def test_simple_execution_receipt(self):
     self.dummy = "dummy"
     log = xes_importer.apply(os.path.join(INPUT_DATA_DIR, "receipt.xes"))
     output_dictionary = simple_model_factory.apply(log)
     net, initial_marking, final_marking = simple_model_factory.apply(
         log, classic_output=True)
     del output_dictionary
     del net
     del initial_marking
     del final_marking
Esempio n. 2
0
def transient_analysis_from_dataframe(df, delay, parameters=None):
    """
    Gets the transient analysis from a dataframe and a delay

    Parameters
    -------------
    df
        Pandas dataframe
    delay
        Time delay
    parameters
        Parameters of the algorithm

    Returns
    -------------
    transient_result
        Transient analysis result
    """
    if parameters is None:
        parameters = {}

    activity_key = parameters[
        constants.
        PARAMETER_CONSTANT_ACTIVITY_KEY] if constants.PARAMETER_CONSTANT_ACTIVITY_KEY in parameters else xes.DEFAULT_NAME_KEY
    case_id_glue = parameters[
        constants.
        PARAMETER_CONSTANT_CASEID_KEY] if constants.PARAMETER_CONSTANT_CASEID_KEY in parameters else CASE_CONCEPT_NAME
    timestamp_key = parameters[
        constants.
        PARAMETER_CONSTANT_TIMESTAMP_KEY] if constants.PARAMETER_CONSTANT_TIMESTAMP_KEY in parameters else xes.DEFAULT_TIMESTAMP_KEY

    log = log_conv_factory.apply(df,
                                 variant=log_conv_factory.DF_TO_EVENT_LOG_1V,
                                 parameters=parameters)
    # gets the simple Petri net through simple miner
    net, im, fm = simple_factory.apply(log,
                                       parameters=parameters,
                                       classic_output=True)

    activities_count = dict(df.groupby(activity_key).size())
    dfg_performance = df_statistics.get_dfg_graph(df,
                                                  measure="performance",
                                                  perf_aggregation_key="mean",
                                                  case_id_glue=case_id_glue,
                                                  activity_key=activity_key,
                                                  timestamp_key=timestamp_key)

    spaths = get_shortest_paths(net)
    aggregated_statistics = get_decorations_from_dfg_spaths_acticount(
        net, dfg_performance, spaths, activities_count, variant="performance")

    # gets the stochastic map out of the dataframe and the Petri net
    s_map = smap_builder.get_map_exponential_from_aggstatistics(
        aggregated_statistics, parameters=parameters)

    return transient_analysis_from_petri_net_and_smap(net,
                                                      im,
                                                      s_map,
                                                      delay,
                                                      parameters=parameters)
def execute_script():
    log_name = os.path.join("..", "tests", "input_data", "running-example.xes")
    log = xes_importer.apply(log_name, variant="nonstandard")
    print("imported log")
    # obtain a simple, sound workflow net, containing only visibile unique transitions,
    # applying the Alpha Miner to some of the top variants (methods by Ale)
    activity_key = "concept:name"
    parameters = {PARAMETER_CONSTANT_ACTIVITY_KEY: activity_key, PARAMETER_CONSTANT_ATTRIBUTE_KEY: activity_key}
    net, initial_marking, final_marking = simple_extraction_factory.apply(log, classic_output=True,
                                                                          parameters=parameters)
    print("obtained model")
    # visualize the output Petri net
    gviz = pn_vis_factory.apply(net, initial_marking, final_marking)
    del gviz
    # pn_vis_factory.view(gviz)
    # gets the average time between cases starts
    avg_time_starts = get_case_arrival_avg(log)
    print("avg_time_starts real=", avg_time_starts)
    # gets the stochastic distribution associated to the Petri net and the log
    smap = stochastic_map.get_map_from_log_and_net(log, net, initial_marking, final_marking,
                                                   force_distribution="EXPONENTIAL")
    print("smap=", smap)

    perf_bound_obj = LpPerfBounds(net, initial_marking, final_marking, smap, avg_time_starts)
    net1, imarking1, fmarking1 = perf_bound_obj.get_net()
    gviz = pn_vis_factory.apply(net1, imarking1, fmarking1)

    for var in perf_bound_obj.var_corr:
        corr = perf_bound_obj.var_corr[var]

        minimum = perf_bound_obj.solve_problem(var, maximize=False)
        maximum = perf_bound_obj.solve_problem(var, maximize=True)

        print(var, minimum[corr], maximum[corr])
Esempio n. 4
0
def transient_analysis_from_log(log, delay, parameters=None):
    """
    Gets the transient analysis from a log and a delay

    Parameters
    -------------
    log
        Event log
    delay
        Time delay
    parameters
        Parameters of the algorithm

    Returns
    -------------
    transient_result
        Transient analysis result
    """
    if parameters is None:
        parameters = {}
    # gets the simple Petri net through simple miner
    net, im, fm = simple_factory.apply(log, parameters=parameters, classic_output=True)
    # gets the stochastic map out of the log and the Petri net
    s_map = smap_builder.get_map_from_log_and_net(log, net, im, fm, parameters=parameters,
                                                  force_distribution="EXPONENTIAL")
    return transient_analysis_from_petri_net_and_smap(net, im, s_map, delay, parameters=parameters)
Esempio n. 5
0
def execute_script():
    # loads the log
    log = xes_importer.apply(
        os.path.join("..", "tests", "input_data", "receipt.xes"))
    # apply the simple miner
    net, im, fm = simple_miner.apply(log, classic_output=True)
    # checks if the Petri net is a sound workflow net
    is_sound_wfnet = check_petri_wfnet_and_soundness(net)
    print("is_sound_wfnet = ", is_sound_wfnet)
Esempio n. 6
0
def generate_simple_net(xes_log):
    try:
        simple_net, initial_marking, final_marking = simple_algorithm.apply(
            xes_log, classic_output=True, parameters={"max_no_variants": 20})
        return {
            'simple_net': simple_net,
            'initial_marking': initial_marking,
            'final_marking': final_marking
        }
    except AttributeError:
        print("Please check your input values")
Esempio n. 7
0
def run_simple_miner(log,classic_output=True,parameters={"max_no_variants": 20}):
    net, initial_marking, final_marking = simple_algorithm.apply(log, classic_output=classic_output, parameters=parameters)
    #gviz = vis_petri.apply(net, initial_marking, final_marking)
    #vis_petri.view(gviz)
    return net, initial_marking, final_marking
Esempio n. 8
0
    from pm4py.algo.discovery.simple.model.log import factory as simple_model_factory

    logFolder = os.path.join("..", "compressed_input_data")
    pnmlFolder = "simple_pnml"
    pngFolder = "simple_png"

    for logName in os.listdir(logFolder):
        if "." in logName:
            logNamePrefix = logName.split(".")[0]

            print("\nelaborating " + logName)

            logPath = os.path.join(logFolder, logName)
            log = xes_factory.import_log(logPath, variant="iterparse")

            net, initial_marking, final_marking = simple_model_factory.apply(
                log, classic_output=True)

            pnml_exporter.export_net(net,
                                     initial_marking,
                                     os.path.join(pnmlFolder, logNamePrefix) +
                                     ".pnml",
                                     final_marking=final_marking)

            gviz = petri_vis_factory.apply(net,
                                           initial_marking,
                                           final_marking,
                                           log=log,
                                           variant="frequency")

            petri_vis_factory.save(
                gviz,