Esempio n. 1
0
def filter_variants(log, variants, retain=True):
    """
    Filter a log on a specified set of variants

    Parameters
    ---------------
    log
        Event log
    variants
        collection of variants to filter; A variant should be specified as a list of activity names, e.g., ['a','b','c']
    retain
        boolean; if True all traces conforming to the specified variants are retained; if False, all those traces are removed

    Returns
    --------------
    filtered_log
        Filtered log object
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.algo.filtering.pandas.variants import variants_filter
        return variants_filter.apply(
            log, [",".join(v) for v in variants],
            parameters={variants_filter.Parameters.POSITIVE: retain})
    else:
        from pm4py.algo.filtering.log.variants import variants_filter
        return variants_filter.apply(
            log, [",".join(v) for v in variants],
            parameters={variants_filter.Parameters.POSITIVE: retain})
Esempio n. 2
0
def filter_paths(log, allowed_paths, positive=True):
    """
    Filter a log_skeleton on a specified list of paths

    Parameters
    ---------------
    log
        Log object
    allowed_paths
        Allowed/forbidden paths
    positive
        Parameter that says whether the paths
        should be kept/removed

    Returns
    ----------------
    filtered_log
        Filtered log_skeleton object
    """
    if check_is_dataframe(log):
        from pm4py.algo.filtering.pandas.paths import paths_filter
        return paths_filter.apply(log, allowed_paths, parameters={paths_filter.Parameters.POSITIVE: positive})
    else:
        from pm4py.algo.filtering.log.paths import paths_filter
        return paths_filter.apply(log, allowed_paths, parameters={paths_filter.Parameters.POSITIVE: positive})
Esempio n. 3
0
def filter_directly_follows_relation(log, relations, retain=True):
    """
    Retain traces that contain any of the specified 'directly follows' relations.
    For example, if relations == [('a','b'),('a','c')] and log [<a,b,c>,<a,c,b>,<a,d,b>]
    the resulting log will contain traces describing [<a,b,c>,<a,c,b>].

    Parameters
    ---------------
    log
        Log object
    relations
        List of activity name pairs, which are allowed/forbidden paths
    retain
        Parameter that says whether the paths
        should be kept/removed

    Returns
    ----------------
    filtered_log
        Filtered log object
    """
    if check_is_dataframe(log):
        from pm4py.algo.filtering.pandas.paths import paths_filter
        return paths_filter.apply(
            log,
            relations,
            parameters={paths_filter.Parameters.POSITIVE: retain})
    else:
        from pm4py.algo.filtering.log.paths import paths_filter
        return paths_filter.apply(
            log,
            relations,
            parameters={paths_filter.Parameters.POSITIVE: retain})
Esempio n. 4
0
def filter_trace_attribute_values(log: Union[EventLog, pd.DataFrame], attribute_key: str, values: List[str],
                                  retain: bool = True) -> Union[EventLog, pd.DataFrame]:
    """
    Filter a log on the values of a trace attribute

    Parameters
    --------------
    log
        Event log
    attribute_key
        Attribute to filter
    values
        Values to filter (list of)
    retain
        Boolean value (keep/discard matching traces)

    Returns
    --------------
    filtered_log
        Filtered event log
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.algo.filtering.pandas.attributes import attributes_filter
        return attributes_filter.apply(log, values,
                                       parameters={attributes_filter.Parameters.ATTRIBUTE_KEY: attribute_key,
                                                   attributes_filter.Parameters.POSITIVE: retain})
    else:
        from pm4py.algo.filtering.log.attributes import attributes_filter
        return attributes_filter.apply_trace_attribute(log, values, parameters={
            attributes_filter.Parameters.ATTRIBUTE_KEY: attribute_key, attributes_filter.Parameters.POSITIVE: retain})
Esempio n. 5
0
def discover_dfg(log: Union[EventLog, pd.DataFrame]) -> Tuple[dict, dict, dict]:
    """
    Discovers a DFG from a log

