with ut.Timer(verbose=False) as t:
                memtrack.report('BEFORE AUGMENT')
                nnindexer_ = neighbor_index_cache.request_augmented_ibeis_nnindexer(qreq_, aid_list_)
                memtrack.report('AFTER AUGMENT')
            nnindexer_list.append(nnindexer_)
            addition_count_list.append(count)
            time_list_addition.append(t.ellapsed)
            tmp_cfgstr_list.append(nnindexer_.cfgstr)
            print('===============\n\n')
        print(ut.list_str(time_list_addition))
        print(ut.list_str(list(map(id, nnindexer_list))))
        print(ut.list_str(tmp_cfgstr_list))
        print(ut.list_str(list([nnindxer.cfgstr for nnindxer in nnindexer_list])))

        IS_SMALL = False

        if IS_SMALL:
            nnindexer_list = []
        reindex_label = 'Reindex'
        # go backwards for reindex
        _reindex_iter = list(range(initial + 1, max_num, addition_stride))[::-1]
        reindex_iter = ut.ProgressIter(_reindex_iter, lbl=reindex_label)
        time_list_reindex = []
        #time_list_reindex = []
        reindex_count_list = []

        for count in reindex_iter:
            print('\n+===PREDONE====================\n')
            # check only a single size for memory leaks
            #count = max_num // 16 + ((x % 6) * 1)
            #x += 1

            aid_list_ = all_randomize_daids_[0:count]
            # Call the same code, but force rebuilds
            memtrack.report('BEFORE REINDEX')
            with ut.Timer(verbose=False) as t:
                nnindexer_ = neighbor_index_cache.request_augmented_ibeis_nnindexer(
                    qreq_, aid_list_, force_rebuild=True, memtrack=memtrack)
            memtrack.report('AFTER REINDEX')
            ibs.print_cachestats_str()
            print('[nnindex.MEMCACHE] size(NEIGHBOR_CACHE) = %s' % (
                ut.get_object_size_str(neighbor_index_cache.NEIGHBOR_CACHE.items()),))
            print('[nnindex.MEMCACHE] len(NEIGHBOR_CACHE) = %s' % (
                len(neighbor_index_cache.NEIGHBOR_CACHE.items()),))
            print('[nnindex.MEMCACHE] size(UUID_MAP_CACHE) = %s' % (
                ut.get_object_size_str(neighbor_index_cache.UUID_MAP_CACHE),))
            print('totalsize(nnindexer) = ' + ut.get_object_size_str(nnindexer_))
            memtrack.report_type(neighbor_index_cache.NeighborIndex)
            ut.print_object_size_tree(nnindexer_, lbl='nnindexer_')
            if IS_SMALL:
                nnindexer_list.append(nnindexer_)
            reindex_count_list.append(count)
            time_list_reindex.append(t.ellapsed)
            #import cv2
            #import matplotlib as mpl
            #print(mem_top.mem_top(limit=30, width=120,
            #                      #exclude_refs=[cv2.__dict__, mpl.__dict__]
            #     ))
            print('L___________________\n\n\n')
        print(ut.list_str(time_list_reindex))
        if IS_SMALL:
            print(ut.list_str(list(map(id, nnindexer_list))))
            print(ut.list_str(list([nnindxer.cfgstr for nnindxer in nnindexer_list])))
    except KeyboardInterrupt:
            print('\n[train] Caught CRTL+C')
            resolution = ''
            from six.moves import input
            while not (resolution.isdigit()):
                print('\n[train] What do you want to do?')
                print('[train]     0 - Continue')
                print('[train]     1 - Embed')
                print('[train]  ELSE - Stop network training')
                resolution = input('[train] Resolution: ')
            resolution = int(resolution)
            # We have a resolution
            if resolution == 0:
                print('resuming training...')
            elif resolution == 1:
                ut.embed()

    import plottool as pt

    next_fnum = iter(range(0, 1)).next  # python3 PY3
    pt.figure(fnum=next_fnum())
    if len(addition_count_list) > 0:
        pt.plot2(addition_count_list, time_list_addition, marker='-o', equal_aspect=False,
                 x_label='num_annotations', label=addition_lbl + ' Time')

