Esempio n. 1
0
def common_dir_boot(dir1,dir2,bootsteps=1000,plot='no'):
    #test for a common direction using bootstrap method
    #directions given as pandas Series listing mean direction/pole parameters
    #this is assuming published means without input directions, so bootstrap is a little different from the one
    #described in Tauxe: not a pseudoselection from specified points but drawing from fisher distribution directly.
    #adds a level of abstraction which hopefully does not invalidate procedure
    BDI1,BDI2=[],[]
    for s in range(bootsteps):
        fpars1=pmag.fisher_mean(get_fish(dir1))
        fpars2=pmag.fisher_mean(get_fish(dir2))
        BDI1.append([fpars1['dec'],fpars1['inc']])
        BDI2.append([fpars2['dec'],fpars2['inc']])
    bounds1=get_bounds(BDI1)
    bounds2=get_bounds(BDI2)
    #now want to check if is a pass or a fail - only pass if error bounds overlap in x,y,and z
    bresult=[]
    for b1,b2 in zip(bounds1,bounds2):
        if (b1[0]>b2[1] or b1[1]<b2[0]):
            bresult.append(0)
        else: bresult.append(1)
    if sum(bresult)==3: outcome='Pass'
    else: outcome='Fail'
    angle=pmag.angle((dir1['dec'],dir1['inc']),(dir2['dec'],dir2['inc']))
    
    # set up plots - can run this if want to visually check what's going on.
    if plot=='yes':
        CDF={'X':1,'Y':2,'Z':3}
        pmagplotlib.plot_init(CDF['X'],4,4)
        pmagplotlib.plot_init(CDF['Y'],4,4)
        pmagplotlib.plot_init(CDF['Z'],4,4)
        # draw the cdfs
        pmagplotlib.plotCOM(CDF,BDI1,BDI2,["",""])
        pmagplotlib.drawFIGS(CDF)
    
    return pd.Series([outcome,angle[0]],index=['Outcome','angle'])
Esempio n. 2
0
def main():
    """
    NAME
       gofish.py

    DESCRIPTION
       calculates fisher parameters from dec inc data

    INPUT FORMAT
       takes dec/inc as first two columns in space delimited file

    SYNTAX
       gofish.py [options]  [< filename]

    OPTIONS
        -h prints help message and quits
        -i for interactive filename entry
        -f FILE, specify input file
        -F FILE, specifies output file name
        < filename for reading from standard input
   
    OUTPUT
       mean dec, mean inc, N, R, k, a95, csd

    """
    if '-h' in sys.argv: # check if help is needed
        print main.__doc__
        sys.exit() # graceful quit
    if '-i' in sys.argv: # ask for filename
        file=raw_input("Enter file name with dec, inc data: ")
        f=open(file,'rU')
        data=f.readlines()
    elif '-f' in sys.argv:
        dat=[]
        ind=sys.argv.index('-f')
        file=sys.argv[ind+1]
        f=open(file,'rU')
        data=f.readlines()
    else:
        data = sys.stdin.readlines()  # read from standard input
    ofile = ""
    if '-F' in sys.argv:
        ind = sys.argv.index('-F')
        ofile= sys.argv[ind+1]
        out = open(ofile, 'w + a')
    DIs= [] # set up list for dec inc data
    for line in data:   # read in the data from standard input
        if '\t' in line:
            rec=line.split('\t') # split each line on space to get records
        else:
            rec=line.split() # split each line on space to get records
        DIs.append((float(rec[0]),float(rec[1])))
#
    fpars=pmag.fisher_mean(DIs)
    outstring='%7.1f %7.1f    %i %10.4f %8.1f %7.1f %7.1f'%(fpars['dec'],fpars['inc'],fpars['n'],fpars['r'],fpars['k'],fpars['alpha95'], fpars['csd'])
    if ofile == "":
        print outstring
    else:
        out.write(outstring+'\n')
Esempio n. 3
0
def main():
    """
    NAME
       probRo.py

    DESCRIPTION
       Calculates Ro as a test for randomness - if R exceeds Ro given N, then set is not random at 95% level of confindence

    SYNTAX
       probRo.py [command line options]

    OPTIONS
        -h prints this help message
        -Nm number of Monte Carlo simulations (default is 10000)
        -Nmax maximum number for dataset (default is 10)
    """
    Ns,Nm=range(4,11),10000
    files,fmt={},'svg'
    if '-h' in sys.argv: # check if help is needed
        print main.__doc__
        sys.exit() # graceful quit
    if '-Nm' in sys.argv: 
        ind=sys.argv.index('-Nm')
        Nm=int(sys.argv[ind+1])
    if '-Nmax' in sys.argv: 
        ind=sys.argv.index('-Nmax')
        Nmax=int(sys.argv[ind+1])
        Ns=range(3,Nmax+1)
    PLT={'plt':1}
    pmagplotlib.plot_init(PLT['plt'],5,5)
    Ro=[]
    for N in Ns:
        Rs=[]
        n=0
        while n<Nm:
            dirs=pmag.get_unf(N)
            pars=pmag.fisher_mean(dirs)
            Rs.append(pars['r'])
            n+=1
        Rs.sort()
        crit=int(.95*Nm)
        Ro.append(Rs[crit])
    pmagplotlib.plotXY(PLT['plt'],Ns,Ro,'-','N','Ro','')
    pmagplotlib.plotXY(PLT['plt'],Ns,Ro,'ro','N','Ro','')
    pmagplotlib.drawFIGS(PLT)
    for key in PLT.keys():
        files[key]=key+'.'+fmt
    ans=raw_input(" S[a]ve to save plot, [q]uit without saving:  ")
    if ans=="a": pmagplotlib.saveP(PLT,files)
Esempio n. 4
0
def main():
    """
    NAME
       watsonsV.py