    Parameters
    --------------
    log
        Event log

    Returns
    --------------
    dfg
        DFG
    start_activities
        Start activities
    end_activities
        End activities
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.objects.dfg.retrieval.pandas import get_dfg_graph
        dfg = get_dfg_graph(log)
        from pm4py.statistics.start_activities.pandas import get as start_activities_module
        from pm4py.statistics.end_activities.pandas import get as end_activities_module
        start_activities = start_activities_module.get_start_activities(log)
        end_activities = end_activities_module.get_end_activities(log)
    else:
        from pm4py.algo.discovery.dfg import algorithm as dfg_discovery
        dfg = dfg_discovery.apply(log)
        from pm4py.statistics.start_activities.log import get as start_activities_module
        from pm4py.statistics.end_activities.log import get as end_activities_module
        start_activities = start_activities_module.get_start_activities(log)
        end_activities = end_activities_module.get_end_activities(log)
    return dfg, start_activities, end_activities
Esempio n. 6
0
def filter_trace_attribute(log, attribute, values, positive=True):
    """
    Filter a log_skeleton on the values of a trace attribute

    Parameters
    --------------
    log
        Event log_skeleton
    attribute
        Attribute to filter
    values
        Values to filter (list of)
    positive
        Boolean value (keep/discard cases)

    Returns
    --------------
    filtered_log
        Filtered event log_skeleton
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.algo.filtering.pandas.attributes import attributes_filter
        return attributes_filter.apply(log, values, parameters={attributes_filter.Parameters.ATTRIBUTE_KEY: attribute,
                                                                attributes_filter.Parameters.POSITIVE: positive})
    else:
        from pm4py.algo.filtering.log.attributes import attributes_filter
        return attributes_filter.apply_trace_attribute(log, values, parameters={
            attributes_filter.Parameters.ATTRIBUTE_KEY: attribute, attributes_filter.Parameters.POSITIVE: positive})
Esempio n. 7
0
def get_variants(log: Union[EventLog, pd.DataFrame]) -> Dict[str, List[Trace]]:
    """
    Gets the variants from the log

    Parameters
    --------------
    log
        Event log

    Returns
    --------------
    variants
        Dictionary of variants along with their count
    """
    import pm4py
    if pm4py.util.variants_util.VARIANT_SPECIFICATION == pm4py.util.variants_util.VariantsSpecifications.STRING:
        import warnings
        warnings.warn('pm4py.get_variants is deprecated. Please use pm4py.get_variants_as_tuples instead.')
    if pm4py.util.variants_util.VARIANT_SPECIFICATION == pm4py.util.variants_util.VariantsSpecifications.LIST:
        raise Exception('Please use pm4py.get_variants_as_tuples')
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.variants.pandas import get
        return get.get_variants_count(log)
    else:
        from pm4py.statistics.variants.log import get
        return get.get_variants(log)
Esempio n. 8
0
def get_variants_as_tuples(log: Union[EventLog, pd.DataFrame]) -> Dict[Tuple[str], List[Trace]]:
    """
    Gets the variants from the log
    (where the keys are tuples and not strings)

    Parameters
    --------------
    log
        Event log

    Returns
    --------------
    variants
        Dictionary of variants along with their count
    """
    import pm4py
    # the behavior of PM4Py is changed to allow this to work
    pm4py.util.variants_util.VARIANT_SPECIFICATION = pm4py.util.variants_util.VariantsSpecifications.LIST
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.variants.pandas import get
        return get.get_variants_count(log)
    else:
        from pm4py.statistics.variants.log import get
        return get.get_variants(log)
Esempio n. 9
0
def discover_handover_of_work_network(log: Union[EventLog, pd.DataFrame], beta=0):
    """
    Calculates the handover of work network of the event log.
    The handover of work network is essentially the DFG of the event log, however, using the
    resource as a node of the graph, instead of the activity.
    As such, to use this, resource information should be present in the event log.