    if len(reindex_count_list) > 0:
        pt.plot2(reindex_count_list, time_list_reindex, marker='-o', equal_aspect=False,
                 x_label='num_annotations', label=reindex_label + ' Time')

    pt.set_figtitle('Augmented indexer experiment')

    pt.legend()
Esempio n. 8
0
def in_depth_ellipse(kp):
    """
    Makes sure that I understand how the ellipse is created form a keypoint
    representation. Walks through the steps I took in coming to an
    understanding.

    CommandLine:
        python -m pyhesaff.tests.test_ellipse --test-in_depth_ellipse --show --num-samples=12

    Example:
        >>> # SCRIPT
        >>> from pyhesaff.tests.test_ellipse import *  # NOQA
        >>> import pyhesaff.tests.pyhestest as pyhestest
        >>> test_data = pyhestest.load_test_data(short=True)
        >>> kpts = test_data['kpts']
        >>> kp = kpts[0]
        >>> #kp = np.array([0, 0, 10, 10, 10, 0])
        >>> test_locals = in_depth_ellipse(kp)
        >>> ut.quit_if_noshow()
        >>> ut.show_if_requested()
    """
    import plottool as pt
    #nSamples = 12
    nSamples = ut.get_argval('--num-samples', type_=int, default=12)
    kp = np.array(kp, dtype=np.float64)
    #-----------------------
    # SETUP
    #-----------------------
    np.set_printoptions(precision=3)
    #pt.reset()
    pt.figure(9003, docla=True, doclf=True)
    ax = pt.gca()
    ax.invert_yaxis()

    def _plotpts(data, px, color=pt.BLUE, label='', marker='.', **kwargs):
        #pt.figure(9003, docla=True, pnum=(1, 1, px))
        pt.plot2(data.T[0],
                 data.T[1],
                 marker,
                 '',
                 color=color,
                 label=label,
                 **kwargs)
        #pt.update()

    def _plotarrow(x, y, dx, dy, color=pt.BLUE, label=''):
        ax = pt.gca()
        arrowargs = dict(head_width=.5, length_includes_head=True, label=label)
        arrow = mpl.patches.FancyArrow(x, y, dx, dy, **arrowargs)
        arrow.set_edgecolor(color)
        arrow.set_facecolor(color)
        ax.add_patch(arrow)
        #pt.update()

    #-----------------------
    # INPUT
    #-----------------------
    print('kp = %s' % ut.repr2(kp, precision=3))
    print('--------------------------------')
    print('Let V = Perdoch.A')
    print('Let Z = Perdoch.E')
    print('Let invV = Perdoch.invA')
    print('--------------------------------')
    print('Input from Perdoch\'s detector: ')

    # We are given the keypoint in invA format
    if len(kp) == 5:
        (ix, iy, iv11, iv21, iv22) = kp
        iv12 = 0
    elif len(kp) == 6:
        (ix, iy, iv11, iv21, iv22, ori) = kp
        iv12 = 0
    invV = np.array([[iv11, iv12, ix], [iv21, iv22, iy], [0, 0, 1]])
    V = np.linalg.inv(invV)
    Z = (V.T).dot(V)

    import vtool as vt
    V_2x2 = V[0:2, 0:2]
    Z_2x2 = Z[0:2, 0:2]
    V_2x2_ = vt.decompose_Z_to_V_2x2(Z_2x2)
    assert np.all(np.isclose(V_2x2, V_2x2_))

    #C = np.linalg.cholesky(Z)
    #np.isclose(C.dot(C.T), Z)
    #Z

    print('invV is a transform from points on a unit-circle to the ellipse')
    ut.horiz_print('invV = ', invV)
    print('--------------------------------')
    print('V is a transformation from points on the ellipse to a unit circle')
    ut.horiz_print('V = ', V)
    print('--------------------------------')
    print('An ellipse is a special case of a conic. For any ellipse:')
    print(
        'Points on the ellipse satisfy (x_ - x_0).T.dot(Z).dot(x_ - x_0) = 1')
    print('where Z = (V.T).dot(V)')
    ut.horiz_print('Z = ', Z)

