Esempio n. 1
0
def test_load_2dsoftsweep_known_shape(experiment):
    N = 1
    m = qc.Measurement(exp=experiment)
    m.register_custom_parameter('x', unit='cm')
    m.register_custom_parameter('y')

    # check that unused parameters don't mess with
    m.register_custom_parameter('foo')
    dd_expected = DataDict(x=dict(values=np.array([]), unit='cm'),
                           y=dict(values=np.array([])))
    for n in range(N):
        m.register_custom_parameter(f'z_{n}', setpoints=['x', 'y'])
        dd_expected[f'z_{n}'] = dict(values=np.array([]), axes=['x', 'y'])
    dd_expected.validate()

    shape = (3, 3)

    m.set_shapes({'z_0': shape})

    with m.run() as datasaver:
        for result in testdata.generate_2d_scalar_simple(*shape, N):
            row = [(k, v) for k, v in result.items()] + [('foo', 1)]
            datasaver.add_result(*row)
            dd_expected.add_data(**result)

    dd_expected['x']['values'] = dd_expected['x']['values'].reshape(*shape)
    dd_expected['y']['values'] = dd_expected['y']['values'].reshape(*shape)
    dd_expected['z_0']['values'] = dd_expected['z_0']['values'].reshape(*shape)

    # retrieve data as data dict
    ddict = ds_to_datadict(datasaver.dataset)
    assert ddict == dd_expected
Esempio n. 2
0
def test_load_2dsoftsweep():
    qc.config.core.db_location = DBPATH
    initialise_database()
    exp = load_or_create_experiment('2d_softsweep', sample_name='no sample')

    N = 5
    m = qc.Measurement(exp=exp)
    m.register_custom_parameter('x')
    m.register_custom_parameter('y')

    # check that unused parameters don't mess with
    m.register_custom_parameter('foo')
    dd_expected = DataDict(x=dict(values=np.array([])),
                           y=dict(values=np.array([])))
    for n in range(N):
        m.register_custom_parameter(f'z_{n}', setpoints=['x', 'y'])
        dd_expected[f'z_{n}'] = dict(values=np.array([]), axes=['x', 'y'])
    dd_expected.validate()

    with m.run() as datasaver:
        for result in testdata.generate_2d_scalar_simple(3, 3, N):
            row = [(k, v) for k, v in result.items()] + [('foo', 1)]
            datasaver.add_result(*row)
            dd_expected.add_data(**result)

    # retrieve data as data dict
    run_id = datasaver.dataset.captured_run_id
    ddict = datadict_from_path_and_run_id(DBPATH, run_id)
    assert ddict == dd_expected
Esempio n. 3
0
def test_update_qcloader(qtbot, empty_db_path):
    db_path = empty_db_path

    exp = load_or_create_experiment('2d_softsweep', sample_name='no sample')

    N = 2
    m = qc.Measurement(exp=exp)
    m.register_custom_parameter('x')
    m.register_custom_parameter('y')
    dd_expected = DataDict(x=dict(values=np.array([])),
                           y=dict(values=np.array([])))
    for n in range(N):
        m.register_custom_parameter(f'z_{n}', setpoints=['x', 'y'])
        dd_expected[f'z_{n}'] = dict(values=np.array([]), axes=['x', 'y'])
    dd_expected.validate()

    # setting up the flowchart
    fc = linearFlowchart(('loader', QCodesDSLoader))
    loader = fc.nodes()['loader']

    def check():
        nresults = ds.number_of_results
        loader.update()
        ddict = fc.output()['dataOut']

        if ddict is not None and nresults > 0:
            z_in = dd_expected.data_vals('z_1')
            z_out = ddict.data_vals('z_1')
            if z_out is not None:
                assert z_in.size == z_out.size
                assert np.allclose(z_in, z_out, atol=1e-15)

    with m.run() as datasaver:
        ds = datasaver.dataset
        run_id = datasaver.dataset.captured_run_id
        loader.pathAndId = db_path, run_id

        for result in testdata.generate_2d_scalar_simple(3, 3, N):
            row = [(k, v) for k, v in result.items()]
            datasaver.add_result(*row)
            dd_expected.add_data(**result)
            check()
        check()