    Parameters
    ---------------
    log
        Event log or Pandas dataframe
    beta
        beta parameter for Handover metric

    Returns
    ---------------
    metric_values
        Values of the metric
    """
    from pm4py.algo.organizational_mining.sna import algorithm as sna
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        return sna.apply(log, variant=sna.Variants.HANDOVER_PANDAS, parameters={"beta": beta})
    else:
        return sna.apply(log, variant=sna.Variants.HANDOVER_LOG, parameters={"beta": beta})
Esempio n. 10
0
def filter_end_activities(log, activities, retain=True):
    """
    Filter cases having an end activity in the provided list

    Parameters
    ---------------
    log
        Log object
    activities
        List of admitted end activities
    retain
        if True, we retain the traces containing the given activities, if false, we drop the traces


    Returns
    ---------------
    filtered_log
        Filtered log object
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.algo.filtering.pandas.end_activities import end_activities_filter
        return end_activities_filter.apply(
            log,
            activities,
            parameters={end_activities_filter.Parameters.POSITIVE: retain})
    else:
        from pm4py.algo.filtering.log.end_activities import end_activities_filter
        return end_activities_filter.apply(
            log,
            activities,
            parameters={end_activities_filter.Parameters.POSITIVE: retain})
Esempio n. 11
0
def filter_variants_percentage(
        log: Union[EventLog, pd.DataFrame],
        threshold: float = 0.8) -> Union[EventLog, pd.DataFrame]:
    """
    Filter a log on the percentage of variants

    Parameters
    ---------------
    log
        Event log
    threshold
        Percentage (scale 0.1) of admitted variants

    Returns
    --------------
    filtered_log
        Filtered log object
    """
    if check_is_dataframe(log):
        raise Exception(
            "filtering variants percentage on Pandas dataframe is currently not available! please convert the dataframe to event log with the method: log =  pm4py.convert_to_event_log(df)"
        )
    else:
        from pm4py.algo.filtering.log.variants import variants_filter
        return variants_filter.filter_log_variants_percentage(
            log, percentage=threshold)
Esempio n. 12
0
def filter_start_activities(
        log: Union[EventLog, pd.DataFrame],
        activities: List[str],
        retain: bool = True) -> Union[EventLog, pd.DataFrame]:
    """
    Filter cases having a start activity in the provided list

    Parameters
    --------------
    log
        Log object
    activities
        List start activities
    retain
        if True, we retain the traces containing the given activities, if false, we drop the traces


    Returns
    --------------
    filtered_log
        Filtered log object
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.algo.filtering.pandas.start_activities import start_activities_filter
        return start_activities_filter.apply(
            log,
            activities,
            parameters={start_activities_filter.Parameters.POSITIVE: retain})
    else:
        from pm4py.algo.filtering.log.start_activities import start_activities_filter
        return start_activities_filter.apply(
            log,
            activities,
            parameters={start_activities_filter.Parameters.POSITIVE: retain})
Esempio n. 13
0
def filter_eventually_follows_relation(log: Union[EventLog, pd.DataFrame], relations: List[str], retain: bool = True) -> \
        Union[EventLog, pd.DataFrame]:
    """
    Retain traces that contain any of the specified 'eventually follows' relations.
    For example, if relations == [('a','b'),('a','c')] and log [<a,b,c>,<a,c,b>,<a,d,b>]
    the resulting log will contain traces describing [<a,b,c>,<a,c,b>,<a,d,b>].

    Parameters
    ---------------
    log
        Log object
    relations
        List of activity name pairs, which are allowed/forbidden paths
    retain
        Parameter that says whether the paths
        should be kept/removed

    Returns
    ----------------
    filtered_log
        Filtered log object
    """
    if check_is_dataframe(log):
        from pm4py.algo.filtering.pandas.ltl import ltl_checker
        if retain:
            cases = set()
        else:
            cases = set(log[constants.CASE_CONCEPT_NAME])
        for path in relations:
            filt_log = ltl_checker.A_eventually_B(log, path[0], path[1],
                                                  parameters={ltl_checker.Parameters.POSITIVE: retain})
            this_traces = set(filt_log[constants.CASE_CONCEPT_NAME])
            if retain:
                cases = cases.union(this_traces)
            else:
                cases = cases.intersection(this_traces)
        return log[log[constants.CASE_CONCEPT_NAME].isin(cases)]
    else:
        from pm4py.objects.log.log import EventLog
        from pm4py.algo.filtering.log.ltl import ltl_checker
        if retain:
            cases = set()
        else:
            cases = set(id(trace) for trace in log)
        for path in relations:
            filt_log = ltl_checker.A_eventually_B(log, path[0], path[1],
                                                  parameters={ltl_checker.Parameters.POSITIVE: retain})
            this_traces = set(id(trace) for trace in filt_log)
            if retain:
                cases = cases.union(this_traces)
            else:
                cases = cases.intersection(this_traces)
        filtered_log = EventLog(attributes=log.attributes, extensions=log.extensions, omni_present=log.omni_present,
                                classifiers=log.classifiers)
        for trace in log:
            if id(trace) in cases:
                filtered_log.append(trace)
        return filtered_log
Esempio n. 14
0
def filter_time_range(log: Union[EventLog, pd.DataFrame],
                      dt1: str,
                      dt2: str,
                      mode="events") -> Union[EventLog, pd.DataFrame]:
    """
    Filter a log on a time interval