    DESCRIPTION
       calculates Watson's V statistic from input files

    INPUT FORMAT
       takes dec/inc as first two columns in two space delimited files
   
    SYNTAX
       watsonsV.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f FILE (with optional second)
        -f2 FILE (second file) 
        -ant,  flip antipodal directions to opposite direction
           in first file if only one file or flip all in second, if two files 
        -P  (don't save or show plot)
        -sav save figure and quit silently
        -fmt [png,svg,eps,pdf,jpg] format for saved figure

    OUTPUT
        Watson's V and the Monte Carlo Critical Value Vc.
        in plot, V is solid and Vc is dashed.

    """
    Flip=0
    show,plot=1,0
    fmt='svg'
    file2=""
    if '-h' in sys.argv: # check if help is needed
        print main.__doc__
        sys.exit() # graceful quit
    if '-ant' in  sys.argv: Flip=1
    if '-sav' in sys.argv: show,plot=0,1 # don't display, but do save plot
    if '-fmt' in sys.argv: 
        ind=sys.argv.index('-fmt')
        fmt=sys.argv[ind+1]
    if '-P' in  sys.argv: show=0 # don't display or save plot
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        file1=sys.argv[ind+1]
        data=numpy.loadtxt(file1).transpose()
        D1=numpy.array([data[0],data[1]]).transpose()
    else:
        print "-f is required"
        print main.__doc__
        sys.exit()
    if '-f2' in sys.argv:
        ind=sys.argv.index('-f2')
        file2=sys.argv[ind+1]
        data2=numpy.loadtxt(file2).transpose()
        D2=numpy.array([data2[0],data2[1]]).transpose()
        if Flip==1:
            D2,D=pmag.flip(D2) # D2 are now flipped
            if len(D2)!=0:
                if len(D)!=0: 
                    D2=numpy.concatenate(D,D2) # put all in D2
            elif len(D)!=0:
                D2=D
            else: 
                print 'length of second file is zero'
                sys.exit()
    elif Flip==1:D2,D1=pmag.flip(D1) # peel out antipodal directions, put in D2
#
    counter,NumSims=0,5000
#
# first calculate the fisher means and cartesian coordinates of each set of Directions
#
    pars_1=pmag.fisher_mean(D1)
    pars_2=pmag.fisher_mean(D2)
#
# get V statistic for these
#
    V=pmag.vfunc(pars_1,pars_2)
#
# do monte carlo simulation of datasets with same kappas, but common mean
# 
    Vp=[] # set of Vs from simulations
    if show==1:print "Doing ",NumSims," simulations"
    for k in range(NumSims):
        counter+=1
        if counter==50:
            if show==1:print k+1
            counter=0
        Dirp=[]
# get a set of N1 fisher distributed vectors with k1, calculate fisher stats
        for i in range(pars_1["n"]):
            Dirp.append(pmag.fshdev(pars_1["k"]))
        pars_p1=pmag.fisher_mean(Dirp)
# get a set of N2 fisher distributed vectors with k2, calculate fisher stats
        Dirp=[]
        for i in range(pars_2["n"]):
            Dirp.append(pmag.fshdev(pars_2["k"]))
        pars_p2=pmag.fisher_mean(Dirp)
# get the V for these
        Vk=pmag.vfunc(pars_p1,pars_p2)
        Vp.append(Vk)
#
# sort the Vs, get Vcrit (95th one)
#
    Vp.sort()
    k=int(.95*NumSims)
    if show==1:
        print "Watson's V,  Vcrit: " 
        print '   %10.1f %10.1f'%(V,Vp[k])
    if show==1 or plot==1:
        CDF={'cdf':1}
        pmagplotlib.plot_init(CDF['cdf'],5,5)
        pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"")
        pmagplotlib.plotVs(CDF['cdf'],[V],'g','-')
        pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--')
        if plot==0:pmagplotlib.drawFIGS(CDF)
        files={}
        if file2!="":
            files['cdf']='WatsonsV_'+file1+'_'+file2+'.'+fmt
        else:
            files['cdf']='WatsonsV_'+file1+'.'+fmt
        if pmagplotlib.isServer:
            black     = '#000000'
            purple    = '#800080'
            titles={}
            titles['cdf']='Cumulative Distribution'
            CDF = pmagplotlib.addBorders(CDF,titles,black,purple)
            pmagplotlib.saveP(CDF,files)
        elif plot==0:
            ans=raw_input(" S[a]ve to save plot, [q]uit without saving:  ")
            if ans=="a": pmagplotlib.saveP(CDF,files) 
        if plot==1: # save and quit silently
            pmagplotlib.saveP(CDF,files)
Esempio n. 5
0
def main():
    """
    NAME
       plotdi_e.py

    DESCRIPTION
       plots equal area projection  from dec inc data and cones of confidence 
           (Fisher, kent or Bingham or bootstrap).

