Esempio n. 1
0
 def setUp(self):
     # Init
     self.Signal = plux.loadbpf("../signals/bvp.txt")
     self.Signal = self.Signal[:, 3]
     self.SamplingRate = float(Signal.header['SamplingFrequency'])
     self.DataFolder = r'../signals/bvp'
     self.Benchmark = 0
        fname = os.path.split(fpath)[1]

        # map file name to a subject
        subId = db.subjects.get({'field': 'value'},
                                {'_id': 1})['docList'][0]['_id']

        # create record
        recId = db.records.add({
            'experiment': '',
            'subject': subId,
            'supervisor': '',
            'date': ''
        })['recordId']

        # load data
        data = plux.loadbpf(fpath)

        # add data
        dataType = ''
        metadata = {
            'device': {
                'name': '',
                'channels': [0, 1],
                'Vcc': data.header['Vcc'],
                'version': data.header['Version']
            },
            'transducer': '',
            'placement': '',
            'units': {
                'time': 'second',
                'sensor': data.header['Units']
Esempio n. 3
0
 def setUp(self):
     # Init
     self.Signal = plux.loadbpf("../signals/resp.txt")
     self.Signal = self.Signal[:, 3]
     self.SamplingRate = float(Signal.header['SamplingFrequency'])
Esempio n. 4
0
        def testfeatures(self):
            # Test if a dict is returned by the features function
            self.res = features(Signal=self.Signal,
                                SamplingRate=self.SamplingRate)
            assert type(
                self.res
            ) is dict, "Returned value by the features function is not a dict."
            # Test if the right exception is raised when no input signal is given
            self.assertRaises(TypeError, features, None)
            # ...

        # ...

    # Example:
    # Load Data
    RawSignal = plux.loadbpf("../signals/resp.txt")
    RawSignal = RawSignal[:, 3]
    SamplingRate = float(RawSignal.header['SamplingFrequency'])
    # Unit conversion
    RawSignal = RawSignal.toV()
    # Filter
    Signal = filt(Signal=RawSignal)['Signal']  #*losing bparray information
    # Convert to bparray
    Signal = plux.bparray(Signal, RawSignal.header)
    # Time array
    Time = np.linspace(0, len(Signal) / SamplingRate, len(Signal))
    # Beat information
    res = resp(Signal=Signal, SamplingRate=SamplingRate)
    # Plot
    fig = pl.figure()
    ax = fig.add_subplot(111)
Esempio n. 5
0
        def testfeatures(self):
            # Test if a dict is returned by the features function
            self.res = features(Signal=self.Signal,
                                SamplingRate=self.SamplingRate)
            assert type(
                self.res
            ) is dict, "Returned value by the features function is not a dict."
            # Test if the right exception is raised when no input signal is given
            self.assertRaises(TypeError, features, None)
            # ...

        # ...

    # Example:
    # Load Data
    RawSignal = plux.loadbpf("../signals/ecg.txt")
    RawSignal = RawSignal[:, 3]
    SamplingRate = float(RawSignal.header['SamplingFrequency'])
    # Unit conversion
    RawSignal = RawSignal.tomV()
    # Filter
    Signal = filt(Signal=RawSignal,
                  SamplingRate=SamplingRate,
                  UpperCutoff=30.0,
                  LowerCutoff=0.5)['Signal']  #*losing bparray information
    # Convert to bparray
    Signal = plux.bparray(Signal, RawSignal.header)
    # Time array
    Time = scipy.linspace(0, len(Signal) / SamplingRate, len(Signal))
    # Beat information
    res = ecg(Signal=Signal, SamplingRate=SamplingRate)
def cvp_files2db(config, datapath=r"Y:\\data\\CVP"):
    # connect to DB
    db = biomesh.biomesh(**config)

