def get_decorated_net(net, initial_marking, final_marking, log, parameters=None, variant="frequency"):
    """
    Get a decorated net according to the specified variant (decorate Petri net based on DFG)

    Parameters
    ------------
    net
        Petri net
    initial_marking
        Initial marking
    final_marking
        Final marking
    log
        Log to use to decorate the Petri net
    parameters
        Algorithm parameters
    variant
        Specify if the decoration should take into account the frequency or the performance

    Returns
    ------------
    gviz
        GraphViz object
    """
    if parameters is None:
        parameters = {}

    aggregation_measure = exec_utils.get_param_value(Parameters.AGGREGATION_MEASURE, parameters,
                                                     "sum" if "frequency" in variant else "mean")

    activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY)

    # we find the DFG
    if variant == "performance":
        dfg = log_retrieval.performance(log, parameters=parameters)
    else:
        dfg = log_retrieval.native(log, parameters=parameters)
    # we find shortest paths
    spaths = get_shortest_paths(net)
    # we find the number of activities occurrences in the log
    activities_count = attr_get.get_attribute_values(log, activity_key, parameters=parameters)
    aggregated_statistics = get_decorations_from_dfg_spaths_acticount(net, dfg, spaths,
                                                                      activities_count,
                                                                      variant=variant,
                                                                      aggregation_measure=aggregation_measure)

    return visualize.apply(net, initial_marking, final_marking, parameters=parameters,
                           decorations=aggregated_statistics)
Esempio n. 2
0
def apply(log, activity, parameters=None):
    """
    Gets the time passed from each preceding activity

    Parameters
    -------------
    log
        Log
    activity
        Activity that we are considering
    parameters
        Possible parameters of the algorithm

    Returns
    -------------
    dictio
        Dictionary containing a 'pre' key with the
        list of aggregates times from each preceding activity to the given activity
    """
    if parameters is None:
        parameters = {}

    dfg_frequency = log_retrieval.native(log, parameters=parameters)
    dfg_performance = log_retrieval.performance(log, parameters=parameters)

    pre = []
    sum_perf_pre = 0.0
    sum_acti_pre = 0.0

    for entry in dfg_performance.keys():
        if entry[1] == activity:
            pre.append([
                entry[0],
                float(dfg_performance[entry]),
                int(dfg_frequency[entry])
            ])
            sum_perf_pre = sum_perf_pre + float(
                dfg_performance[entry]) * float(dfg_frequency[entry])
            sum_acti_pre = sum_acti_pre + float(dfg_frequency[entry])

    perf_acti_pre = 0.0
    if sum_acti_pre > 0:
        perf_acti_pre = sum_perf_pre / sum_acti_pre

    return {"pre": pre, "pre_avg_perf": perf_acti_pre}
Esempio n. 3
0
def apply(log, parameters=None):
    """
    Measure performance between couples of attributes in the DFG graph

    Parameters
    ----------
    log
        Log
    parameters
        Possible parameters passed to the algorithms:
            aggregationMeasure -> performance aggregation measure (min, max, mean, median)
            activity_key -> Attribute to use as activity
            timestamp_key -> Attribute to use as timestamp

    Returns
    -------
    dfg
        DFG graph
    """
    return log_calc.performance(log, parameters=parameters)
Esempio n. 4
0
def apply(log, parameters=None):
    """
    Measure performance between couples of attributes in the DFG graph

    Parameters
    ----------
    log
        Log
    parameters
        Possible parameters passed to the algorithms:
            Parameters.AGGREGATION_MEASURE -> performance aggregation measure (min, max, mean, median)
            Parameters.ACTIVITY_KEY -> Attribute to use as activity
            Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp

    Returns
    -------
    dfg
        DFG graph
    """
    return log_calc.performance(log, parameters=parameters)