def check_relationships(branches): ancestors = {b: set() for b in branches} length = len(branches) * (len(branches) - 1) for b1, b2 in ub.ProgIter(it.combinations(branches, 2), length=length): ret = ub.cmd('git merge-base --is-ancestor {} {}'.format(b1, b2))['ret'] if ret == 0: ancestors[b1].add(b2) ret = ub.cmd('git merge-base --is-ancestor {} {}'.format(b2, b1))['ret'] if ret == 0: ancestors[b2].add(b1) print('<key> is an ancestor of <value>') print(ub.repr2(ancestors)) descendants = {b: set() for b in branches} for key, others in ancestors.items(): for o in others: descendants[o].add(key) print('<key> descends from <value>') print(ub.repr2(descendants)) import plottool as pt import networkx as nx G = nx.DiGraph() G.add_nodes_from(branches) for key, others in ancestors.items(): for o in others: # G.add_edge(key, o) G.add_edge(o, key) from networkx.algorithms.connectivity.edge_augmentation import collapse flag = True G2 = G while flag: flag = False for u, v in list(G2.edges()): if G2.has_edge(v, u): G2 = collapse(G2, [[u, v]]) node_relabel = ub.ddict(list) for old, new in G2.graph['mapping'].items(): node_relabel[new].append(old) G2 = nx.relabel_nodes(G2, {k: '\n'.join(v) for k, v in node_relabel.items()}) flag = True break G3 = nx.transitive_reduction(G2) pt.show_nx(G3, arrow_width=1.5, prog='dot', layoutkw=dict(prog='dot')) pt.zoom_factory() pt.pan_factory() pt.plt.show()
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as nx kwargs = kwargs.copy() factor_list = kwargs.pop('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs(model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs if False: fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) nx.draw(model, **drawkw) else: # BE VERY CAREFUL if 1: graph = model.copy() graph.__class__ = nx.DiGraph graph.graph['groupattrs'] = ut.ddict(dict) #graph = model. if getattr(graph, 'ttype2_cpds', None) is not None: # Add invis edges and ttype groups for ttype in model.ttype2_cpds.keys(): ttype_cpds = model.ttype2_cpds[ttype] # use defined ordering ttype_nodes = ut.list_getattr(ttype_cpds, 'variable') # ttype_nodes = sorted(ttype_nodes) invis_edges = list(ut.itertwo(ttype_nodes)) graph.add_edges_from(invis_edges) nx.set_edge_attributes( graph, 'style', {edge: 'invis' for edge in invis_edges}) nx.set_node_attributes( graph, 'groupid', {node: ttype for node in ttype_nodes}) graph.graph['groupattrs'][ttype]['rank'] = 'same' graph.graph['groupattrs'][ttype]['cluster'] = False else: graph = model pt.show_nx(graph, layout_kw={'prog': 'dot'}, fnum=fnum, pnum=pnum, verbose=0) pt.zoom_factory() fig = pt.gcf() ax = pt.gca() pass hacks = [ pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw ] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % ( num_names, num_annots, ) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob, ) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def intraoccurrence_connected(): r""" CommandLine: python -m ibeis.scripts.specialdraw intraoccurrence_connected --show python -m ibeis.scripts.specialdraw intraoccurrence_connected --show --postcut python -m ibeis.scripts.specialdraw intraoccurrence_connected --show --smaller Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> result = intraoccurrence_connected() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import ibeis import plottool as pt from ibeis.viz import viz_graph import networkx as nx pt.ensure_pylab_qt4() ibs = ibeis.opendb(defaultdb='PZ_Master1') nid2_aid = { #4880: [3690, 3696, 3703, 3706, 3712, 3721], 4880: [3690, 3696, 3703], 6537: [3739], 6653: [7671], 6610: [7566, 7408], #6612: [7664, 7462, 7522], #6624: [7465, 7360], #6625: [7746, 7383, 7390, 7477, 7376, 7579], 6630: [7586, 7377, 7464, 7478], #6677: [7500] } nid2_dbaids = {4880: [33, 6120, 7164], 6537: [7017, 7206], 6653: [7660]} if ut.get_argflag('--small') or ut.get_argflag('--smaller'): del nid2_aid[6630] del nid2_aid[6537] del nid2_dbaids[6537] if ut.get_argflag('--smaller'): nid2_dbaids[4880].remove(33) nid2_aid[4880].remove(3690) nid2_aid[6610].remove(7408) #del nid2_aid[4880] #del nid2_dbaids[4880] aids = ut.flatten(nid2_aid.values()) temp_nids = [1] * len(aids) postcut = ut.get_argflag('--postcut') aids_list = ibs.group_annots_by_name(aids)[0] ensure_edges = 'all' if True or not postcut else None unlabeled_graph = viz_graph.make_netx_graph_from_aid_groups( ibs, aids_list, #invis_edges=invis_edges, ensure_edges=ensure_edges, temp_nids=temp_nids) viz_graph.color_by_nids(unlabeled_graph, unique_nids=[1] * len(list(unlabeled_graph.nodes()))) viz_graph.ensure_node_images(ibs, unlabeled_graph) nx.set_node_attributes(unlabeled_graph, 'shape', 'rect') #unlabeled_graph = unlabeled_graph.to_undirected() # Find the "database exemplars for these annots" if False: gt_aids = ibs.get_annot_groundtruth(aids) gt_aids = [ut.setdiff(s, aids) for s in gt_aids] dbaids = ut.unique(ut.flatten(gt_aids)) dbaids = ibs.filter_annots_general(dbaids, minqual='good') ibs.get_annot_quality_texts(dbaids) else: dbaids = ut.flatten(nid2_dbaids.values()) exemplars = nx.DiGraph() #graph = exemplars # NOQA exemplars.add_nodes_from(dbaids) def add_clique(graph, nodes, edgeattrs={}, nodeattrs={}): edge_list = ut.upper_diag_self_prodx(nodes) graph.add_edges_from(edge_list, **edgeattrs) return edge_list for aids_, nid in zip(*ibs.group_annots_by_name(dbaids)): add_clique(exemplars, aids_) viz_graph.ensure_node_images(ibs, exemplars) viz_graph.color_by_nids(exemplars, ibs=ibs) nx.set_node_attributes(unlabeled_graph, 'framewidth', False) nx.set_node_attributes(exemplars, 'framewidth', 4.0) nx.set_node_attributes(unlabeled_graph, 'group', 'unlab') nx.set_node_attributes(exemplars, 'group', 'exemp') #big_graph = nx.compose_all([unlabeled_graph]) big_graph = nx.compose_all([exemplars, unlabeled_graph]) # add sparse connections from unlabeled to exemplars import numpy as np rng = np.random.RandomState(0) if True or not postcut: for aid_ in unlabeled_graph.nodes(): flags = rng.rand(len(exemplars)) > .5 nid_ = ibs.get_annot_nids(aid_) exnids = np.array(ibs.get_annot_nids(list(exemplars.nodes()))) flags = np.logical_or(exnids == nid_, flags) exmatches = ut.compress(list(exemplars.nodes()), flags) big_graph.add_edges_from(list(ut.product([aid_], exmatches)), color=pt.ORANGE, implicit=True) else: for aid_ in unlabeled_graph.nodes(): flags = rng.rand(len(exemplars)) > .5 exmatches = ut.compress(list(exemplars.nodes()), flags) nid_ = ibs.get_annot_nids(aid_) exnids = np.array(ibs.get_annot_nids(exmatches)) exmatches = ut.compress(exmatches, exnids == nid_) big_graph.add_edges_from(list(ut.product([aid_], exmatches))) pass nx.set_node_attributes(big_graph, 'shape', 'rect') #if False and postcut: # ut.nx_delete_node_attr(big_graph, 'nid') # ut.nx_delete_edge_attr(big_graph, 'color') # viz_graph.ensure_graph_nid_labels(big_graph, ibs=ibs) # viz_graph.color_by_nids(big_graph, ibs=ibs) # big_graph = big_graph.to_undirected() layoutkw = { 'sep': 1 / 5, 'prog': 'neato', 'overlap': 'false', #'splines': 'ortho', 'splines': 'spline', } as_directed = False #as_directed = True #hacknode = True hacknode = 0 graph = big_graph ut.nx_ensure_agraph_color(graph) if hacknode: nx.set_edge_attributes(graph, 'taillabel', {e: str(e[0]) for e in graph.edges()}) nx.set_edge_attributes(graph, 'headlabel', {e: str(e[1]) for e in graph.edges()}) explicit_graph = pt.get_explicit_graph(graph) _, layout_info = pt.nx_agraph_layout(explicit_graph, orig_graph=graph, inplace=True, **layoutkw) if ut.get_argflag('--smaller'): graph.node[7660]['pos'] = np.array([550, 350]) graph.node[6120]['pos'] = np.array([200, 600]) + np.array([350, -400]) graph.node[7164]['pos'] = np.array([200, 480]) + np.array([350, -400]) nx.set_node_attributes(graph, 'pin', 'true') _, layout_info = pt.nx_agraph_layout(graph, inplace=True, **layoutkw) elif ut.get_argflag('--small'): graph.node[7660]['pos'] = np.array([750, 350]) graph.node[33]['pos'] = np.array([300, 600]) + np.array([350, -400]) graph.node[6120]['pos'] = np.array([500, 600]) + np.array([350, -400]) graph.node[7164]['pos'] = np.array([410, 480]) + np.array([350, -400]) nx.set_node_attributes(graph, 'pin', 'true') _, layout_info = pt.nx_agraph_layout(graph, inplace=True, **layoutkw) if not postcut: #pt.show_nx(graph.to_undirected(), layout='agraph', layoutkw=layoutkw, # as_directed=False) #pt.show_nx(graph, layout='agraph', layoutkw=layoutkw, # as_directed=as_directed, hacknode=hacknode) pt.show_nx(graph, layout='custom', layoutkw=layoutkw, as_directed=as_directed, hacknode=hacknode) else: #explicit_graph = pt.get_explicit_graph(graph) #_, layout_info = pt.nx_agraph_layout(explicit_graph, orig_graph=graph, # **layoutkw) #layout_info['edge']['alpha'] = .8 #pt.apply_graph_layout_attrs(graph, layout_info) #graph_layout_attrs = layout_info['graph'] ##edge_layout_attrs = layout_info['edge'] ##node_layout_attrs = layout_info['node'] #for key, vals in layout_info['node'].items(): # #print('[special] key = %r' % (key,)) # nx.set_node_attributes(graph, key, vals) #for key, vals in layout_info['edge'].items(): # #print('[special] key = %r' % (key,)) # nx.set_edge_attributes(graph, key, vals) #nx.set_edge_attributes(graph, 'alpha', .8) #graph.graph['splines'] = graph_layout_attrs.get('splines', 'line') #graph.graph['splines'] = 'polyline' # graph_layout_attrs.get('splines', 'line') #graph.graph['splines'] = 'line' cut_graph = graph.copy() edge_list = list(cut_graph.edges()) edge_nids = np.array(ibs.unflat_map(ibs.get_annot_nids, edge_list)) cut_flags = edge_nids.T[0] != edge_nids.T[1] cut_edges = ut.compress(edge_list, cut_flags) cut_graph.remove_edges_from(cut_edges) ut.nx_delete_node_attr(cut_graph, 'nid') viz_graph.ensure_graph_nid_labels(cut_graph, ibs=ibs) #ut.nx_get_default_node_attributes(exemplars, 'color', None) ut.nx_delete_node_attr(cut_graph, 'color', nodes=unlabeled_graph.nodes()) aid2_color = ut.nx_get_default_node_attributes(cut_graph, 'color', None) nid2_colors = ut.group_items(aid2_color.values(), ibs.get_annot_nids(aid2_color.keys())) nid2_colors = ut.map_dict_vals(ut.filter_Nones, nid2_colors) nid2_colors = ut.map_dict_vals(ut.unique, nid2_colors) #for val in nid2_colors.values(): # assert len(val) <= 1 # Get initial colors nid2_color_ = { nid: colors_[0] for nid, colors_ in nid2_colors.items() if len(colors_) == 1 } graph = cut_graph viz_graph.color_by_nids(cut_graph, ibs=ibs, nid2_color_=nid2_color_) nx.set_node_attributes(cut_graph, 'framewidth', 4) pt.show_nx(cut_graph, layout='custom', layoutkw=layoutkw, as_directed=as_directed, hacknode=hacknode) pt.zoom_factory()
def setcover_example(): """ CommandLine: python -m ibeis.scripts.specialdraw setcover_example --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> result = setcover_example() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import ibeis import plottool as pt from ibeis.viz import viz_graph import networkx as nx pt.ensure_pylab_qt4() ibs = ibeis.opendb(defaultdb='testdb2') if False: # Select a good set aids = ibs.get_name_aids(ibs.get_valid_nids()) # ibeis.testdata_aids('testdb2', a='default:mingt=2') aids = [a for a in aids if len(a) > 1] for a in aids: print(ut.repr3(ibs.get_annot_stats_dict(a))) print(aids[-2]) #aids = [78, 79, 80, 81, 88, 91] aids = [78, 79, 81, 88, 91] qreq_ = ibs.depc.new_request('vsone', aids, aids, cfgdict={}) cm_list = qreq_.execute() from ibeis.algo.hots import graph_iden infr = graph_iden.AnnotInference(cm_list) unique_aids, prob_annots = infr.make_prob_annots() import numpy as np print( ut.hz_str( 'prob_annots = ', ut.array2string2(prob_annots, precision=2, max_line_width=140, suppress_small=True))) # ut.setcover_greedy(candidate_sets_dict) max_weight = 3 prob_annots[np.diag_indices(len(prob_annots))] = np.inf prob_annots = prob_annots thresh_points = np.sort(prob_annots[np.isfinite(prob_annots)]) # probably not the best way to go about searching for these thresholds # but when you have a hammer... if False: quant = sorted(np.diff(thresh_points))[(len(thresh_points) - 1) // 2] candset = { point: thresh_points[np.abs(thresh_points - point) < quant] for point in thresh_points } check_thresholds = len(aids) * 2 thresh_points2 = np.array( ut.setcover_greedy(candset, max_weight=check_thresholds).keys()) thresh_points = thresh_points2 # pt.plot(sorted(thresh_points), 'rx') # pt.plot(sorted(thresh_points2), 'o') # prob_annots = prob_annots.T # thresh_start = np.mean(thresh_points) current_idxs = [] current_covers = [] current_val = np.inf for thresh in thresh_points: covering_sets = [np.where(row >= thresh)[0] for row in (prob_annots)] candidate_sets_dict = { ax: others for ax, others in enumerate(covering_sets) } soln_cover = ut.setcover_ilp(candidate_sets_dict, max_weight=max_weight) exemplar_idxs = list(soln_cover.keys()) soln_weight = len(exemplar_idxs) val = max_weight - soln_weight # print('val = %r' % (val,)) # print('soln_weight = %r' % (soln_weight,)) if val < current_val: current_val = val current_covers = covering_sets current_idxs = exemplar_idxs exemplars = ut.take(aids, current_idxs) ensure_edges = [(aids[ax], aids[ax2]) for ax, other_xs in enumerate(current_covers) for ax2 in other_xs] graph = viz_graph.make_netx_graph_from_aid_groups( ibs, [aids], allow_directed=True, ensure_edges=ensure_edges, temp_nids=[1] * len(aids)) viz_graph.ensure_node_images(ibs, graph) nx.set_node_attributes(graph, 'framewidth', False) nx.set_node_attributes(graph, 'framewidth', {aid: 4.0 for aid in exemplars}) nx.set_edge_attributes(graph, 'color', pt.ORANGE) nx.set_node_attributes(graph, 'color', pt.LIGHT_BLUE) nx.set_node_attributes(graph, 'shape', 'rect') layoutkw = { 'sep': 1 / 10, 'prog': 'neato', 'overlap': 'false', #'splines': 'ortho', 'splines': 'spline', } pt.show_nx(graph, layout='agraph', layoutkw=layoutkw) pt.zoom_factory()