    # add the experiments
    db.experiments.add({
        'name':
        'T1',
        'goals':
        'ECG acquisition.',
        'description':
        'First session; ECG acquired from hands, in recumbent and sitting positions.'
    })
    db.experiments.add({
        'name':
        'T2',
        'goals':
        'ECG acquisition.',
        'description':
        'Second session; ECG acquired from hands, in recumbent and sitting positions.'
    })

    user_file_dict = {}

    # add subjects
    filename = '\\Lista de Participantes %s.xls'
    for experiment in ['Cardiopneumologia', 'Enfermagem', 'Fisioterapia']:
        # print experiment

        if experiment == 'Cardiopneumologia': idx = 0
        else: idx = -1

        #add subjects
        wb = xlrd.open_workbook(datapath + filename % experiment)
        sheet = wb.sheet_by_index(0)
        for rownum in range(1, sheet.nrows):
            # 'N Aluno', 'Sexo', 'Nome', 'D.N.', 'Altura (cm)', 'Peso (Kg)', \
            # 'Raca', 'E-Mail*', 'Telemovel*', 'Desporto', 'Desporto (2o teste)',\
            # '1o teste Sentado', '1o teste Deitado', '2o Teste Sentado', '2o teste Deitado'

            # print sheet.row_values(rownum), len(sheet.row_values(rownum))

            birthdate = sheet.cell_value(rownum, 3)
            year, month, day, hour, minute, sec = xlrd.xldate_as_tuple(
                birthdate, wb.datemode)
            birthdate = datetime.datetime(year, month, day, hour, minute,
                                          sec).isoformat()

            name = sheet.cell_value(rownum, 2)
            gender = sheet.cell_value(rownum, 1)
            fname1, fname2, fname3, fname4 = sheet.cell_value(
                rownum, 11 +
                idx), sheet.cell_value(rownum, 12 + idx), sheet.cell_value(
                    rownum, 13 + idx), sheet.cell_value(rownum, 14 + idx)

            # MISSING FILEs
            aux = numpy.array(
                map(lambda pat: fname1.find(pat), [
                    'F2851', 'F2847', 'F2825', 'F2826', 'F2828', 'F2845',
                    'F2871', 'F2908'
                ]))
            if numpy.any(aux >= 0):
                print "skipped %s" % fname1
                continue

            ext = '.txt'
            fname1, fname2, fname3, fname4 = fname1 + ext, fname2 + ext, fname3 + ext, fname4 + ext
            if gender == 'M':
                # print gender, fname1, fname2, fname3, fname4
                for timest in ['-T1', '-T2']:
                    rawdatapath = datapath + '\\' + experiment + '\\' + experiment + timest
                    ext = '*.txt'
                    for fname in glob.glob(os.path.join(rawdatapath, ext)):
                        fsplt = fname.split('\\')[-1]
                        # print fsplt
                        # print fname1, fname2, fname3, fname4
                        if fsplt in [fname1, fname2, fname3, fname4]:
                            newfname = fname.replace('F', 'M')
                            try:
                                os.rename(fname, newfname)
                                print "corrected %s to %s" % (fname, newfname)
                            except Exception as e:
                                # pass
                                print fname
                                print e
                fname1 = fname1.replace('F', 'M')
                fname2 = fname2.replace('F', 'M')
                fname3 = fname3.replace('F', 'M')
                fname4 = fname4.replace('F', 'M')

            info = {
                'number': sheet.cell_value(rownum, 0),
                'sex': gender,
                'name': name,
                'birthdate': birthdate,
                'heigth': sheet.cell_value(rownum, 4),
                'weigth': sheet.cell_value(rownum, 5),
                # 'ethnicity': sheet.cell_value(rownum,6),
                'email': sheet.cell_value(rownum, 7)
            }  #,
            # 'mobilenr': sheet.cell_value(rownum,8),
            # 'sport1': sheet.cell_value(rownum,9),
            # 'sport2': sheet.cell_value(rownum,10),
            # 'file': {
            # '1Sentado': fname1,
            # '1Deitado': fname2,
            # '2Sentado': fname3,
            # '2Deitado': fname4}}
            # add the subject
            subId = db.subjects.add(info)['subjectId']
            # print subId

            user_file_dict[str(fname1)] = subId
            user_file_dict[str(fname2)] = subId
            user_file_dict[str(fname3)] = subId
            user_file_dict[str(fname4)] = subId