    INPUT FORMAT
       takes dec/inc as first two columns in space delimited file

    SYNTAX
       plotdi_e.py [command line options]

    OPTIONS
        -h prints help message and quits
        -i for interactive parameter entry
        -f FILE, sets input filename on command line 
        -Fish plots unit vector mean direction, alpha95
        -Bing plots Principal direction, Bingham confidence ellipse
        -Kent plots unit vector mean direction, confidence ellipse
        -Boot E plots unit vector mean direction, bootstrapped confidence ellipse
        -Boot V plots  unit vector mean direction, distribution of bootstrapped means

    """
    dist='F' # default distribution is Fisherian
    mode=1
    EQ={'eq':1}
    if len(sys.argv) > 0:
        if '-h' in sys.argv: # check if help is needed
            print main.__doc__
            sys.exit() # graceful quit
        if '-i' in sys.argv: # ask for filename
            file=raw_input("Enter file name with dec, inc data: ")
            dist=raw_input("Enter desired distrubution: [Fish]er, [Bing]ham, [Kent] [Boot] [default is Fisher]: ")
            if dist=="":dist="F"
            if dist=="Boot":
                 type=raw_input(" Ellipses or distribution of vectors? [E]/V ")
                 if type=="" or type=="E":
                     dist="BE"
                 else:
                     dist="BE"
        else:
#
            if '-f' in sys.argv:
                ind=sys.argv.index('-f')
                file=sys.argv[ind+1]
            else:
                print 'you must specify a file name'
                print main.__doc__
                sys.exit()
            if '-Bing' in sys.argv:dist='B'
            if '-Kent' in sys.argv:dist='K'
            if '-Boot' in sys.argv:
                ind=sys.argv.index('-Boot')
                type=sys.argv[ind+1]
                if type=='E': 
                    dist='BE'
                elif type=='V': 
                    dist='BV'
                    EQ['bdirs']=2
                    pmagplotlib.plot_init(EQ['bdirs'],5,5)
                else:
                    print main.__doc__
                    sys.exit()
    pmagplotlib.plot_init(EQ['eq'],5,5)
#
# get to work
    f=open(file,'r')
    data=f.readlines()
#
    DIs= [] # set up list for dec inc data
    DiRecs=[]
    pars=[]
    nDIs,rDIs,npars,rpars=[],[],[],[]
    mode =1
    for line in data:   # read in the data from standard input
        DiRec={}
        rec=line.split() # split each line on space to get records
        DIs.append((float(rec[0]),float(rec[1]),1.))
        DiRec['dec']=rec[0]
        DiRec['inc']=rec[1]
        DiRec['direction_type']='l'
        DiRecs.append(DiRec)
    # split into two modes
    ppars=pmag.doprinc(DIs) # get principal directions
    for rec in DIs:
        angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']])
        if angle>90.:
            rDIs.append(rec)
        else:
            nDIs.append(rec)
    if dist=='B': # do on whole dataset
        title="Bingham confidence ellipse"
        bpars=pmag.dobingham(DIs)
        for key in bpars.keys():
            if key!='n':print "    ",key, '%7.1f'%(bpars[key])
            if key=='n':print "    ",key, '       %i'%(bpars[key])
        npars.append(bpars['dec']) 
        npars.append(bpars['inc'])
        npars.append(bpars['Zeta']) 
        npars.append(bpars['Zdec']) 
        npars.append(bpars['Zinc'])
        npars.append(bpars['Eta']) 
        npars.append(bpars['Edec']) 
        npars.append(bpars['Einc'])
    if dist=='F':
        title="Fisher confidence cone"
        if len(nDIs)>3:
            fpars=pmag.fisher_mean(nDIs)
            print "mode ",mode
            for key in fpars.keys():
                if key!='n':print "    ",key, '%7.1f'%(fpars[key])
                if key=='n':print "    ",key, '       %i'%(fpars[key])
            mode+=1
            npars.append(fpars['dec']) 
            npars.append(fpars['inc'])
            npars.append(fpars['alpha95']) # Beta
            npars.append(fpars['dec']) 
            isign=abs(fpars['inc'])/fpars['inc'] 
            npars.append(fpars['inc']-isign*90.) #Beta inc
            npars.append(fpars['alpha95']) # gamma 
            npars.append(fpars['dec']+90.) # Beta dec
            npars.append(0.) #Beta inc
        if len(rDIs)>3:
            fpars=pmag.fisher_mean(rDIs)
            print "mode ",mode
            for key in fpars.keys():
                if key!='n':print "    ",key, '%7.1f'%(fpars[key])
                if key=='n':print "    ",key, '       %i'%(fpars[key])
            mode+=1
            rpars.append(fpars['dec']) 
            rpars.append(fpars['inc'])
            rpars.append(fpars['alpha95']) # Beta
            rpars.append(fpars['dec']) 
            isign=abs(fpars['inc'])/fpars['inc'] 
            rpars.append(fpars['inc']-isign*90.) #Beta inc
            rpars.append(fpars['alpha95']) # gamma 
