Esempio n. 1
0
def get_resonance_choices(resonance, correlations, experiment_name, level=95):
    """
    Determine which chemical shift ranges at the given confidence
    level for an experiment contain the input resonance. If so adds
    the matching correlation to a dictionary and scores the resonance
    against the probability density functions. The correlation are
    sorted by there amino acid in the dictionary.

    :param resonance: float or list of float chemical shifts.
    :param correlations: list of pluq.base.Correlation
    :param experiment_name: one of the key from
        inbase.standard_experiments
    :param level: int, one of the defined levels normally in
        [68, 85, 95]
    :return dict[res] = list(Assignment, ...)
    """

    pdf_dict = inbase.read_pdf(experiment_name)
    levels = list(pdf_dict.attrs['confidence_levels'])

    try:
        ind = levels.index(level)
    except ValueError:
        mesg = 'Chose a confidence level from {}'.format(levels)
        raise ValueError(mesg)

    # Find all the hits
    exp = inbase.standard_experiments[experiment_name]
    if exp.dims == 1:
        new_correlations = []
        for corr in correlations:
            try:
                cs_range = pdf_dict[str(corr) + ',levs'][ind]
            except KeyError:
                continue

            if min(cs_range) <= resonance <= max(cs_range):
                new_correlations.append(corr)
        correlations = new_correlations

    else:
        region_dict = fileio.read_region(experiment_name, level)
        regions = [region_dict[str(x)] for x in correlations]

        # Find all the hits
        hits = map(Point(resonance).within, regions)
        correlations = list(compress(correlations, hits))

    # Score all the hits
    assignments = collections.defaultdict(list)
    for corr in correlations:

        try:
            smooth = inbase.get_pdf(corr, pdf_dict)
            corr_score = float(smooth.score(resonance))
        except ValueError:
            corr_score = 0
        except KeyError:
            corr_score = 0

        ss_scores = []
        for ss in ['H', 'C', 'E']:
            try:
                ss_corr = Correlation(corr.aa, corr.atoms, ss)
                corr_ss_smooth = inbase.get_pdf(ss_corr, pdf_dict)
                ss_scores.append(float(corr_ss_smooth.score(resonance)))
            except ValueError:
                ss_scores.append(0)
            except KeyError:
                ss_scores = None
                break

        assign = Assignment(corr.aa, corr.atoms, corr_score, ss_scores)
        assignments[corr.aa].append(assign)
    return assignments
Esempio n. 2
0

if __name__ == "__main__":


    corr = Correlation('A', ('CA', 'CB'), 'H')

    pacsy = DBMySQL(db='pacsy_local', password='')
    pacsy_corr = PacsyCorrelation(corr, pacsy)
    data = pacsy_corr.get_cs(piqc=True, model='all',  sigma_n=3, like_ss=True)
    smooth = estimate_pdf(data,
                          params={'bandwidth': np.linspace(0.4, 1.5, 15)})


    pdf_dict = read_pdf('cc')
    other = get_pdf(corr, pdf_dict)

    plt.figure(1)

    x, y = smooth.grid
    z = smooth.pdf
    plt.contour(x, y, z, sorted(list(smooth.get_levels(data, 68, 98, 95))))

    plt.figure(2)

    x, y = other.grid
    z = other.pdf
    l = other.levels

    plt.contour(x, y, z, l)
Esempio n. 3
0
from pluq.base import Correlation
from pluq.fileio import read_pdf
from pluq.inbase import get_pdf, _region

import matplotlib.pyplot as plt
from descartes import PolygonPatch

corr = Correlation('A', ('CB', 'CA'), ss='X')
pdf_dict = read_pdf('cc')
pdf = get_pdf(corr, pdf_dict)

fig = plt.figure()
ax = fig.add_subplot(111)

plt.imshow(pdf.pdf,
           interpolation="none",
           aspect='auto',
           origin='lower',
           extent=(pdf.limits[0][0], pdf.limits[0][1], pdf.limits[1][0],
                   pdf.limits[1][1]))

shapes = _region(pdf, pdf.levels[1])

for shape in shapes:
    patch = PolygonPatch(shape, fc='gray', ec='gray', alpha=0.5, zorder=1)
    ax.add_patch(patch)

plt.xlim([0, 100])
plt.ylim([0, 100])

plt.gca().invert_xaxis()