    # add data
    for source in ['Cardiopneumologia', 'Enfermagem', 'Fisioterapia']:
        for timest in ['-T1', '-T2']:
            # data path
            rawdatapath = datapath + '\\' + source + '\\' + source + timest
            ext = '*' + timest + '*.txt'

            for fname in glob.glob(os.path.join(rawdatapath, ext)):
                print fname
                fsplt = fname.split('\\')[-1]
                try:
                    subId = user_file_dict[fsplt]
                except Exception as e:
                    print "skipped %s" % fname
                    continue

                # Read samples file
                data = plux.loadbpf(fname)
                data = data[:, 3]

                # datetime
                date = data.header['StartDateTime'].replace(' ', 'T')

                # get record
                out = db.records.getAll({
                    'experiment': timest[1:],
                    'subject': subId
                })['idList']
                if len(out) == 0:
                    recId = db.records.add({
                        'date': date,
                        'experiment': timest[1:],
                        'subject': subId,
                        'source': source
                    })['recordId']
                else:
                    recId = out[0]

                if 'Deit' in fsplt:
                    position = 'Recumbent'
                elif 'Sent' in fsplt:
                    position = 'Sitting'

                mdata = {
                    'labels': ['ECG'],
                    'device': {
                        'Vcc': data.header['Vcc'],
                        'version': data.header['Version']
                    },
                    'units': {
                        'time': 'second',
                        'sensor': data.header['Units']
                    },
                    'sampleRate': data.header['SamplingFrequency'],
                    'resolution': data.header['SamplingResolution']
                }
                db.records.addSignal(recId, '/ECG/hand/' + position + '/raw',
                                     data, mdata)

    # close db
    db.close()
Esempio n. 7
0
import sync
import tools as tls

reload(bvp)
reload(eda)
reload(edafc)

pl.ioff()

fname = '../data/PN11 12.12.txt'
#fname='../data/PN12 13.12.txt'
#fname='../data/PN13 13.12.txt'

print "loading " + fname

Raw = plux.loadbpf(fname)

SamplingRate = 10.
# SamplingRate=20

DownSampling = Raw.header['SamplingFrequency'] / SamplingRate
Data = Raw[::DownSampling, :]

print "switch events"
Switch = sync.step(Raw[:, 1])  #Switch=sync.step(Data[:,1])
Switch['Event'] /= Raw.header['SamplingFrequency'] / SamplingRate

print "eda events"
EDA = eda.scr(Signal=Data[:, 3].touS(),
              SamplingRate=SamplingRate,
              Filter={'UpperCutoff': 0.05})
Esempio n. 8
0
        # for file in glob.glob(os.path.join(self.DataFolder, '*.txt')):
        # self.Signal = plux.loadbpf(file)
        # self.Signal = self.Signal[:,3]
        # self.SamplingRate = float(Signal.header['SamplingFrequency'])
        # self.res = filt(Signal=self.Signal, SamplingRate=self.SamplingRate)
        # self.res = pulse(Signal=self.res['Signal'], SamplingRate=self.SamplingRate)
        # self.NrBeats =
        # if(len(self.res['Onset']) == self.NrBeats):
        # self.Benchmark+=1
        # # ...
        # ...
        # ...

    # Example:
    # Load Data
    RawSignal = plux.loadbpf("../signals/bvp.txt")
    RawSignal = RawSignal[:, 3]
    SamplingRate = float(RawSignal.header['SamplingFrequency'])
    # Unit conversion
    RawSignal = RawSignal.tomV()
    # Filter
    Signal = filt(
        Signal=RawSignal,
        SamplingRate=SamplingRate)['Signal']  #*losing bparray information
    # Convert to bparray
    Signal = plux.bparray(Signal, RawSignal.header)
    # Normalization: 0-1
    Signal = (Signal - min(Signal)) / (max(Signal) - min(Signal))
    # Time array
    Time = np.linspace(0, len(Signal) / SamplingRate, len(Signal))
    # Pulse information