    # Define points on a unit circle
    theta_list = np.linspace(0, TAU, nSamples)
    cicrle_pts = np.array([(np.cos(t_), np.sin(t_), 1) for t_ in theta_list])

    # Transform those points to the ellipse using invV
    ellipse_pts1 = invV.dot(cicrle_pts.T).T

    #Lets check our assertion: (x_ - x_0).T.dot(Z).dot(x_ - x_0) == 1
    x_0 = np.array([ix, iy, 1])
    checks = [(x_ - x_0).T.dot(Z).dot(x_ - x_0) for x_ in ellipse_pts1]
    try:
        # HELP: The phase is off here. in 3x3 version I'm not sure why
        #assert all([almost_eq(1, check) for check in checks1])
        is_almost_eq_pos1 = [ut.almost_eq(1, check) for check in checks]
        is_almost_eq_neg1 = [ut.almost_eq(-1, check) for check in checks]
        assert all(is_almost_eq_pos1)
    except AssertionError as ex:
        print('circle pts = %r ' % cicrle_pts)
        print(ex)
        print(checks)
        print([ut.almost_eq(-1, check, 1E-9) for check in checks])
        raise
    else:
        #assert all([abs(1 - check) < 1E-11 for check in checks2])
        print('... all of our plotted points satisfy this')

    #=======================
    # THE CONIC SECTION
    #=======================
    # All of this was from the Perdoch paper, now lets move into conic sections
    # We will use the notation from wikipedia
    # References:
    #     http://en.wikipedia.org/wiki/Conic_section
    #     http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

    #-----------------------
    # MATRIX REPRESENTATION
    #-----------------------
    # The matrix representation of a conic is:
    #(A,  B2, B2_, C) = Z.flatten()
    #(D, E, F) = (0, 0, 1)
    (A, B2, D2, B2_, C, E2, D2_, E2_, F) = Z.flatten()
    B = B2 * 2
    D = D2 * 2
    E = E2 * 2
    assert B2 == B2_, 'matrix should by symmetric'
    assert D2 == D2_, 'matrix should by symmetric'
    assert E2 == E2_, 'matrix should by symmetric'
    print('--------------------------------')
    print('Now, using wikipedia\' matrix representation of a conic.')
    con = np.array((('    A', 'B / 2', 'D / 2'), ('B / 2', '    C', 'E / 2'),
                    ('D / 2', 'E / 2', '    F')))
    ut.horiz_print('A matrix A_Q = ', con)

    # A_Q is our conic section (aka ellipse matrix)
    A_Q = np.array(((A, B / 2, D / 2), (B / 2, C, E / 2), (D / 2, E / 2, F)))

    ut.horiz_print('A_Q = ', A_Q)

    #-----------------------
    # DEGENERATE CONICS
    # References:
    #    http://individual.utoronto.ca/somody/quiz.html
    print('----------------------------------')
    print('As long as det(A_Q) != it is not degenerate.')
    print('If the conic is not degenerate, we can use the 2x2 minor: A_33')
    print('det(A_Q) = %s' % str(np.linalg.det(A_Q)))
    assert np.linalg.det(A_Q) != 0, 'degenerate conic'
    A_33 = np.array(((A, B / 2), (B / 2, C)))
    ut.horiz_print('A_33 = ', A_33)

    #-----------------------
    # CONIC CLASSIFICATION
    #-----------------------
    print('----------------------------------')
    print('The determinant of the minor classifies the type of conic it is')
    print('(det == 0): parabola, (det < 0): hyperbola, (det > 0): ellipse')
    print('det(A_33) = %s' % str(np.linalg.det(A_33)))
    assert np.linalg.det(A_33) > 0, 'conic is not an ellipse'
    print('... this is indeed an ellipse')