    Parameters
    ----------------
    log
        Log object
    dt1
        Left extreme of the interval
    dt2
        Right extreme of the interval
    mode
        Modality of filtering (events, traces_contained, traces_intersecting)
        events: any event that fits the time frame is retained
        traces_contained: any trace completely contained in the timeframe is retained
        traces_intersecting: any trace intersecting with the time-frame is retained.

    Returns
    ----------------
    filtered_log
        Filtered log
    """
    if check_is_dataframe(log):
        from pm4py.algo.filtering.pandas.timestamp import timestamp_filter
        if mode == "events":
            return timestamp_filter.apply_events(log, dt1, dt2)
        elif mode == "traces_contained":
            return timestamp_filter.filter_traces_contained(log, dt1, dt2)
        elif mode == "traces_intersecting":
            return timestamp_filter.filter_traces_intersecting(log, dt1, dt2)
        else:
            warnings.warn('mode provided: ' + mode +
                          ' is not recognized; original log returned!')
            return log
    else:
        from pm4py.algo.filtering.log.timestamp import timestamp_filter
        if mode == "events":
            return timestamp_filter.apply_events(log, dt1, dt2)
        elif mode == "traces_contained":
            return timestamp_filter.filter_traces_contained(log, dt1, dt2)
        elif mode == "traces_intersecting":
            return timestamp_filter.filter_traces_intersecting(log, dt1, dt2)
        else:
            warnings.warn('mode provided: ' + mode +
                          ' is not recognized; original log returned!')
            return log
Esempio n. 15
0
def filter_event_attribute_values(log: Union[EventLog, pd.DataFrame], attribute_key: str, values: List[str],
                                  level: str = "case", retain: bool = True) -> Union[EventLog, pd.DataFrame]:
    """
    Filter a log object on the values of some event attribute

    Parameters
    --------------
    log
        Log object
    attribute_key
        Attribute to filter
    values
        Admitted (or forbidden) values
    level
        Specifies how the filter should be applied ('case' filters the cases where at least one occurrence happens,
        'event' filter the events eventually trimming the cases)
    retain
        Specified if the values should be kept or removed

    Returns
    --------------
    filtered_log
        Filtered log object
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.algo.filtering.pandas.attributes import attributes_filter
        if level == "event":
            return attributes_filter.apply_events(log, values,
                                                  parameters={constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute_key,
                                                              attributes_filter.Parameters.POSITIVE: retain})
        elif level == "case":
            return attributes_filter.apply(log, values, parameters={
                constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute_key,
                attributes_filter.Parameters.POSITIVE: retain})
    else:
        from pm4py.algo.filtering.log.attributes import attributes_filter
        if level == "event":
            return attributes_filter.apply_events(log, values,
                                                  parameters={constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute_key,
                                                              attributes_filter.Parameters.POSITIVE: retain})
        elif level == "case":
            return attributes_filter.apply(log, values, parameters={
                constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute_key,
                attributes_filter.Parameters.POSITIVE: retain})
Esempio n. 16
0
def filter_attribute_values(log, attribute, values, how="cases", positive=True):
    """
    Filter a log_skeleton object on the values of some attribute

    Parameters
    --------------
    log
        Log object
    attribute
        Attribute to filter
    values
        Admitted (or forbidden) values
    how
        Specifies how the filter should be applied (cases filters the cases where at least one occurrence happens,
        events filter the events eventually trimming the cases)
    positive
        Specified if the values should be kept or removed