            rpars.append(fpars['dec']+90.) # Beta dec
            rpars.append(0.) #Beta inc
    if dist=='K':
        title="Kent confidence ellipse"
        if len(nDIs)>3:
            kpars=pmag.dokent(nDIs,len(nDIs))
            print "mode ",mode
            for key in kpars.keys():
                if key!='n':print "    ",key, '%7.1f'%(kpars[key])
                if key=='n':print "    ",key, '       %i'%(kpars[key])
            mode+=1
            npars.append(kpars['dec']) 
            npars.append(kpars['inc'])
            npars.append(kpars['Zeta']) 
            npars.append(kpars['Zdec']) 
            npars.append(kpars['Zinc'])
            npars.append(kpars['Eta']) 
            npars.append(kpars['Edec']) 
            npars.append(kpars['Einc'])
        if len(rDIs)>3:
            kpars=pmag.dokent(rDIs,len(rDIs))
            print "mode ",mode
            for key in kpars.keys():
                if key!='n':print "    ",key, '%7.1f'%(kpars[key])
                if key=='n':print "    ",key, '       %i'%(kpars[key])
            mode+=1
            rpars.append(kpars['dec']) 
            rpars.append(kpars['inc'])
            rpars.append(kpars['Zeta']) 
            rpars.append(kpars['Zdec']) 
            rpars.append(kpars['Zinc'])
            rpars.append(kpars['Eta']) 
            rpars.append(kpars['Edec']) 
            rpars.append(kpars['Einc'])
    else: # assume bootstrap
        if dist=='BE':
            if len(nDIs)>5:
                BnDIs=pmag.di_boot(nDIs)
                Bkpars=pmag.dokent(BnDIs,1.)
                print "mode ",mode
                for key in Bkpars.keys():
                    if key!='n':print "    ",key, '%7.1f'%(Bkpars[key])
                    if key=='n':print "    ",key, '       %i'%(Bkpars[key])
                mode+=1
                npars.append(Bkpars['dec']) 
                npars.append(Bkpars['inc'])
                npars.append(Bkpars['Zeta']) 
                npars.append(Bkpars['Zdec']) 
                npars.append(Bkpars['Zinc'])
                npars.append(Bkpars['Eta']) 
                npars.append(Bkpars['Edec']) 
                npars.append(Bkpars['Einc'])
            if len(rDIs)>5:
                BrDIs=pmag.di_boot(rDIs)
                Bkpars=pmag.dokent(BrDIs,1.)
                print "mode ",mode
                for key in Bkpars.keys():
                    if key!='n':print "    ",key, '%7.1f'%(Bkpars[key])
                    if key=='n':print "    ",key, '       %i'%(Bkpars[key])
                mode+=1
                rpars.append(Bkpars['dec']) 
                rpars.append(Bkpars['inc'])
                rpars.append(Bkpars['Zeta']) 
                rpars.append(Bkpars['Zdec']) 
                rpars.append(Bkpars['Zinc'])
                rpars.append(Bkpars['Eta']) 
                rpars.append(Bkpars['Edec']) 
                rpars.append(Bkpars['Einc'])
            title="Bootstrapped confidence ellipse"
        elif dist=='BV':
            if len(nDIs)>5:
                pmagplotlib.plotEQ(EQ['eq'],nDIs,'Data')
                BnDIs=pmag.di_boot(nDIs)
                pmagplotlib.plotEQ(EQ['bdirs'],BnDIs,'Bootstrapped Eigenvectors')
            if len(rDIs)>5:
                BrDIs=pmag.di_boot(rDIs)
                if len(nDIs)>5:  # plot on existing plots
                    pmagplotlib.plotDI(EQ['eq'],rDIs)
                    pmagplotlib.plotDI(EQ['bdirs'],BrDIs)
                else:
                    pmagplotlib.plotEQ(EQ['eq'],rDIs,'Data')
                    pmagplotlib.plotEQ(EQ['bdirs'],BrDIs,'Bootstrapped Eigenvectors')
            pmagplotlib.drawFIGS(EQ)
            ans=raw_input('s[a]ve, [q]uit ')
            if ans=='q':sys.exit()
            if ans=='a':
                files={}
                for key in EQ.keys():
                    files[key]='BE_'+key+'.svg'
                pmagplotlib.saveP(EQ,files)
            sys.exit() 
    if len(nDIs)>5:
        pmagplotlib.plotCONF(EQ['eq'],title,DiRecs,npars,1)
        if len(rDIs)>5 and dist!='B': 
            pmagplotlib.plotCONF(EQ['eq'],title,[],rpars,0)
    elif len(rDIs)>5 and dist!='B': 
        pmagplotlib.plotCONF(EQ['eq'],title,DiRecs,rpars,1)
    pmagplotlib.drawFIGS(EQ)
    ans=raw_input('s[a]ve, [q]uit ')
    if ans=='q':sys.exit()
    if ans=='a':
        files={}
        for key in EQ.keys():
            files[key]=key+'.svg'
        pmagplotlib.saveP(EQ,files)
def watson_common_mean(Data1,Data2,NumSims=5000,plot='no'):
    """
    Conduct a Watson V test for a common mean on two declination, inclination data sets
    
    This function calculates Watson's V statistic from input files through Monte Carlo
    simulation in order to test whether two populations of directional data could have
    been drawn from a common mean. The critical angle between the two sample mean
    directions and the corresponding McFadden and McElhinny (1990) classification is printed.