    #-----------------------
    # CONIC CENTER
    #-----------------------
    print('----------------------------------')
    print('the centers of the ellipse are obtained by: ')
    print('x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2)')
    print('y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2)')
    # Centers are obtained by solving for where the gradient of the quadratic
    # becomes 0. Without going through the derivation the calculation is...
    # These should be 0, 0 if we are at the origin, or our original x, y
    # coordinate specified by the keypoints. I'm doing the calculation just for
    # shits and giggles
    x_center = (B * E - (2 * C * D)) / (4 * A * C - B**2)
    y_center = (D * B - (2 * A * E)) / (4 * A * C - B**2)
    ut.horiz_print('x_center = ', x_center)
    ut.horiz_print('y_center = ', y_center)

    #-----------------------
    # MAJOR AND MINOR AXES
    #-----------------------
    # Now we are going to determine the major and minor axis
    # of this beast. It just the center augmented by the eigenvecs
    print('----------------------------------')
    # Plot ellipse axis
    # !HELP! I DO NOT KNOW WHY I HAVE TO DIVIDE, SQUARE ROOT, AND NEGATE!!!
    (evals, evecs) = np.linalg.eig(A_33)
    l1, l2 = evals
    # The major and minor axis lengths
    b = 1 / np.sqrt(l1)
    a = 1 / np.sqrt(l2)
    v1, v2 = evecs
    # Find the transformation to align the axis
    nminor = v1
    nmajor = v2
    dx1, dy1 = (v1 * b)
    dx2, dy2 = (v2 * a)
    minor = np.array([dx1, -dy1])
    major = np.array([dx2, -dy2])
    x_axis = np.array([[1], [0]])
    cosang = (x_axis.T.dot(nmajor)).T
    # Rotation angle
    theta = np.arccos(cosang)
    print('a = ' + str(a))
    print('b = ' + str(b))
    print('theta = ' + str(theta[0] / TAU) + ' * 2pi')
    # The warped eigenvects should have the same magintude
    # As the axis lengths
    assert ut.almost_eq(a, major.dot(ltool.rotation_mat2x2(theta))[0])
    assert ut.almost_eq(b, minor.dot(ltool.rotation_mat2x2(theta))[1])
    try:
        # HACK
        if len(theta) == 1:
            theta = theta[0]
    except Exception:
        pass

    #-----------------------
    # ECCENTRICITY
    #-----------------------
    print('----------------------------------')
    print('The eccentricity is determined by:')
    print('')
    print('            (2 * np.sqrt((A - C) ** 2 + B ** 2))     ')
    print('ecc = -----------------------------------------------')
    print('      (nu * (A + C) + np.sqrt((A - C) ** 2 + B ** 2))')
    print('')
    print('(nu is always 1 for ellipses)')
    nu = 1
    ecc_numer = (2 * np.sqrt((A - C)**2 + B**2))
    ecc_denom = (nu * (A + C) + np.sqrt((A - C)**2 + B**2))
    ecc = np.sqrt(ecc_numer / ecc_denom)
    print('ecc = ' + str(ecc))

    # Eccentricity is a little easier in axis aligned coordinates
    # Make sure they aggree
    ecc2 = np.sqrt(1 - (b**2) / (a**2))
    assert ut.almost_eq(ecc, ecc2)

    #-----------------------
    # APPROXIMATE UNIFORM SAMPLING
    #-----------------------
    # We are given the keypoint in invA format
    print('----------------------------------')
    print('Approximate uniform points an inscribed polygon bondary')

    #def next_xy(x, y, d):
    #    # References:
    #    # http://gamedev.stackexchange.com/questions/1692/what-is-a-simple-algorithm-for-calculating-evenly-distributed-points-on-an-ellip
    #    num = (b ** 2) * (x ** 2)
    #    den = ((a ** 2) * ((a ** 2) - (x ** 2)))
    #    dxdenom = np.sqrt(1 + (num / den))
    #    deltax = d / dxdenom
    #    x_ = x + deltax
    #    y_ = b * np.sqrt(1 - (x_ ** 2) / (a ** 2))
    #    return x_, y_

    def xy_fn(t):
        return np.array((a * np.cos(t), b * np.sin(t))).T

    #nSamples = 16
    #(ix, iy, iv11, iv21, iv22), iv12 = kp, 0
    #invV = np.array([[iv11, iv12, ix],
    #                 [iv21, iv22, iy],
    #                 [   0,    0,  1]])
    #theta_list = np.linspace(0, TAU, nSamples)
    #cicrle_pts = np.array([(np.cos(t_), np.sin(t_), 1) for t_ in theta_list])
    uneven_points = invV.dot(cicrle_pts.T).T[:, 0:2]