    Returns
    --------------
    filtered_log
        Filtered log_skeleton object
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.algo.filtering.pandas.attributes import attributes_filter
        if how == "events":
            return attributes_filter.apply_events(log, values,
                                                  parameters={constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute,
                                                              attributes_filter.Parameters.POSITIVE: positive})
        elif how == "cases":
            return attributes_filter.apply(log, values, parameters={
                constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute, attributes_filter.Parameters.POSITIVE: positive})
    else:
        from pm4py.algo.filtering.log.attributes import attributes_filter
        if how == "events":
            return attributes_filter.apply_events(log, values,
                                                  parameters={constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute,
                                                              attributes_filter.Parameters.POSITIVE: positive})
        else:
            return attributes_filter.apply(log, values, parameters={
                constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: attribute, attributes_filter.Parameters.POSITIVE: positive})
Esempio n. 17
0
def get_attributes(log):
    """
    Returns the attributes at the event level of the log

    Parameters
    ---------------
    log
        Log object

    Returns
    ---------------
    attributes_list
        List of attributes contained in the log
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        return list(log.columns)
    else:
        from pm4py.statistics.attributes.log import get
        return list(get.get_all_event_attributes_from_log(log))
Esempio n. 18
0
def discover_activity_based_resource_similarity(log: Union[EventLog, pd.DataFrame]):
    """
    Calculates similarity between the resources in the event log, based on their activity profiles.

    Parameters
    ---------------
    log
        Event log or Pandas dataframe

    Returns
    ---------------
    metric_values
        Values of the metric
    """
    from pm4py.algo.organizational_mining.sna import algorithm as sna
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        return sna.apply(log, variant=sna.Variants.JOINTACTIVITIES_PANDAS)
    else:
        return sna.apply(log, variant=sna.Variants.JOINTACTIVITIES_LOG)
Esempio n. 19
0
def discover_eventually_follows_graph(log: Union[EventLog, pd.DataFrame]) -> Dict[Tuple[str, str], int]:
    """
    Gets the eventually follows graph from a log object

    Parameters
    ---------------
    log
        Log object

    Returns
    ---------------
    eventually_follows_graph
        Dictionary of tuples of activities that eventually follows each other; along with the number of occurrences
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.eventually_follows.pandas import get
        return get.apply(log)
    else:
        from pm4py.statistics.eventually_follows.log import get
        return get.apply(log)
Esempio n. 20
0
def discover_working_together_network(log: Union[EventLog, pd.DataFrame]):
    """
    Calculates the working together network of the process.
    Two nodes resources are connected in the graph if the resources collaborate on an instance of the process.

    Parameters
    ---------------
    log
        Event log or Pandas dataframe

    Returns
    ---------------
    metric_values
        Values of the metric
    """
    from pm4py.algo.organizational_mining.sna import algorithm as sna
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        return sna.apply(log, variant=sna.Variants.WORKING_TOGETHER_PANDAS)
    else:
        return sna.apply(log, variant=sna.Variants.WORKING_TOGETHER_LOG)
Esempio n. 21
0
def get_trace_attributes(log):
    """
    Gets the attributes at the trace level of a log object

    Parameters
    ----------------
    log
        Log object

    Returns
    ---------------
    trace_attributes_list
        List of attributes at the trace level
    """
    from pm4py.util import constants
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        return [x for x in list(log.columns) if x.startswith(constants.CASE_ATTRIBUTE_PREFIX)]
    else:
        from pm4py.statistics.attributes.log import get
        return list(get.get_all_trace_attributes_from_log(log))
Esempio n. 22
0
def get_start_activities(log):
    """
    Returns the start activities from a log object

    Parameters
    ---------------
    log
        Log object

    Returns
    ---------------
    start_activities
        Dictionary of start activities along with their count
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.start_activities.pandas import get
        return get.get_start_activities(log)
    else:
        from pm4py.statistics.start_activities.log import get
        return get.get_start_activities(log)
Esempio n. 23
0
def get_case_arrival_average(log: Union[EventLog, pd.DataFrame]) -> float:
    """
    Gets the average difference between the start times of two consecutive cases