def double_depcache_graph(): r""" CommandLine: python -m ibeis.scripts.specialdraw double_depcache_graph --show --testmode python -m ibeis.scripts.specialdraw double_depcache_graph --save=figures5/doubledepc.png --dpath ~/latex/cand/ --diskshow --figsize=8,20 --dpi=220 --testmode --show --clipwhite python -m ibeis.scripts.specialdraw double_depcache_graph --save=figures5/doubledepc.png --dpath ~/latex/cand/ --diskshow --figsize=8,20 --dpi=220 --testmode --show --clipwhite --arrow-width=.5 python -m ibeis.scripts.specialdraw double_depcache_graph --save=figures5/doubledepc.png --dpath ~/latex/cand/ --diskshow --figsize=8,20 --dpi=220 --testmode --show --clipwhite --arrow-width=5 Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> result = double_depcache_graph() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import ibeis import networkx as nx import plottool as pt pt.ensure_pylab_qt4() # pt.plt.xkcd() ibs = ibeis.opendb('testdb1') reduced = True implicit = True annot_graph = ibs.depc_annot.make_graph(reduced=reduced, implicit=implicit) image_graph = ibs.depc_image.make_graph(reduced=reduced, implicit=implicit) to_rename = ut.isect(image_graph.nodes(), annot_graph.nodes()) nx.relabel_nodes(annot_graph, {x: 'annot_' + x for x in to_rename}, copy=False) nx.relabel_nodes(image_graph, {x: 'image_' + x for x in to_rename}, copy=False) graph = nx.compose_all([image_graph, annot_graph]) #graph = nx.union_all([image_graph, annot_graph], rename=('image', 'annot')) # userdecision = ut.nx_makenode(graph, 'user decision', shape='rect', color=pt.DARK_YELLOW, style='diagonals') # userdecision = ut.nx_makenode(graph, 'user decision', shape='circle', color=pt.DARK_YELLOW) userdecision = ut.nx_makenode( graph, 'User decision', shape='rect', #width=100, height=100, color=pt.YELLOW, style='diagonals') #longcat = True longcat = False #edge = ('feat', 'neighbor_index') #data = graph.get_edge_data(*edge)[0] #print('data = %r' % (data,)) #graph.remove_edge(*edge) ## hack #graph.add_edge('featweight', 'neighbor_index', **data) graph.add_edge('detections', userdecision, constraint=longcat, color=pt.PINK) graph.add_edge(userdecision, 'annotations', constraint=longcat, color=pt.PINK) # graph.add_edge(userdecision, 'annotations', implicit=True, color=[0, 0, 0]) if not longcat: pass #graph.add_edge('images', 'annotations', style='invis') #graph.add_edge('thumbnails', 'annotations', style='invis') #graph.add_edge('thumbnails', userdecision, style='invis') graph.remove_node('Has_Notch') graph.remove_node('annotmask') layoutkw = { 'ranksep': 5, 'nodesep': 5, 'dpi': 96, # 'nodesep': 1, } ns = 1000 ut.nx_set_default_node_attributes(graph, 'fontsize', 72) ut.nx_set_default_node_attributes(graph, 'fontname', 'Ubuntu') ut.nx_set_default_node_attributes(graph, 'style', 'filled') ut.nx_set_default_node_attributes(graph, 'width', ns * ut.PHI) ut.nx_set_default_node_attributes(graph, 'height', ns * (1 / ut.PHI)) #for u, v, d in graph.edge(data=True): for u, vkd in graph.edge.items(): for v, dk in vkd.items(): for k, d in dk.items(): localid = d.get('local_input_id') if localid: # d['headlabel'] = localid if localid not in ['1']: d['taillabel'] = localid #d['label'] = localid if d.get('taillabel') in {'1'}: del d['taillabel'] node_alias = { 'chips': 'Chip', 'images': 'Image', 'feat': 'Feat', 'featweight': 'Feat Weights', 'thumbnails': 'Thumbnail', 'detections': 'Detections', 'annotations': 'Annotation', 'Notch_Tips': 'Notch Tips', 'probchip': 'Prob Chip', 'Cropped_Chips': 'Croped Chip', 'Trailing_Edge': 'Trailing\nEdge', 'Block_Curvature': 'Block\nCurvature', # 'BC_DTW': 'block curvature /\n dynamic time warp', 'BC_DTW': 'DTW Distance', 'vsone': 'Hots vsone', 'feat_neighbs': 'Nearest\nNeighbors', 'neighbor_index': 'Neighbor\nIndex', 'vsmany': 'Hots vsmany', 'annot_labeler': 'Annot Labeler', 'labeler': 'Labeler', 'localizations': 'Localizations', 'classifier': 'Classifier', 'sver': 'Spatial\nVerification', 'Classifier': 'Existence', 'image_labeler': 'Image Labeler', } node_alias = { 'Classifier': 'existence', 'feat_neighbs': 'neighbors', 'sver': 'spatial_verification', 'Cropped_Chips': 'cropped_chip', 'BC_DTW': 'dtw_distance', 'Block_Curvature': 'curvature', 'Trailing_Edge': 'trailing_edge', 'Notch_Tips': 'notch_tips', 'thumbnails': 'thumbnail', 'images': 'image', 'annotations': 'annotation', 'chips': 'chip', #userdecision: 'User de' } node_alias = ut.delete_dict_keys( node_alias, ut.setdiff(node_alias.keys(), graph.nodes())) nx.relabel_nodes(graph, node_alias, copy=False) fontkw = dict(fontname='Ubuntu', fontweight='normal', fontsize=12) #pt.gca().set_aspect('equal') #pt.figure() pt.show_nx(graph, layoutkw=layoutkw, fontkw=fontkw) pt.zoom_factory()
def graphcut_flow(): r""" Returns: ?: name CommandLine: python -m ibeis.scripts.specialdraw graphcut_flow --show --save cutflow.png --diskshow --clipwhite python -m ibeis.scripts.specialdraw graphcut_flow --save figures4/cutiden.png --diskshow --clipwhite --dpath ~/latex/crall-candidacy-2015/ --figsize=24,10 --arrow-width=2.0 Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> graphcut_flow() >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import plottool as pt pt.ensure_pylab_qt4() import networkx as nx # pt.plt.xkcd() graph = nx.DiGraph() def makecluster(name, num, **attrkw): return [ ut.nx_makenode(graph, name + str(n), **attrkw) for n in range(num) ] def add_edge2(u, v, *args, **kwargs): v = ut.ensure_iterable(v) u = ut.ensure_iterable(u) for _u, _v in ut.product(u, v): graph.add_edge(_u, _v, *args, **kwargs) ns = 512 # *** Primary color: p_shade2 = '#41629A' # *** Secondary color s1_shade2 = '#E88B53' # *** Secondary color s2_shade2 = '#36977F' # *** Complement color c_shade2 = '#E8B353' annot1 = ut.nx_makenode(graph, 'Unlabeled\nannotations\n(query)', width=ns, height=ns, groupid='annot', color=p_shade2) annot2 = ut.nx_makenode(graph, 'Labeled\nannotations\n(database)', width=ns, height=ns, groupid='annot', color=s1_shade2) occurprob = ut.nx_makenode(graph, 'Dense \nprobabilities', color=lighten_hex(p_shade2, .1)) cacheprob = ut.nx_makenode(graph, 'Cached \nprobabilities', color=lighten_hex(s1_shade2, .1)) sparseprob = ut.nx_makenode(graph, 'Sparse\nprobabilities', color=lighten_hex(c_shade2, .1)) graph.add_edge(annot1, occurprob) graph.add_edge(annot1, sparseprob) graph.add_edge(annot2, sparseprob) graph.add_edge(annot2, cacheprob) matchgraph = ut.nx_makenode(graph, 'Graph of\npotential matches', color=lighten_hex(s2_shade2, .1)) cutalgo = ut.nx_makenode(graph, 'Graph cut algorithm', color=lighten_hex(s2_shade2, .2), shape='ellipse') cc_names = ut.nx_makenode( graph, 'Identifications,\n splits, and merges are\nconnected compoments', color=lighten_hex(s2_shade2, .3)) graph.add_edge(occurprob, matchgraph) graph.add_edge(sparseprob, matchgraph) graph.add_edge(cacheprob, matchgraph) graph.add_edge(matchgraph, cutalgo) graph.add_edge(cutalgo, cc_names) ut.nx_set_default_node_attributes(graph, 'shape', 'rect') ut.nx_set_default_node_attributes(graph, 'style', 'filled,rounded') ut.nx_set_default_node_attributes(graph, 'fixedsize', 'true') ut.nx_set_default_node_attributes(graph, 'width', ns * ut.PHI) ut.nx_set_default_node_attributes(graph, 'height', ns * (1 / ut.PHI)) ut.nx_set_default_node_attributes(graph, 'regular', False) layoutkw = { 'prog': 'dot', 'rankdir': 'LR', 'splines': 'line', 'sep': 100 / 72, 'nodesep': 300 / 72, 'ranksep': 300 / 72, } fontkw = dict(fontname='Ubuntu', fontweight='light', fontsize=14) pt.show_nx(graph, layout='agraph', layoutkw=layoutkw, **fontkw) pt.zoom_factory()