    #uneven_points2 = xy_fn(theta_list)

    def circular_distance(arr):
        dist_most_ = ((arr[0:-1] - arr[1:])**2).sum(1)
        dist_end_ = ((arr[-1] - arr[0])**2).sum()
        return np.sqrt(np.hstack((dist_most_, dist_end_)))

    # Calculate the distance from each point on the ellipse to the next
    dists = circular_distance(uneven_points)
    total_dist = dists.sum()
    # Get an even step size
    multiplier = 1
    step_size = total_dist / (nSamples * multiplier)
    # Walk along edge
    num_steps_list = []
    offset_list = []
    dist_walked = 0
    total_dist = step_size
    for count in range(len(dists)):
        segment_len = dists[count]
        # Find where your starting location is
        offset_list.append(total_dist - dist_walked)
        # How far can you possibly go?
        total_dist += segment_len
        # How many steps can you take?
        num_steps = int((total_dist - dist_walked) // step_size)
        num_steps_list.append(num_steps)
        # Log how much further youve gotten
        dist_walked += (num_steps * step_size)
    #print('step_size = %r' % step_size)
    #print(np.vstack((num_steps_list, dists, offset_list)).T)

    # store the percent location at each line segment where
    # the cut will be made
    cut_list = []
    for num, dist, offset in zip(num_steps_list, dists, offset_list):
        if num == 0:
            cut_list.append([])
            continue
        offset1 = (step_size - offset) / dist
        offset2 = ((num * step_size) - offset) / dist
        cut_locs = (np.linspace(offset1, offset2, num, endpoint=True))
        cut_list.append(cut_locs)
        #print(cut_locs)

    # Cut the segments into new better segments
    approx_pts = []
    nPts = len(uneven_points)
    for count, cut_locs in enumerate(cut_list):
        for loc in cut_locs:
            pt1 = uneven_points[count]
            pt2 = uneven_points[(count + 1) % nPts]
            # Linearly interpolate between points
            new_loc = ((1 - loc) * pt1) + ((loc) * pt2)
            approx_pts.append(new_loc)
    approx_pts = np.array(approx_pts)

    # Warp approx_pts to the unit circle
    print('----------------------------------')
    print('For each aproximate point, find the closet point on the ellipse')
    #new_unit = V.dot(approx_pts.T).T
    ones_ = np.ones(len(approx_pts))
    new_hlocs = np.vstack((approx_pts.T, ones_))
    new_unit = V.dot(new_hlocs).T
    # normalize new_unit
    new_mag = np.sqrt((new_unit**2).sum(1))
    new_unorm_unit = new_unit / np.vstack([new_mag] * 3).T
    new_norm_unit = new_unorm_unit / np.vstack([new_unorm_unit[:, 2]] * 3).T
    # Get angle (might not be necessary)
    x_axis = np.array([1, 0, 0])
    arccos_list = x_axis.dot(new_norm_unit.T)
    uniform_theta_list = np.arccos(arccos_list)
    # Maybe this?
    uniform_theta_list = np.arctan2(new_norm_unit[:, 1], new_norm_unit[:, 0])
    #
    unevn_cicrle_pts = np.array([(np.cos(t_), np.sin(t_), 1)
                                 for t_ in uniform_theta_list])
    # This is the output. Approximately uniform points sampled along an ellipse
    uniform_ell_pts = invV.dot(unevn_cicrle_pts.T).T
    #uniform_ell_pts = invV.dot(new_norm_unit.T).T