    Parameters
    ---------------
    log
        Log object

    Returns
    ---------------
    case_arrival_average
        Average difference between the start times of two consecutive cases
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.traces.pandas import case_arrival
        return case_arrival.get_case_arrival_avg(log)
    else:
        from pm4py.statistics.traces.log import case_arrival
        return case_arrival.get_case_arrival_avg(log)
Esempio n. 24
0
def get_end_activities(log):
    """
    Returns the end activities of a log

    Parameters
    ---------------
    log
        Lob object

    Returns
    ---------------
    end_activities
        Dictionary of end activities along with their count
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.end_activities.pandas import get
        return get.get_end_activities(log)
    else:
        from pm4py.statistics.end_activities.log import get
        return get.get_end_activities(log)
Esempio n. 25
0
def get_variants(log):
    """
    Gets the variants from the log

    Parameters
    --------------
    log
        Event log

    Returns
    --------------
    variants
        Dictionary of variants along with their count
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.variants.pandas import get
        return get.get_variants_count(log)
    else:
        from pm4py.statistics.variants.log import get
        return get.get_variants(log)
Esempio n. 26
0
def discover_subcontracting_network(log: Union[EventLog, pd.DataFrame], n=2):
    """
    Calculates the subcontracting network of the process.

    Parameters
    ---------------
    log
        Event log or Pandas dataframe
    n
        n parameter for Subcontracting metric

    Returns
    ---------------
    metric_values
        Values of the metric
    """
    from pm4py.algo.organizational_mining.sna import algorithm as sna
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        return sna.apply(log, variant=sna.Variants.SUBCONTRACTING_PANDAS, parameters={"n": n})
    else:
        return sna.apply(log, variant=sna.Variants.SUBCONTRACTING_LOG, parameters={"n": n})
Esempio n. 27
0
def view_events_per_time_graph(log: Union[EventLog, pd.DataFrame], format: str = "png"):
    """
    Visualizes the events per time graph

    Parameters
    -----------------
    log
        Log object
    format
        Format of the visualization (png, svg, ...)
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.attributes.pandas import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(log)
    else:
        from pm4py.statistics.attributes.log import get as attributes_get
        graph = attributes_get.get_kde_date_attribute(log)
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.DATES,
                                          parameters={"format": format})
    graphs_visualizer.view(graph_vis)
Esempio n. 28
0
def view_case_duration_graph(log: Union[EventLog, pd.DataFrame], format: str = "png"):
    """
    Visualizes the case duration graph

    Parameters
    -----------------
    log
        Log object
    format
        Format of the visualization (png, svg, ...)
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.traces.pandas import case_statistics
        graph = case_statistics.get_kde_caseduration(log)
    else:
        from pm4py.statistics.traces.log import case_statistics
        graph = case_statistics.get_kde_caseduration(log)
    from pm4py.visualization.graphs import visualizer as graphs_visualizer
    graph_vis = graphs_visualizer.apply(graph[0], graph[1], variant=graphs_visualizer.Variants.CASES,
                                          parameters={"format": format})
    graphs_visualizer.view(graph_vis)
Esempio n. 29
0
def filter_variants_percentage(log, percentage=0.8):
    """
    Filter a log_skeleton on the percentage of variants

    Parameters
    ---------------
    log
        Event log_skeleton
    percentage
        Percentage of admitted variants

    Returns
    --------------
    filtered_log
        Filtered log_skeleton object
    """
    if check_is_dataframe(log):
        raise Exception(
            "filtering variants percentage on Pandas dataframe is currently not available! please convert the dataframe to event log_skeleton with the method: log_skeleton =  pm4py.convert_to_event_log(df)")
    else:
        from pm4py.algo.filtering.log.variants import variants_filter
        return variants_filter.filter_log_variants_percentage(log, percentage=percentage)
Esempio n. 30
0
def get_attribute_values(log, attribute):
    """
    Returns the values for a specified attribute

    Parameters
    ---------------
    log
        Log object
    attribute
        Attribute

    Returns
    ---------------
    attribute_values
        Dictionary of values along with their count
    """
    if check_is_dataframe(log):
        check_dataframe_columns(log)
        from pm4py.statistics.attributes.pandas import get
        return get.get_attribute_values(log, attribute)
    else:
        from pm4py.statistics.attributes.log import get
        return get.get_attribute_values(log, attribute)