    Required Arguments
    ----------
    Data1 : a list of directional data [dec,inc]
    Data2 : a list of directional data [dec,inc]
    
    Optional Arguments
    ----------
    NumSims : number of Monte Carlo simulations (default is 5000)
    plot : the default is no plot ('no'). Putting 'yes' will the plot the CDF from
    the Monte Carlo simulations.
    """   
    pars_1=pmag.fisher_mean(Data1)
    pars_2=pmag.fisher_mean(Data2)

    cart_1=pmag.dir2cart([pars_1["dec"],pars_1["inc"],pars_1["r"]])
    cart_2=pmag.dir2cart([pars_2['dec'],pars_2['inc'],pars_2["r"]])
    Sw=pars_1['k']*pars_1['r']+pars_2['k']*pars_2['r'] # k1*r1+k2*r2
    xhat_1=pars_1['k']*cart_1[0]+pars_2['k']*cart_2[0] # k1*x1+k2*x2
    xhat_2=pars_1['k']*cart_1[1]+pars_2['k']*cart_2[1] # k1*y1+k2*y2
    xhat_3=pars_1['k']*cart_1[2]+pars_2['k']*cart_2[2] # k1*z1+k2*z2
    Rw=np.sqrt(xhat_1**2+xhat_2**2+xhat_3**2)
    V=2*(Sw-Rw)
    # keep weighted sum for later when determining the "critical angle" 
    # let's save it as Sr (notation of McFadden and McElhinny, 1990)
    Sr=Sw 
    
    # do monte carlo simulation of datasets with same kappas as data, 
    # but a common mean
    counter=0
    Vp=[] # set of Vs from simulations
    for k in range(NumSims): 
       
    # get a set of N1 fisher distributed vectors with k1,
    # calculate fisher stats
        Dirp=[]
        for i in range(pars_1["n"]):
            Dirp.append(pmag.fshdev(pars_1["k"]))
        pars_p1=pmag.fisher_mean(Dirp)
    # get a set of N2 fisher distributed vectors with k2, 
    # calculate fisher stats
        Dirp=[]
        for i in range(pars_2["n"]):
            Dirp.append(pmag.fshdev(pars_2["k"]))
        pars_p2=pmag.fisher_mean(Dirp)
    # get the V for these
        Vk=pmag.vfunc(pars_p1,pars_p2)
        Vp.append(Vk)

    # sort the Vs, get Vcrit (95th percentile one)

    Vp.sort()
    k=int(.95*NumSims)
    Vcrit=Vp[k]

    # equation 18 of McFadden and McElhinny, 1990 calculates the critical
    # value of R (Rwc)

    Rwc=Sr-(Vcrit/2)

    # following equation 19 of McFadden and McElhinny (1990) the critical
    # angle is calculated. If the observed angle (also calculated below)
    # between the data set means exceeds the critical angle the hypothesis 
    # of a common mean direction may be rejected at the 95% confidence
    # level. The critical angle is simply a different way to present 
    # Watson's V parameter so it makes sense to use the Watson V parameter
    # in comparison with the critical value of V for considering the test
    # results. What calculating the critical angle allows for is the 
    # classification of McFadden and McElhinny (1990) to be made
    # for data sets that are consistent with sharing a common mean.

    k1=pars_1['k']
    k2=pars_2['k']
    R1=pars_1['r']
    R2=pars_2['r']
    critical_angle=np.degrees(np.arccos(((Rwc**2)-((k1*R1)**2)
                                               -((k2*R2)**2))/
                                              (2*k1*R1*k2*R2)))
    D1=(pars_1['dec'],pars_1['inc'])
    D2=(pars_2['dec'],pars_2['inc'])
    angle=pmag.angle(D1,D2)

    print "Results of Watson V test: "
    print "" 
    print "Watson's V:           " '%.1f' %(V)
    print "Critical value of V:  " '%.1f' %(Vcrit)

    if V<Vcrit:
        print '"Pass": Since V is less than Vcrit, the null hypothesis'
        print 'that the two populations are drawn from distributions'
        print 'that share a common mean direction can not be rejected.'
    elif V>Vcrit:
        print '"Fail": Since V is greater than Vcrit, the two means can'
        print 'be distinguished at the 95% confidence level.'
    print ""    
    print "M&M1990 classification:"
    print "" 
    print "Angle between data set means: " '%.1f'%(angle)
    print "Critical angle for M&M1990:   " '%.1f'%(critical_angle)
    
    if V>Vcrit:
        print ""
    elif V<Vcrit:
        if critical_angle<5:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'A'"
        elif critical_angle<10:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'B'"
        elif critical_angle<20:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'C'"
        else:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'INDETERMINATE;"

    if plot=='yes':
        CDF={'cdf':1}
        #pmagplotlib.plot_init(CDF['cdf'],5,5)
        p1 = pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"")
        p2 = pmagplotlib.plotVs(CDF['cdf'],[V],'g','-')
        p3 = pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--')
        pmagplotlib.drawFIGS(CDF)
def sb_vgp_calc(dataframe):
    """
    This function calculates the angular dispersion of VGPs and corrects
    for within site dispersion to return a value S_b. The input data
    needs to be within a pandas Dataframe. The function also plots the
    VGPs and their associated Fisher mean on a projection centered on
    the mean.
    