    _plotpts(approx_pts, 0, pt.YELLOW, label='approx points', marker='o-')
    _plotpts(uniform_ell_pts, 0, pt.RED, label='uniform points', marker='o-')

    # Desired number of points
    #ecc = np.sqrt(1 - (b ** 2) / (a ** 2))
    # Total arclength
    #total_arclen = ellipeinc(TAU, ecc)
    #firstquad_arclen = total_arclen / 4
    # Desired arclength between points
    #d = firstquad_arclen / nSamples
    # Initial point
    #x, y = xy_fn(.001)
    #uniform_points = []
    #for count in range(nSamples):
    #    if np.isnan(x_) or np.isnan(y_):
    #        print('nan on count=%r' % count)
    #        break
    #    uniform_points.append((x_, y_))
    # The angle between the major axis and our x axis is:
    #-----------------------
    # DRAWING
    #-----------------------
    print('----------------------------------')
    # Draw the keypoint using the tried and true pt
    # Other things should subsiquently align
    #pt.draw_kpts2(np.array([kp]), ell_linewidth=4,
    #               ell_color=pt.DEEP_PINK, ell_alpha=1, arrow=True, rect=True)

    # Plot ellipse points
    _plotpts(ellipse_pts1,
             0,
             pt.LIGHT_BLUE,
             label='invV.dot(cicrle_pts.T).T',
             marker='o-')

    _plotarrow(x_center,
               y_center,
               dx1,
               -dy1,
               color=pt.GRAY,
               label='minor axis')
    _plotarrow(x_center,
               y_center,
               dx2,
               -dy2,
               color=pt.GRAY,
               label='major axis')

    # Rotate the ellipse so it is axis aligned and plot that
    rot = ltool.rotation_around_mat3x3(theta, ix, iy)
    ellipse_pts3 = rot.dot(ellipse_pts1.T).T
    #!_plotpts(ellipse_pts3, 0, pt.GREEN, label='axis aligned points')

    # Plot ellipse orientation
    ortho_basis = np.eye(3)[:, 0:2]
    orient_axis = invV.dot(ortho_basis)
    print(orient_axis)
    _dx1, _dx2, _dy1, _dy2, _1, _2 = orient_axis.flatten()
    #!_plotarrow(x_center, y_center, _dx1, _dy1, color=pt.BLUE, label='ellipse rotation')
    #!_plotarrow(x_center, y_center, _dx2, _dy2, color=pt.BLUE)

    #pt.plt.gca().set_xlim(400, 600)
    #pt.plt.gca().set_ylim(300, 500)

    xmin, ymin = ellipse_pts1.min(0)[0:2] - 1
    xmax, ymax = ellipse_pts1.max(0)[0:2] + 1
    pt.plt.gca().set_xlim(xmin, xmax)
    pt.plt.gca().set_ylim(ymin, ymax)
    pt.legend()
    pt.dark_background(doubleit=3)
    pt.gca().invert_yaxis()

    # Hack in another view
    # It seems like the even points are not actually that even.
    # there must be a bug

    pt.figure(fnum=9003 + 1, docla=True, doclf=True, pnum=(1, 3, 1))
    _plotpts(ellipse_pts1,
             0,
             pt.LIGHT_BLUE,
             label='invV.dot(cicrle_pts.T).T',
             marker='o-',
             title='even')
    pt.plt.gca().set_xlim(xmin, xmax)
    pt.plt.gca().set_ylim(ymin, ymax)
    pt.dark_background(doubleit=3)
    pt.gca().invert_yaxis()
    pt.figure(fnum=9003 + 1, pnum=(1, 3, 2))