def general_identify_flow(): r""" CommandLine: python -m ibeis.scripts.specialdraw general_identify_flow --show --save pairsim.png --dpi=100 --diskshow --clipwhite python -m ibeis.scripts.specialdraw general_identify_flow --dpi=200 --diskshow --clipwhite --dpath ~/latex/cand/ --figsize=20,10 --save figures4/pairprob.png --arrow-width=2.0 Example: >>> # SCRIPT >>> from ibeis.scripts.specialdraw import * # NOQA >>> general_identify_flow() >>> ut.quit_if_noshow() >>> ut.show_if_requested() """ import networkx as nx import plottool as pt pt.ensure_pylab_qt4() # pt.plt.xkcd() graph = nx.DiGraph() def makecluster(name, num, **attrkw): return [ut.nx_makenode(name + str(n), **attrkw) for n in range(num)] def add_edge2(u, v, *args, **kwargs): v = ut.ensure_iterable(v) u = ut.ensure_iterable(u) for _u, _v in ut.product(u, v): graph.add_edge(_u, _v, *args, **kwargs) # *** Primary color: p_shade2 = '#41629A' # *** Secondary color s1_shade2 = '#E88B53' # *** Secondary color s2_shade2 = '#36977F' # *** Complement color c_shade2 = '#E8B353' ns = 512 ut.inject_func_as_method(graph, ut.nx_makenode) annot1_color = p_shade2 annot2_color = s1_shade2 #annot1_color2 = pt.color_funcs.lighten_rgb(colors.hex2color(annot1_color), .01) annot1 = graph.nx_makenode('Annotation X', width=ns, height=ns, groupid='annot', color=annot1_color) annot2 = graph.nx_makenode('Annotation Y', width=ns, height=ns, groupid='annot', color=annot2_color) featX = graph.nx_makenode('Features X', size=(ns / 1.2, ns / 2), groupid='feats', color=lighten_hex(annot1_color, .1)) featY = graph.nx_makenode('Features Y', size=(ns / 1.2, ns / 2), groupid='feats', color=lighten_hex(annot2_color, .1)) #'#4771B3') global_pairvec = graph.nx_makenode( 'Global similarity\n(viewpoint, quality, ...)', width=ns * ut.PHI * 1.2, color=s2_shade2) findnn = graph.nx_makenode('Find correspondences\n(nearest neighbors)', shape='ellipse', color=c_shade2) local_pairvec = graph.nx_makenode( 'Local similarities\n(LNBNN, spatial error, ...)', size=(ns * 2.2, ns), color=lighten_hex(c_shade2, .1)) agglocal = graph.nx_makenode('Aggregate', size=(ns / 1.1, ns / 2), shape='ellipse', color=lighten_hex(c_shade2, .2)) catvecs = graph.nx_makenode('Concatenate', size=(ns / 1.1, ns / 2), shape='ellipse', color=lighten_hex(s2_shade2, .1)) pairvec = graph.nx_makenode('Vector of\npairwise similarities', color=lighten_hex(s2_shade2, .2)) classifier = graph.nx_makenode('Classifier\n(SVM/RF/DNN)', color=lighten_hex(s2_shade2, .3)) prob = graph.nx_makenode( 'Matching Probability\n(same individual given\nsimilar viewpoint)', color=lighten_hex(s2_shade2, .4)) graph.add_edge(annot1, global_pairvec) graph.add_edge(annot2, global_pairvec) add_edge2(annot1, featX) add_edge2(annot2, featY) add_edge2(featX, findnn) add_edge2(featY, findnn) add_edge2(findnn, local_pairvec) graph.add_edge(local_pairvec, agglocal, constraint=True) graph.add_edge(agglocal, catvecs, constraint=False) graph.add_edge(global_pairvec, catvecs) graph.add_edge(catvecs, pairvec) # graph.add_edge(annot1, classifier, style='invis') # graph.add_edge(pairvec, classifier , constraint=False) graph.add_edge(pairvec, classifier) graph.add_edge(classifier, prob) ut.nx_set_default_node_attributes(graph, 'shape', 'rect') #ut.nx_set_default_node_attributes(graph, 'fillcolor', nx.get_node_attributes(graph, 'color')) #ut.nx_set_default_node_attributes(graph, 'style', 'rounded') ut.nx_set_default_node_attributes(graph, 'style', 'filled,rounded') ut.nx_set_default_node_attributes(graph, 'fixedsize', 'true') ut.nx_set_default_node_attributes(graph, 'xlabel', nx.get_node_attributes(graph, 'label')) ut.nx_set_default_node_attributes(graph, 'width', ns * ut.PHI) ut.nx_set_default_node_attributes(graph, 'height', ns) ut.nx_set_default_node_attributes(graph, 'regular', False) #font = 'MonoDyslexic' #font = 'Mono_Dyslexic' font = 'Ubuntu' ut.nx_set_default_node_attributes(graph, 'fontsize', 72) ut.nx_set_default_node_attributes(graph, 'fontname', font) #ut.nx_delete_node_attr(graph, 'width') #ut.nx_delete_node_attr(graph, 'height') #ut.nx_delete_node_attr(graph, 'fixedsize') #ut.nx_delete_node_attr(graph, 'style') #ut.nx_delete_node_attr(graph, 'regular') #ut.nx_delete_node_attr(graph, 'shape') #graph.node[annot1]['label'] = "<f0> left|<f1> mid\ dle|<f2> right" #graph.node[annot2]['label'] = ut.codeblock( # ''' # <<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0"> # <TR><TD>left</TD><TD PORT="f1">mid dle</TD><TD PORT="f2">right</TD></TR> # </TABLE>> # ''') #graph.node[annot1]['label'] = ut.codeblock( # ''' # <<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0"> # <TR><TD>left</TD><TD PORT="f1">mid dle</TD><TD PORT="f2">right</TD></TR> # </TABLE>> # ''') #graph.node[annot1]['shape'] = 'none' #graph.node[annot1]['margin'] = '0' layoutkw = { 'forcelabels': True, 'prog': 'dot', 'rankdir': 'LR', # 'splines': 'curved', 'splines': 'line', 'samplepoints': 20, 'showboxes': 1, # 'splines': 'polyline', #'splines': 'spline', 'sep': 100 / 72, 'nodesep': 300 / 72, 'ranksep': 300 / 72, #'inputscale': 72, # 'inputscale': 1, # 'dpi': 72, # 'concentrate': 'true', # merges edge lines # 'splines': 'ortho', # 'aspect': 1, # 'ratio': 'compress', # 'size': '5,4000', # 'rank': 'max', } #fontkw = dict(fontfamilty='sans-serif', fontweight='normal', fontsize=12) #fontkw = dict(fontname='Ubuntu', fontweight='normal', fontsize=12) #fontkw = dict(fontname='Ubuntu', fontweight='light', fontsize=20) fontkw = dict(fontname=font, fontweight='light', fontsize=12) #prop = fm.FontProperties(fname='/usr/share/fonts/truetype/groovygh.ttf') pt.show_nx(graph, layout='agraph', layoutkw=layoutkw, **fontkw) pt.zoom_factory()
def draw_bayesian_model(model, evidence={}, soft_evidence={}, fnum=None, pnum=None, **kwargs): from pgmpy.models import BayesianModel if not isinstance(model, BayesianModel): model = model.to_bayesian_model() import plottool as pt import networkx as nx kwargs = kwargs.copy() factor_list = kwargs.pop('factor_list', []) ttype_colors, ttype_scalars = make_colorcodes(model) textprops = { 'horizontalalignment': 'left', 'family': 'monospace', 'size': 8, } # build graph attrs tup = get_node_viz_attrs( model, evidence, soft_evidence, factor_list, ttype_colors, **kwargs) node_color, pos_list, pos_dict, takws = tup # draw graph has_infered = evidence or 'factor_list' in kwargs if False: fig = pt.figure(fnum=fnum, pnum=pnum, doclf=True) # NOQA ax = pt.gca() drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1100, node_color=node_color) nx.draw(model, **drawkw) else: # BE VERY CAREFUL if 1: graph = model.copy() graph.__class__ = nx.DiGraph graph.graph['groupattrs'] = ut.ddict(dict) #graph = model. if getattr(graph, 'ttype2_cpds', None) is not None: # Add invis edges and ttype groups for ttype in model.ttype2_cpds.keys(): ttype_cpds = model.ttype2_cpds[ttype] # use defined ordering ttype_nodes = ut.list_getattr(ttype_cpds, 'variable') # ttype_nodes = sorted(ttype_nodes) invis_edges = list(ut.itertwo(ttype_nodes)) graph.add_edges_from(invis_edges) nx.set_edge_attributes(graph, 'style', {edge: 'invis' for edge in invis_edges}) nx.set_node_attributes(graph, 'groupid', {node: ttype for node in ttype_nodes}) graph.graph['groupattrs'][ttype]['rank'] = 'same' graph.graph['groupattrs'][ttype]['cluster'] = False else: graph = model pt.show_nx(graph, layout_kw={'prog': 'dot'}, fnum=fnum, pnum=pnum, verbose=0) pt.zoom_factory() fig = pt.gcf() ax = pt.gca() pass hacks = [pt.draw_text_annotations(textprops=textprops, **takw) for takw in takws if takw] xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) if 'name' in model.ttype2_template: num_names = len(model.ttype2_template['name'].basis) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) title = 'num_names=%r, num_annots=%r' % (num_names, num_annots,) else: title = '' map_assign = kwargs.get('map_assign', None) def word_insert(text): return '' if len(text) == 0 else text + ' ' top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() if has_infered: # Hack in colorbars # if ut.list_type(basis) is int: # pt.colorbar(scalars, colors, lbl='score', ticklabels=np.array(basis) + 1) # else: # pt.colorbar(scalars, colors, lbl='score', ticklabels=basis) keys = ['name', 'score'] locs = ['left', 'right'] for key, loc in zip(keys, locs): if key in ttype_colors: basis = model.ttype2_template[key].basis # scalars = colors = ttype_colors[key] scalars = ttype_scalars[key] pt.colorbar(scalars, colors, lbl=key, ticklabels=basis, ticklocation=loc)