    Parameters
    ----------- 
    dataframe : the name of the pandas.DataFrame containing the data
    
    the data frame needs to contain these columns:
    dataframe['site_lat'] : latitude of the site
    dataframe['site_lon'] : longitude of the site ---- changed to site_long so that it works for a given DF
    dataframe['inc_tc'] : tilt-corrected inclination
    dataframe['dec_tc'] : tilt-corrected declination
    dataframe['k'] : fisher precision parameter for directions
    dataframe['vgp_lat'] : VGP latitude ---- changed to pole_lat so that it works for a given DF
    dataframe['vgp_lon'] : VGP longitude ---- changed to pole_long so that it works for a given DF
    """

    # calculate the mean from the directional data
    dataframe_dirs=[]
    for n in range(0,len(dataframe)): 
        dataframe_dirs.append([dataframe['dec_tc'][n],
                               dataframe['inc_tc'][n],1.])
    dataframe_dir_mean=pmag.fisher_mean(dataframe_dirs)

    # calculate the mean from the vgp data
    dataframe_poles=[]
    dataframe_pole_lats=[]
    dataframe_pole_lons=[]
    for n in range(0,len(dataframe)): 
        dataframe_poles.append([dataframe['pole_long'][n],
                                dataframe['pole_lat'][n],1.])
        dataframe_pole_lats.append(dataframe['pole_lat'][n])
        dataframe_pole_lons.append(dataframe['pole_long'][n])                            
    dataframe_pole_mean=pmag.fisher_mean(dataframe_poles)

    # calculate mean paleolatitude from the directional data
    dataframe['paleolatitude']=lat_from_inc(dataframe_dir_mean['inc'])

    angle_list=[]
    for n in range(0,len(dataframe)):
        angle=pmag.angle([dataframe['pole_long'][n],dataframe['pole_lat'][n]],
                         [dataframe_pole_mean['dec'],dataframe_pole_mean['inc']])
        angle_list.append(angle[0])
    dataframe['delta_mean-pole']=angle_list

    # use eq. 2 of Cox (1970) to translate the directional precision parameter
    # into pole coordinates using the assumption of a Fisherian distribution in
    # directional coordinates and the paleolatitude as calculated from mean
    # inclination using the dipole equation
    dataframe['K']=dataframe['k']/(0.125*(5+18*np.sin(np.deg2rad(dataframe['paleolatitude']))**2
                                          +9*np.sin(np.deg2rad(dataframe['paleolatitude']))**4))
    dataframe['Sw']=81/(dataframe['K']**0.5)

    summation=0
    N=0
    for n in range(0,len(dataframe)):
        quantity=dataframe['delta_mean-pole'][n]**2-dataframe['Sw'][n]**2/np.float(dataframe['n'][n])
        summation+=quantity
        N+=1

    Sb=((1.0/(N-1.0))*summation)**0.5
    
    plt.figure(figsize=(6, 6))
    m = Basemap(projection='ortho',lat_0=dataframe_pole_mean['inc'],lon_0=dataframe_pole_mean['dec'],resolution='c',area_thresh=50000)
    m.drawcoastlines(linewidth=0.25)
    m.fillcontinents(color='bisque',lake_color='white',zorder=1)
    m.drawmapboundary(fill_color='white')
    m.drawmeridians(np.arange(0,360,30))
    m.drawparallels(np.arange(-90,90,30))
    
    plot_vgp(m,dataframe_pole_lons,dataframe_pole_lats,dataframe_pole_lons)
    plot_pole(m,dataframe_pole_mean['dec'],dataframe_pole_mean['inc'],
                    dataframe_pole_mean['alpha95'],color='r',marker='s')
    return Sb
Esempio n. 8
0
def main():
    """
    NAME
        eqarea_ell.py

    DESCRIPTION
       makes equal area projections from declination/inclination data
       and plot ellipses

    SYNTAX 
        eqarea_ell.py -h [command line options]
    