    _plotpts(approx_pts,
             0,
             pt.YELLOW,
             label='approx points',
             marker='o-',
             title='approx')
    pt.plt.gca().set_xlim(xmin, xmax)
    pt.plt.gca().set_ylim(ymin, ymax)
    pt.dark_background(doubleit=3)
    pt.gca().invert_yaxis()

    pt.figure(fnum=9003 + 1, pnum=(1, 3, 3))
    _plotpts(uniform_ell_pts,
             0,
             pt.RED,
             label='uniform points',
             marker='o-',
             title='uniform')
    pt.plt.gca().set_xlim(xmin, xmax)
    pt.plt.gca().set_ylim(ymin, ymax)
    pt.dark_background(doubleit=3)
    pt.gca().invert_yaxis()

    return locals()
Esempio n. 9
0
def shadowform_probability():
    """ its hearthstone, but whatev

    probability of
    raza + no shadowform on turn 5 +

    probability of
    raza + shadowform on turn 5 +

    probability of
    kazakus turn 4, raza turn 5, + no shadowform

    """
    from scipy.stats import hypergeom

    def p_badstuff_shadowform(turn=5, hand_size=3):
        deck_size = 30
        num_shadowform = 2

        def prob_nohave_card_never_mulled(copies=2, hand_size=3):
            deck_size = 30
            prb = hypergeom(deck_size, copies, hand_size)
            # P(initial_miss)
            p_none_premul = prb.cdf(0)

            # GIVEN that we mul our first 3 what is prob we still are unlucky
            # P(miss_turn0 | initial_miss)
            prb = hypergeom(deck_size - hand_size, copies, hand_size)
            p_none_in_mul = prb.cdf(0)
            # TODO: add constraints about 2 drops
            #  P(miss_turn0) = P(miss_turn0 | initial_miss) *  P(initial_miss)
            p_none_at_start = p_none_in_mul * p_none_premul
            return p_none_at_start

        def prob_nohave_card_always_mulled(copies=2, hand_size=3):
            # probability of getting the card initially
            p_none_premul = hypergeom(deck_size, copies, hand_size).cdf(0)
            # probability of getting the card if everything is thrown away
            # (TODO: factor in the probability that you need to keep something)
            # for now its fine because if we keep shadowform the end calculation is fine
            p_nohave_postmul_given_nohave = hypergeom(deck_size - hand_size, copies, hand_size).cdf(0)
            # not necessary, but it shows the theory
            p_nohave_postmul_given_had = 1
            p_nohave_turn0 = (
                p_nohave_postmul_given_nohave * p_none_premul + (1 - p_none_premul) * p_nohave_postmul_given_had
            )
            return p_nohave_turn0

        def prob_nohave_by_turn(p_none_turn0, turn, copies, hand_size):
            # P(miss_turnN | miss_mul)
            p_none_turnN_given_mulmis = hypergeom(deck_size - hand_size, copies, turn).cdf(0)
            # P(miss_turnN) = P(miss_turnN | miss_mul) P(miss_mul)
            p_none_turnN = p_none_turnN_given_mulmis * p_none_turn0
            return p_none_turnN

        p_no_shadowform_on_turn0 = prob_nohave_card_never_mulled(copies=num_shadowform, hand_size=hand_size)
        no_shadowform_turnN = prob_nohave_by_turn(p_no_shadowform_on_turn0, turn, num_shadowform, hand_size)

        # Assume you always mul raza
        p_noraza_initial = prob_nohave_card_always_mulled(copies=1, hand_size=hand_size)
        p_noraza_turnN = prob_nohave_by_turn(p_noraza_initial, turn, copies=1, hand_size=hand_size)
        p_raza_turnN = 1 - p_noraza_turnN

        # probability that you have raza and no shadowform by turn 5
        p_raza_and_noshadowform_turnN = p_raza_turnN * no_shadowform_turnN
        return p_raza_and_noshadowform_turnN

    import plottool as pt  # NOQA

    turns = list(range(0, 26))
    probs = [p_badstuff_shadowform(turn, hand_size=3) for turn in turns]
    pt.plot(turns, probs, label="on play")
    probs = [p_badstuff_shadowform(turn, hand_size=4) for turn in turns]
    pt.plot(turns, probs, label="with coin")
    pt.set_xlabel("turn")
    pt.set_ylabel("probability")
    pt.set_title("Probability of Having Raza without a Shadowform")
    pt.legend()
    pt.gca().set_ylim(0, 1)