def _model_data_flow_to_networkx(model_info): layers = model_info['layer'] import networkx as nx G = nx.DiGraph() prev = None # Stores last node with the data for this layer in it prev_map = {} SHOW_LOOPS = False for layer in layers: name = layer.get('name') print('name = {!r}'.format(name)) G.add_node(name) bottom = set(layer.get('bottom', [])) top = set(layer.get('top', [])) both = top.intersection(bottom) if both: if prev is None: prev = both for b in both: prev_map[b] = name for b in prev: print(' * b = {!r}'.format(b)) G.add_edge(b, name, constraint=False) for b in both: print(' * b = {!r}'.format(b)) kw = {} if not G.has_edge(b, name): kw['color'] = 'red' G.add_edge(b, name, constraint=True, **kw) prev = [name] else: prev = None # for b in (bottom - both): for b in bottom: print(' * b = {!r}'.format(b)) constraint = True G.add_edge(prev_map.get(b, b), name, constraint=constraint) if SHOW_LOOPS: G.add_edge(b, name) # for t in (bottom - top): for t in top: print(' * t = {!r}'.format(t)) constraint = True G.add_edge(name, prev_map.get(t, t), constraint=constraint) if SHOW_LOOPS: G.add_edge(name, t) G.remove_edges_from(list(G.selfloop_edges())) import plottool as pt pt.qtensure() pt.show_nx(G, arrow_width=1) pt.adjust_subplots(left=0, right=1, top=1, bottom=0) pt.pan_factory() pt.zoom_factory() list(nx.topological_sort(G))
def show_graph(infr, graph=None, use_image=False, update_attrs=True, with_colorbar=False, pnum=(1, 1, 1), zoomable=True, pickable=False, **kwargs): r""" Args: infr (?): graph (None): (default = None) use_image (bool): (default = False) update_attrs (bool): (default = True) with_colorbar (bool): (default = False) pnum (tuple): plot number(default = (1, 1, 1)) zoomable (bool): (default = True) pickable (bool): (de = False) **kwargs: verbose, with_labels, fnum, layout, ax, pos, img_dict, title, layoutkw, framewidth, modify_ax, as_directed, hacknoedge, hacknode, node_labels, arrow_width, fontsize, fontweight, fontname, fontfamilty, fontproperties CommandLine: python -m ibeis.algo.graph.mixin_viz GraphVisualization.show_graph --show Example: >>> # ENABLE_DOCTEST >>> from ibeis.algo.graph.mixin_viz import * # NOQA >>> from ibeis.algo.graph import demo >>> import plottool as pt >>> infr = demo.demodata_infr(ccs=ut.estarmap( >>> range, [(1, 6), (6, 10), (10, 13), (13, 15), (15, 16), >>> (17, 20)])) >>> pnum_ = pt.make_pnum_nextgen(nRows=1, nCols=3) >>> infr.show_graph(show_cand=True, simple_labels=True, pickable=True, fnum=1, pnum=pnum_()) >>> infr.add_feedback((1, 5), INCMP) >>> infr.add_feedback((14, 18), INCMP) >>> infr.refresh_candidate_edges() >>> infr.show_graph(show_cand=True, simple_labels=True, pickable=True, fnum=1, pnum=pnum_()) >>> infr.add_feedback((17, 18), NEGTV) # add inconsistency >>> infr.apply_nondynamic_update() >>> infr.show_graph(show_cand=True, simple_labels=True, pickable=True, fnum=1, pnum=pnum_()) >>> ut.show_if_requested() """ import plottool as pt if graph is None: graph = infr.graph # kwargs['fontsize'] = kwargs.get('fontsize', 8) with warnings.catch_warnings(): warnings.simplefilter("ignore") # default_update_kw = ut.get_func_kwargs(infr.update_visual_attrs) # update_kw = ut.update_existing(default_update_kw, kwargs) # infr.update_visual_attrs(**update_kw) if update_attrs: infr.update_visual_attrs(graph=graph, **kwargs) verbose = kwargs.pop('verbose', infr.verbose) pt.show_nx(graph, layout='custom', as_directed=False, modify_ax=False, use_image=use_image, pnum=pnum, verbose=verbose, **kwargs) if zoomable: pt.zoom_factory() pt.pan_factory(pt.gca()) # if with_colorbar: # # Draw a colorbar # _normal_ticks = np.linspace(0, 1, num=11) # _normal_scores = np.linspace(0, 1, num=500) # _normal_colors = infr.get_colored_weights(_normal_scores) # cb = pt.colorbar(_normal_scores, _normal_colors, lbl='weights', # ticklabels=_normal_ticks) # # point to threshold location # thresh = None # if thresh is not None: # xy = (1, thresh) # xytext = (2.5, .3 if thresh < .5 else .7) # cb.ax.annotate('threshold', xy=xy, xytext=xytext, # arrowprops=dict( # alpha=.5, fc="0.6", # connectionstyle="angle3,angleA=90,angleB=0"),) # infr.graph if graph.graph.get('dark_background', None): pt.dark_background(force=True) if pickable: fig = pt.gcf() fig.canvas.mpl_connect('pick_event', ut.partial(on_pick, infr=infr))
def intraoccurrence_connected(): r""" CommandLine: python -m ibeis.scripts.specialdraw intraoccurrence_connected --show python -m ibeis.scripts.specialdraw intraoccurrence_connected --show --postcut python -m ibeis.scripts.specialdraw intraoccurrence_connected --show --smaller Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> result = intraoccurrence_connected() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import ibeis import plottool as pt from ibeis.viz import viz_graph import networkx as nx pt.ensure_pylab_qt4() ibs = ibeis.opendb(defaultdb='PZ_Master1') nid2_aid = { #4880: [3690, 3696, 3703, 3706, 3712, 3721], 4880: [3690, 3696, 3703], 6537: [3739], 6653: [7671], 6610: [7566, 7408], #6612: [7664, 7462, 7522], #6624: [7465, 7360], #6625: [7746, 7383, 7390, 7477, 7376, 7579], 6630: [7586, 7377, 7464, 7478], #6677: [7500] } nid2_dbaids = { 4880: [33, 6120, 7164], 6537: [7017, 7206], 6653: [7660] } if ut.get_argflag('--small') or ut.get_argflag('--smaller'): del nid2_aid[6630] del nid2_aid[6537] del nid2_dbaids[6537] if ut.get_argflag('--smaller'): nid2_dbaids[4880].remove(33) nid2_aid[4880].remove(3690) nid2_aid[6610].remove(7408) #del nid2_aid[4880] #del nid2_dbaids[4880] aids = ut.flatten(nid2_aid.values()) temp_nids = [1] * len(aids) postcut = ut.get_argflag('--postcut') aids_list = ibs.group_annots_by_name(aids)[0] ensure_edges = 'all' if True or not postcut else None unlabeled_graph = viz_graph.make_netx_graph_from_aid_groups( ibs, aids_list, #invis_edges=invis_edges, ensure_edges=ensure_edges, temp_nids=temp_nids) viz_graph.color_by_nids(unlabeled_graph, unique_nids=[1] * len(list(unlabeled_graph.nodes()))) viz_graph.ensure_node_images(ibs, unlabeled_graph) nx.set_node_attributes(unlabeled_graph, 'shape', 'rect') #unlabeled_graph = unlabeled_graph.to_undirected() # Find the "database exemplars for these annots" if False: gt_aids = ibs.get_annot_groundtruth(aids) gt_aids = [ut.setdiff(s, aids) for s in gt_aids] dbaids = ut.unique(ut.flatten(gt_aids)) dbaids = ibs.filter_annots_general(dbaids, minqual='good') ibs.get_annot_quality_texts(dbaids) else: dbaids = ut.flatten(nid2_dbaids.values()) exemplars = nx.DiGraph() #graph = exemplars # NOQA exemplars.add_nodes_from(dbaids) def add_clique(graph, nodes, edgeattrs={}, nodeattrs={}): edge_list = ut.upper_diag_self_prodx(nodes) graph.add_edges_from(edge_list, **edgeattrs) return edge_list for aids_, nid in zip(*ibs.group_annots_by_name(dbaids)): add_clique(exemplars, aids_) viz_graph.ensure_node_images(ibs, exemplars) viz_graph.color_by_nids(exemplars, ibs=ibs) nx.set_node_attributes(unlabeled_graph, 'framewidth', False) nx.set_node_attributes(exemplars, 'framewidth', 4.0) nx.set_node_attributes(unlabeled_graph, 'group', 'unlab') nx.set_node_attributes(exemplars, 'group', 'exemp') #big_graph = nx.compose_all([unlabeled_graph]) big_graph = nx.compose_all([exemplars, unlabeled_graph]) # add sparse connections from unlabeled to exemplars import numpy as np rng = np.random.RandomState(0) if True or not postcut: for aid_ in unlabeled_graph.nodes(): flags = rng.rand(len(exemplars)) > .5 nid_ = ibs.get_annot_nids(aid_) exnids = np.array(ibs.get_annot_nids(list(exemplars.nodes()))) flags = np.logical_or(exnids == nid_, flags) exmatches = ut.compress(list(exemplars.nodes()), flags) big_graph.add_edges_from(list(ut.product([aid_], exmatches)), color=pt.ORANGE, implicit=True) else: for aid_ in unlabeled_graph.nodes(): flags = rng.rand(len(exemplars)) > .5 exmatches = ut.compress(list(exemplars.nodes()), flags) nid_ = ibs.get_annot_nids(aid_) exnids = np.array(ibs.get_annot_nids(exmatches)) exmatches = ut.compress(exmatches, exnids == nid_) big_graph.add_edges_from(list(ut.product([aid_], exmatches))) pass nx.set_node_attributes(big_graph, 'shape', 'rect') #if False and postcut: # ut.nx_delete_node_attr(big_graph, 'nid') # ut.nx_delete_edge_attr(big_graph, 'color') # viz_graph.ensure_graph_nid_labels(big_graph, ibs=ibs) # viz_graph.color_by_nids(big_graph, ibs=ibs) # big_graph = big_graph.to_undirected() layoutkw = { 'sep' : 1 / 5, 'prog': 'neato', 'overlap': 'false', #'splines': 'ortho', 'splines': 'spline', } as_directed = False #as_directed = True #hacknode = True hacknode = 0 graph = big_graph ut.nx_ensure_agraph_color(graph) if hacknode: nx.set_edge_attributes(graph, 'taillabel', {e: str(e[0]) for e in graph.edges()}) nx.set_edge_attributes(graph, 'headlabel', {e: str(e[1]) for e in graph.edges()}) explicit_graph = pt.get_explicit_graph(graph) _, layout_info = pt.nx_agraph_layout(explicit_graph, orig_graph=graph, inplace=True, **layoutkw) if ut.get_argflag('--smaller'): graph.node[7660]['pos'] = np.array([550, 350]) graph.node[6120]['pos'] = np.array([200, 600]) + np.array([350, -400]) graph.node[7164]['pos'] = np.array([200, 480]) + np.array([350, -400]) nx.set_node_attributes(graph, 'pin', 'true') _, layout_info = pt.nx_agraph_layout(graph, inplace=True, **layoutkw) elif ut.get_argflag('--small'): graph.node[7660]['pos'] = np.array([750, 350]) graph.node[33]['pos'] = np.array([300, 600]) + np.array([350, -400]) graph.node[6120]['pos'] = np.array([500, 600]) + np.array([350, -400]) graph.node[7164]['pos'] = np.array([410, 480]) + np.array([350, -400]) nx.set_node_attributes(graph, 'pin', 'true') _, layout_info = pt.nx_agraph_layout(graph, inplace=True, **layoutkw) if not postcut: #pt.show_nx(graph.to_undirected(), layout='agraph', layoutkw=layoutkw, # as_directed=False) #pt.show_nx(graph, layout='agraph', layoutkw=layoutkw, # as_directed=as_directed, hacknode=hacknode) pt.show_nx(graph, layout='custom', layoutkw=layoutkw, as_directed=as_directed, hacknode=hacknode) else: #explicit_graph = pt.get_explicit_graph(graph) #_, layout_info = pt.nx_agraph_layout(explicit_graph, orig_graph=graph, # **layoutkw) #layout_info['edge']['alpha'] = .8 #pt.apply_graph_layout_attrs(graph, layout_info) #graph_layout_attrs = layout_info['graph'] ##edge_layout_attrs = layout_info['edge'] ##node_layout_attrs = layout_info['node'] #for key, vals in layout_info['node'].items(): # #print('[special] key = %r' % (key,)) # nx.set_node_attributes(graph, key, vals) #for key, vals in layout_info['edge'].items(): # #print('[special] key = %r' % (key,)) # nx.set_edge_attributes(graph, key, vals) #nx.set_edge_attributes(graph, 'alpha', .8) #graph.graph['splines'] = graph_layout_attrs.get('splines', 'line') #graph.graph['splines'] = 'polyline' # graph_layout_attrs.get('splines', 'line') #graph.graph['splines'] = 'line' cut_graph = graph.copy() edge_list = list(cut_graph.edges()) edge_nids = np.array(ibs.unflat_map(ibs.get_annot_nids, edge_list)) cut_flags = edge_nids.T[0] != edge_nids.T[1] cut_edges = ut.compress(edge_list, cut_flags) cut_graph.remove_edges_from(cut_edges) ut.nx_delete_node_attr(cut_graph, 'nid') viz_graph.ensure_graph_nid_labels(cut_graph, ibs=ibs) #ut.nx_get_default_node_attributes(exemplars, 'color', None) ut.nx_delete_node_attr(cut_graph, 'color', nodes=unlabeled_graph.nodes()) aid2_color = ut.nx_get_default_node_attributes(cut_graph, 'color', None) nid2_colors = ut.group_items(aid2_color.values(), ibs.get_annot_nids(aid2_color.keys())) nid2_colors = ut.map_dict_vals(ut.filter_Nones, nid2_colors) nid2_colors = ut.map_dict_vals(ut.unique, nid2_colors) #for val in nid2_colors.values(): # assert len(val) <= 1 # Get initial colors nid2_color_ = {nid: colors_[0] for nid, colors_ in nid2_colors.items() if len(colors_) == 1} graph = cut_graph viz_graph.color_by_nids(cut_graph, ibs=ibs, nid2_color_=nid2_color_) nx.set_node_attributes(cut_graph, 'framewidth', 4) pt.show_nx(cut_graph, layout='custom', layoutkw=layoutkw, as_directed=as_directed, hacknode=hacknode) pt.zoom_factory()
def double_depcache_graph(): r""" CommandLine: python -m ibeis.scripts.specialdraw double_depcache_graph --show --testmode python -m ibeis.scripts.specialdraw double_depcache_graph --save=figures5/doubledepc.png --dpath ~/latex/cand/ --diskshow --figsize=8,20 --dpi=220 --testmode --show --clipwhite python -m ibeis.scripts.specialdraw double_depcache_graph --save=figures5/doubledepc.png --dpath ~/latex/cand/ --diskshow --figsize=8,20 --dpi=220 --testmode --show --clipwhite --arrow-width=.5 python -m ibeis.scripts.specialdraw double_depcache_graph --save=figures5/doubledepc.png --dpath ~/latex/cand/ --diskshow --figsize=8,20 --dpi=220 --testmode --show --clipwhite --arrow-width=5 Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> result = double_depcache_graph() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import ibeis import networkx as nx import plottool as pt pt.ensure_pylab_qt4() # pt.plt.xkcd() ibs = ibeis.opendb('testdb1') reduced = True implicit = True annot_graph = ibs.depc_annot.make_graph(reduced=reduced, implicit=implicit) image_graph = ibs.depc_image.make_graph(reduced=reduced, implicit=implicit) to_rename = ut.isect(image_graph.nodes(), annot_graph.nodes()) nx.relabel_nodes(annot_graph, {x: 'annot_' + x for x in to_rename}, copy=False) nx.relabel_nodes(image_graph, {x: 'image_' + x for x in to_rename}, copy=False) graph = nx.compose_all([image_graph, annot_graph]) #graph = nx.union_all([image_graph, annot_graph], rename=('image', 'annot')) # userdecision = ut.nx_makenode(graph, 'user decision', shape='rect', color=pt.DARK_YELLOW, style='diagonals') # userdecision = ut.nx_makenode(graph, 'user decision', shape='circle', color=pt.DARK_YELLOW) userdecision = ut.nx_makenode(graph, 'User decision', shape='rect', #width=100, height=100, color=pt.YELLOW, style='diagonals') #longcat = True longcat = False #edge = ('feat', 'neighbor_index') #data = graph.get_edge_data(*edge)[0] #print('data = %r' % (data,)) #graph.remove_edge(*edge) ## hack #graph.add_edge('featweight', 'neighbor_index', **data) graph.add_edge('detections', userdecision, constraint=longcat, color=pt.PINK) graph.add_edge(userdecision, 'annotations', constraint=longcat, color=pt.PINK) # graph.add_edge(userdecision, 'annotations', implicit=True, color=[0, 0, 0]) if not longcat: pass #graph.add_edge('images', 'annotations', style='invis') #graph.add_edge('thumbnails', 'annotations', style='invis') #graph.add_edge('thumbnails', userdecision, style='invis') graph.remove_node('Has_Notch') graph.remove_node('annotmask') layoutkw = { 'ranksep': 5, 'nodesep': 5, 'dpi': 96, # 'nodesep': 1, } ns = 1000 ut.nx_set_default_node_attributes(graph, 'fontsize', 72) ut.nx_set_default_node_attributes(graph, 'fontname', 'Ubuntu') ut.nx_set_default_node_attributes(graph, 'style', 'filled') ut.nx_set_default_node_attributes(graph, 'width', ns * ut.PHI) ut.nx_set_default_node_attributes(graph, 'height', ns * (1 / ut.PHI)) #for u, v, d in graph.edge(data=True): for u, vkd in graph.edge.items(): for v, dk in vkd.items(): for k, d in dk.items(): localid = d.get('local_input_id') if localid: # d['headlabel'] = localid if localid not in ['1']: d['taillabel'] = localid #d['label'] = localid if d.get('taillabel') in {'1'}: del d['taillabel'] node_alias = { 'chips': 'Chip', 'images': 'Image', 'feat': 'Feat', 'featweight': 'Feat Weights', 'thumbnails': 'Thumbnail', 'detections': 'Detections', 'annotations': 'Annotation', 'Notch_Tips': 'Notch Tips', 'probchip': 'Prob Chip', 'Cropped_Chips': 'Croped Chip', 'Trailing_Edge': 'Trailing\nEdge', 'Block_Curvature': 'Block\nCurvature', # 'BC_DTW': 'block curvature /\n dynamic time warp', 'BC_DTW': 'DTW Distance', 'vsone': 'Hots vsone', 'feat_neighbs': 'Nearest\nNeighbors', 'neighbor_index': 'Neighbor\nIndex', 'vsmany': 'Hots vsmany', 'annot_labeler': 'Annot Labeler', 'labeler': 'Labeler', 'localizations': 'Localizations', 'classifier': 'Classifier', 'sver': 'Spatial\nVerification', 'Classifier': 'Existence', 'image_labeler': 'Image Labeler', } node_alias = { 'Classifier': 'existence', 'feat_neighbs': 'neighbors', 'sver': 'spatial_verification', 'Cropped_Chips': 'cropped_chip', 'BC_DTW': 'dtw_distance', 'Block_Curvature': 'curvature', 'Trailing_Edge': 'trailing_edge', 'Notch_Tips': 'notch_tips', 'thumbnails': 'thumbnail', 'images': 'image', 'annotations': 'annotation', 'chips': 'chip', #userdecision: 'User de' } node_alias = ut.delete_dict_keys(node_alias, ut.setdiff(node_alias.keys(), graph.nodes())) nx.relabel_nodes(graph, node_alias, copy=False) fontkw = dict(fontname='Ubuntu', fontweight='normal', fontsize=12) #pt.gca().set_aspect('equal') #pt.figure() pt.show_nx(graph, layoutkw=layoutkw, fontkw=fontkw) pt.zoom_factory()
def setcover_example(): """ CommandLine: python -m ibeis.scripts.specialdraw setcover_example --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> result = setcover_example() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import ibeis import plottool as pt from ibeis.viz import viz_graph import networkx as nx pt.ensure_pylab_qt4() ibs = ibeis.opendb(defaultdb='testdb2') if False: # Select a good set aids = ibs.get_name_aids(ibs.get_valid_nids()) # ibeis.testdata_aids('testdb2', a='default:mingt=2') aids = [a for a in aids if len(a) > 1] for a in aids: print(ut.repr3(ibs.get_annot_stats_dict(a))) print(aids[-2]) #aids = [78, 79, 80, 81, 88, 91] aids = [78, 79, 81, 88, 91] qreq_ = ibs.depc.new_request('vsone', aids, aids, cfgdict={}) cm_list = qreq_.execute() from ibeis.algo.hots import graph_iden infr = graph_iden.AnnotInference(cm_list) unique_aids, prob_annots = infr.make_prob_annots() import numpy as np print(ut.hz_str('prob_annots = ', ut.array2string2(prob_annots, precision=2, max_line_width=140, suppress_small=True))) # ut.setcover_greedy(candidate_sets_dict) max_weight = 3 prob_annots[np.diag_indices(len(prob_annots))] = np.inf prob_annots = prob_annots thresh_points = np.sort(prob_annots[np.isfinite(prob_annots)]) # probably not the best way to go about searching for these thresholds # but when you have a hammer... if False: quant = sorted(np.diff(thresh_points))[(len(thresh_points) - 1) // 2 ] candset = {point: thresh_points[np.abs(thresh_points - point) < quant] for point in thresh_points} check_thresholds = len(aids) * 2 thresh_points2 = np.array(ut.setcover_greedy(candset, max_weight=check_thresholds).keys()) thresh_points = thresh_points2 # pt.plot(sorted(thresh_points), 'rx') # pt.plot(sorted(thresh_points2), 'o') # prob_annots = prob_annots.T # thresh_start = np.mean(thresh_points) current_idxs = [] current_covers = [] current_val = np.inf for thresh in thresh_points: covering_sets = [np.where(row >= thresh)[0] for row in (prob_annots)] candidate_sets_dict = {ax: others for ax, others in enumerate(covering_sets)} soln_cover = ut.setcover_ilp(candidate_sets_dict, max_weight=max_weight) exemplar_idxs = list(soln_cover.keys()) soln_weight = len(exemplar_idxs) val = max_weight - soln_weight # print('val = %r' % (val,)) # print('soln_weight = %r' % (soln_weight,)) if val < current_val: current_val = val current_covers = covering_sets current_idxs = exemplar_idxs exemplars = ut.take(aids, current_idxs) ensure_edges = [(aids[ax], aids[ax2]) for ax, other_xs in enumerate(current_covers) for ax2 in other_xs] graph = viz_graph.make_netx_graph_from_aid_groups( ibs, [aids], allow_directed=True, ensure_edges=ensure_edges, temp_nids=[1] * len(aids)) viz_graph.ensure_node_images(ibs, graph) nx.set_node_attributes(graph, 'framewidth', False) nx.set_node_attributes(graph, 'framewidth', {aid: 4.0 for aid in exemplars}) nx.set_edge_attributes(graph, 'color', pt.ORANGE) nx.set_node_attributes(graph, 'color', pt.LIGHT_BLUE) nx.set_node_attributes(graph, 'shape', 'rect') layoutkw = { 'sep' : 1 / 10, 'prog': 'neato', 'overlap': 'false', #'splines': 'ortho', 'splines': 'spline', } pt.show_nx(graph, layout='agraph', layoutkw=layoutkw) pt.zoom_factory()
def graphcut_flow(): r""" Returns: ?: name CommandLine: python -m ibeis.scripts.specialdraw graphcut_flow --show --save cutflow.png --diskshow --clipwhite python -m ibeis.scripts.specialdraw graphcut_flow --save figures4/cutiden.png --diskshow --clipwhite --dpath ~/latex/crall-candidacy-2015/ --figsize=24,10 --arrow-width=2.0 Example: >>> # DISABLE_DOCTEST >>> from ibeis.scripts.specialdraw import * # NOQA >>> graphcut_flow() >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import plottool as pt pt.ensure_pylab_qt4() import networkx as nx # pt.plt.xkcd() graph = nx.DiGraph() def makecluster(name, num, **attrkw): return [ut.nx_makenode(graph, name + str(n), **attrkw) for n in range(num)] def add_edge2(u, v, *args, **kwargs): v = ut.ensure_iterable(v) u = ut.ensure_iterable(u) for _u, _v in ut.product(u, v): graph.add_edge(_u, _v, *args, **kwargs) ns = 512 # *** Primary color: p_shade2 = '#41629A' # *** Secondary color s1_shade2 = '#E88B53' # *** Secondary color s2_shade2 = '#36977F' # *** Complement color c_shade2 = '#E8B353' annot1 = ut.nx_makenode(graph, 'Unlabeled\nannotations\n(query)', width=ns, height=ns, groupid='annot', color=p_shade2) annot2 = ut.nx_makenode(graph, 'Labeled\nannotations\n(database)', width=ns, height=ns, groupid='annot', color=s1_shade2) occurprob = ut.nx_makenode(graph, 'Dense \nprobabilities', color=lighten_hex(p_shade2, .1)) cacheprob = ut.nx_makenode(graph, 'Cached \nprobabilities', color=lighten_hex(s1_shade2, .1)) sparseprob = ut.nx_makenode(graph, 'Sparse\nprobabilities', color=lighten_hex(c_shade2, .1)) graph.add_edge(annot1, occurprob) graph.add_edge(annot1, sparseprob) graph.add_edge(annot2, sparseprob) graph.add_edge(annot2, cacheprob) matchgraph = ut.nx_makenode(graph, 'Graph of\npotential matches', color=lighten_hex(s2_shade2, .1)) cutalgo = ut.nx_makenode(graph, 'Graph cut algorithm', color=lighten_hex(s2_shade2, .2), shape='ellipse') cc_names = ut.nx_makenode(graph, 'Identifications,\n splits, and merges are\nconnected compoments', color=lighten_hex(s2_shade2, .3)) graph.add_edge(occurprob, matchgraph) graph.add_edge(sparseprob, matchgraph) graph.add_edge(cacheprob, matchgraph) graph.add_edge(matchgraph, cutalgo) graph.add_edge(cutalgo, cc_names) ut.nx_set_default_node_attributes(graph, 'shape', 'rect') ut.nx_set_default_node_attributes(graph, 'style', 'filled,rounded') ut.nx_set_default_node_attributes(graph, 'fixedsize', 'true') ut.nx_set_default_node_attributes(graph, 'width', ns * ut.PHI) ut.nx_set_default_node_attributes(graph, 'height', ns * (1 / ut.PHI)) ut.nx_set_default_node_attributes(graph, 'regular', False) layoutkw = { 'prog': 'dot', 'rankdir': 'LR', 'splines': 'line', 'sep': 100 / 72, 'nodesep': 300 / 72, 'ranksep': 300 / 72, } fontkw = dict(fontname='Ubuntu', fontweight='light', fontsize=14) pt.show_nx(graph, layout='agraph', layoutkw=layoutkw, **fontkw) pt.zoom_factory()
def general_identify_flow(): r""" CommandLine: python -m ibeis.scripts.specialdraw general_identify_flow --show --save pairsim.png --dpi=100 --diskshow --clipwhite python -m ibeis.scripts.specialdraw general_identify_flow --dpi=200 --diskshow --clipwhite --dpath ~/latex/cand/ --figsize=20,10 --save figures4/pairprob.png --arrow-width=2.0 Example: >>> # SCRIPT >>> from ibeis.scripts.specialdraw import * # NOQA >>> general_identify_flow() >>> ut.quit_if_noshow() >>> ut.show_if_requested() """ import networkx as nx import plottool as pt pt.ensure_pylab_qt4() # pt.plt.xkcd() graph = nx.DiGraph() def makecluster(name, num, **attrkw): return [ut.nx_makenode(name + str(n), **attrkw) for n in range(num)] def add_edge2(u, v, *args, **kwargs): v = ut.ensure_iterable(v) u = ut.ensure_iterable(u) for _u, _v in ut.product(u, v): graph.add_edge(_u, _v, *args, **kwargs) # *** Primary color: p_shade2 = '#41629A' # *** Secondary color s1_shade2 = '#E88B53' # *** Secondary color s2_shade2 = '#36977F' # *** Complement color c_shade2 = '#E8B353' ns = 512 ut.inject_func_as_method(graph, ut.nx_makenode) annot1_color = p_shade2 annot2_color = s1_shade2 #annot1_color2 = pt.color_funcs.lighten_rgb(colors.hex2color(annot1_color), .01) annot1 = graph.nx_makenode('Annotation X', width=ns, height=ns, groupid='annot', color=annot1_color) annot2 = graph.nx_makenode('Annotation Y', width=ns, height=ns, groupid='annot', color=annot2_color) featX = graph.nx_makenode('Features X', size=(ns / 1.2, ns / 2), groupid='feats', color=lighten_hex(annot1_color, .1)) featY = graph.nx_makenode('Features Y', size=(ns / 1.2, ns / 2), groupid='feats', color=lighten_hex(annot2_color, .1)) #'#4771B3') global_pairvec = graph.nx_makenode('Global similarity\n(viewpoint, quality, ...)', width=ns * ut.PHI * 1.2, color=s2_shade2) findnn = graph.nx_makenode('Find correspondences\n(nearest neighbors)', shape='ellipse', color=c_shade2) local_pairvec = graph.nx_makenode('Local similarities\n(LNBNN, spatial error, ...)', size=(ns * 2.2, ns), color=lighten_hex(c_shade2, .1)) agglocal = graph.nx_makenode('Aggregate', size=(ns / 1.1, ns / 2), shape='ellipse', color=lighten_hex(c_shade2, .2)) catvecs = graph.nx_makenode('Concatenate', size=(ns / 1.1, ns / 2), shape='ellipse', color=lighten_hex(s2_shade2, .1)) pairvec = graph.nx_makenode('Vector of\npairwise similarities', color=lighten_hex(s2_shade2, .2)) classifier = graph.nx_makenode('Classifier\n(SVM/RF/DNN)', color=lighten_hex(s2_shade2, .3)) prob = graph.nx_makenode('Matching Probability\n(same individual given\nsimilar viewpoint)', color=lighten_hex(s2_shade2, .4)) graph.add_edge(annot1, global_pairvec) graph.add_edge(annot2, global_pairvec) add_edge2(annot1, featX) add_edge2(annot2, featY) add_edge2(featX, findnn) add_edge2(featY, findnn) add_edge2(findnn, local_pairvec) graph.add_edge(local_pairvec, agglocal, constraint=True) graph.add_edge(agglocal, catvecs, constraint=False) graph.add_edge(global_pairvec, catvecs) graph.add_edge(catvecs, pairvec) # graph.add_edge(annot1, classifier, style='invis') # graph.add_edge(pairvec, classifier , constraint=False) graph.add_edge(pairvec, classifier) graph.add_edge(classifier, prob) ut.nx_set_default_node_attributes(graph, 'shape', 'rect') #ut.nx_set_default_node_attributes(graph, 'fillcolor', nx.get_node_attributes(graph, 'color')) #ut.nx_set_default_node_attributes(graph, 'style', 'rounded') ut.nx_set_default_node_attributes(graph, 'style', 'filled,rounded') ut.nx_set_default_node_attributes(graph, 'fixedsize', 'true') ut.nx_set_default_node_attributes(graph, 'xlabel', nx.get_node_attributes(graph, 'label')) ut.nx_set_default_node_attributes(graph, 'width', ns * ut.PHI) ut.nx_set_default_node_attributes(graph, 'height', ns) ut.nx_set_default_node_attributes(graph, 'regular', False) #font = 'MonoDyslexic' #font = 'Mono_Dyslexic' font = 'Ubuntu' ut.nx_set_default_node_attributes(graph, 'fontsize', 72) ut.nx_set_default_node_attributes(graph, 'fontname', font) #ut.nx_delete_node_attr(graph, 'width') #ut.nx_delete_node_attr(graph, 'height') #ut.nx_delete_node_attr(graph, 'fixedsize') #ut.nx_delete_node_attr(graph, 'style') #ut.nx_delete_node_attr(graph, 'regular') #ut.nx_delete_node_attr(graph, 'shape') #graph.node[annot1]['label'] = "<f0> left|<f1> mid\ dle|<f2> right" #graph.node[annot2]['label'] = ut.codeblock( # ''' # <<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0"> # <TR><TD>left</TD><TD PORT="f1">mid dle</TD><TD PORT="f2">right</TD></TR> # </TABLE>> # ''') #graph.node[annot1]['label'] = ut.codeblock( # ''' # <<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0"> # <TR><TD>left</TD><TD PORT="f1">mid dle</TD><TD PORT="f2">right</TD></TR> # </TABLE>> # ''') #graph.node[annot1]['shape'] = 'none' #graph.node[annot1]['margin'] = '0' layoutkw = { 'forcelabels': True, 'prog': 'dot', 'rankdir': 'LR', # 'splines': 'curved', 'splines': 'line', 'samplepoints': 20, 'showboxes': 1, # 'splines': 'polyline', #'splines': 'spline', 'sep': 100 / 72, 'nodesep': 300 / 72, 'ranksep': 300 / 72, #'inputscale': 72, # 'inputscale': 1, # 'dpi': 72, # 'concentrate': 'true', # merges edge lines # 'splines': 'ortho', # 'aspect': 1, # 'ratio': 'compress', # 'size': '5,4000', # 'rank': 'max', } #fontkw = dict(fontfamilty='sans-serif', fontweight='normal', fontsize=12) #fontkw = dict(fontname='Ubuntu', fontweight='normal', fontsize=12) #fontkw = dict(fontname='Ubuntu', fontweight='light', fontsize=20) fontkw = dict(fontname=font, fontweight='light', fontsize=12) #prop = fm.FontProperties(fname='/usr/share/fonts/truetype/groovygh.ttf') pt.show_nx(graph, layout='agraph', layoutkw=layoutkw, **fontkw) pt.zoom_factory()