    INPUT 
       takes space delimited Dec/Inc data
    
    OPTIONS
        -h prints help message and quits
        -f FILE
        -fmt [svg,png,jpg] format for output plots
        -sav  saves figures and quits
        -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
    """
    FIG = {}  # plot dictionary
    FIG['eq'] = 1  # eqarea is figure 1
    fmt, dist, mode, plot = 'svg', 'F', 1, 0
    sym = {'lower': ['o', 'r'], 'upper': ['o', 'w'], 'size': 10}
    plotE = 0
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    pmagplotlib.plot_init(FIG['eq'], 5, 5)
    if '-sav' in sys.argv: plot = 1
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        title = sys.argv[ind + 1]
        data = numpy.loadtxt(title).transpose()
    if '-ell' in sys.argv:
        plotE = 1
        ind = sys.argv.index('-ell')
        ell_type = sys.argv[ind + 1]
        if ell_type == 'F': dist = 'F'
        if ell_type == 'K': dist = 'K'
        if ell_type == 'B': dist = 'B'
        if ell_type == 'Be': dist = 'BE'
        if ell_type == 'Bv':
            dist = 'BV'
            FIG['bdirs'] = 2
            pmagplotlib.plot_init(FIG['bdirs'], 5, 5)
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    DIblock = numpy.array([data[0], data[1]]).transpose()
    if len(DIblock) > 0:
        pmagplotlib.plotEQsym(FIG['eq'], DIblock, title, sym)
        if plot == 0: pmagplotlib.drawFIGS(FIG)
    else:
        print "no data to plot"
        sys.exit()
    if plotE == 1:
        ppars = pmag.doprinc(DIblock)  # get principal directions
        nDIs, rDIs, npars, rpars = [], [], [], []
        for rec in DIblock:
            angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])
            if angle > 90.:
                rDIs.append(rec)
            else:
                nDIs.append(rec)
        if dist == 'B':  # do on whole dataset
            etitle = "Bingham confidence ellipse"
            bpars = pmag.dobingham(DIblock)
            for key in bpars.keys():
                if key != 'n' and pmagplotlib.verbose:
                    print "    ", key, '%7.1f' % (bpars[key])
                if key == 'n' and pmagplotlib.verbose:
                    print "    ", key, '       %i' % (bpars[key])
            npars.append(bpars['dec'])
            npars.append(bpars['inc'])
            npars.append(bpars['Zeta'])
            npars.append(bpars['Zdec'])
            npars.append(bpars['Zinc'])
            npars.append(bpars['Eta'])
            npars.append(bpars['Edec'])
            npars.append(bpars['Einc'])
        if dist == 'F':
            etitle = "Fisher confidence cone"
            if len(nDIs) > 3:
                fpars = pmag.fisher_mean(nDIs)
                for key in fpars.keys():
                    if key != 'n' and pmagplotlib.verbose:
                        print "    ", key, '%7.1f' % (fpars[key])
                    if key == 'n' and pmagplotlib.verbose:
                        print "    ", key, '       %i' % (fpars[key])
                mode += 1
                npars.append(fpars['dec'])
                npars.append(fpars['inc'])
                npars.append(fpars['alpha95'])  # Beta
                npars.append(fpars['dec'])
                isign = abs(fpars['inc']) / fpars['inc']
                npars.append(fpars['inc'] - isign * 90.)  #Beta inc
                npars.append(fpars['alpha95'])  # gamma
                npars.append(fpars['dec'] + 90.)  # Beta dec
                npars.append(0.)  #Beta inc
            if len(rDIs) > 3:
                fpars = pmag.fisher_mean(rDIs)
                if pmagplotlib.verbose: print "mode ", mode
                for key in fpars.keys():
                    if key != 'n' and pmagplotlib.verbose:
                        print "    ", key, '%7.1f' % (fpars[key])
                    if key == 'n' and pmagplotlib.verbose:
                        print "    ", key, '       %i' % (fpars[key])
                mode += 1
                rpars.append(fpars['dec'])
                rpars.append(fpars['inc'])
                rpars.append(fpars['alpha95'])  # Beta
                rpars.append(fpars['dec'])
                isign = abs(fpars['inc']) / fpars['inc']
                rpars.append(fpars['inc'] - isign * 90.)  #Beta inc
                rpars.append(fpars['alpha95'])  # gamma
                rpars.append(fpars['dec'] + 90.)  # Beta dec
                rpars.append(0.)  #Beta inc
        if dist == 'K':
            etitle = "Kent confidence ellipse"
            if len(nDIs) > 3:
                kpars = pmag.dokent(nDIs, len(nDIs))
                if pmagplotlib.verbose: print "mode ", mode
                for key in kpars.keys():
                    if key != 'n' and pmagplotlib.verbose:
                        print "    ", key, '%7.1f' % (kpars[key])
                    if key == 'n' and pmagplotlib.verbose:
                        print "    ", key, '       %i' % (kpars[key])
                mode += 1
                npars.append(kpars['dec'])
                npars.append(kpars['inc'])
                npars.append(kpars['Zeta'])
                npars.append(kpars['Zdec'])
                npars.append(kpars['Zinc'])
                npars.append(kpars['Eta'])
                npars.append(kpars['Edec'])
                npars.append(kpars['Einc'])
            if len(rDIs) > 3:
                kpars = pmag.dokent(rDIs, len(rDIs))
                if pmagplotlib.verbose: print "mode ", mode
                for key in kpars.keys():
                    if key != 'n' and pmagplotlib.verbose:
                        print "    ", key, '%7.1f' % (kpars[key])
                    if key == 'n' and pmagplotlib.verbose:
                        print "    ", key, '       %i' % (kpars[key])
                mode += 1
                rpars.append(kpars['dec'])
                rpars.append(kpars['inc'])
                rpars.append(kpars['Zeta'])
                rpars.append(kpars['Zdec'])
                rpars.append(kpars['Zinc'])
                rpars.append(kpars['Eta'])
                rpars.append(kpars['Edec'])
                rpars.append(kpars['Einc'])
        else:  # assume bootstrap
            if len(nDIs) < 10 and len(rDIs) < 10:
                print 'too few data points for bootstrap'
                sys.exit()
            if dist == 'BE':
                print 'Be patient for bootstrap...'
                if len(nDIs) >= 10:
                    BnDIs = pmag.di_boot(nDIs)
                    Bkpars = pmag.dokent(BnDIs, 1.)
                    if pmagplotlib.verbose: print "mode ", mode
                    for key in Bkpars.keys():
                        if key != 'n' and pmagplotlib.verbose:
                            print "    ", key, '%7.1f' % (Bkpars[key])
                        if key == 'n' and pmagplotlib.verbose:
                            print "    ", key, '       %i' % (Bkpars[key])
                    mode += 1
                    npars.append(Bkpars['dec'])
                    npars.append(Bkpars['inc'])
                    npars.append(Bkpars['Zeta'])
                    npars.append(Bkpars['Zdec'])
                    npars.append(Bkpars['Zinc'])
                    npars.append(Bkpars['Eta'])
                    npars.append(Bkpars['Edec'])
                    npars.append(Bkpars['Einc'])
                if len(rDIs) >= 10:
                    BrDIs = pmag.di_boot(rDIs)
                    Bkpars = pmag.dokent(BrDIs, 1.)
                    if pmagplotlib.verbose: print "mode ", mode
                    for key in Bkpars.keys():
                        if key != 'n' and pmagplotlib.verbose:
                            print "    ", key, '%7.1f' % (Bkpars[key])
                        if key == 'n' and pmagplotlib.verbose:
                            print "    ", key, '       %i' % (Bkpars[key])
                    mode += 1
                    rpars.append(Bkpars['dec'])
                    rpars.append(Bkpars['inc'])
                    rpars.append(Bkpars['Zeta'])
                    rpars.append(Bkpars['Zdec'])
                    rpars.append(Bkpars['Zinc'])
                    rpars.append(Bkpars['Eta'])
                    rpars.append(Bkpars['Edec'])
                    rpars.append(Bkpars['Einc'])
                etitle = "Bootstrapped confidence ellipse"
            elif dist == 'BV':
                print 'Be patient for bootstrap...'
                vsym = {'lower': ['+', 'k'], 'upper': ['x', 'k'], 'size': 5}
                if len(nDIs) > 5:
                    BnDIs = pmag.di_boot(nDIs)
                    pmagplotlib.plotEQsym(FIG['bdirs'], BnDIs,
                                          'Bootstrapped Eigenvectors', vsym)
                if len(rDIs) > 5:
                    BrDIs = pmag.di_boot(rDIs)
                    if len(nDIs) > 5:  # plot on existing plots
                        pmagplotlib.plotDIsym(FIG['bdirs'], BrDIs, vsym)
                    else:
                        pmagplotlib.plotEQ(FIG['bdirs'], BrDIs,
                                           'Bootstrapped Eigenvectors', vsym)
        if dist == 'B':
            if len(nDIs) > 3 or len(rDIs) > 3:
                pmagplotlib.plotCONF(FIG['eq'], etitle, [], npars, 0)
        elif len(nDIs) > 3 and dist != 'BV':
            pmagplotlib.plotCONF(FIG['eq'], etitle, [], npars, 0)
            if len(rDIs) > 3:
                pmagplotlib.plotCONF(FIG['eq'], etitle, [], rpars, 0)
        elif len(rDIs) > 3 and dist != 'BV':
            pmagplotlib.plotCONF(FIG['eq'], etitle, [], rpars, 0)
        if plot == 0: pmagplotlib.drawFIGS(FIG)
    if plot == 0: pmagplotlib.drawFIGS(FIG)
    #
    files = {}
    for key in FIG.keys():
        files[key] = title + '_' + key + '.' + fmt
    if pmagplotlib.isServer:
        black = '#000000'
        purple = '#800080'
        titles = {}
        titles['eq'] = 'Equal Area Plot'
        FIG = pmagplotlib.addBorders(FIG, titles, black, purple)
        pmagplotlib.saveP(FIG, files)
    elif plot == 0:
        ans = raw_input(" S[a]ve to save plot, [q]uit, Return to continue:  ")
        if ans == "q": sys.exit()
        if ans == "a":
            pmagplotlib.saveP(FIG, files)
    else:
        pmagplotlib.saveP(FIG, files)
Esempio n. 9
0
def main():
    """
    NAME
       revtest_MM1990.py

    DESCRIPTION
       calculates Watson's V statistic from input files through Monte Carlo simulation in order to test whether normal and reversed populations could have been drawn from a common mean (equivalent to watsonV.py). Also provides the critical angle between the two sample mean directions and the corresponding McFadden and McElhinny (1990) classification.

    INPUT FORMAT
       takes dec/inc as first two columns in two space delimited files (one file for normal directions, one file for reversed directions).
   
    SYNTAX
       revtest_MM1990.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f FILE
        -f2 FILE
        -P  (don't plot the Watson V cdf)

    OUTPUT
        Watson's V between the two populations and the Monte Carlo Critical Value Vc.
        M&M1990 angle, critical angle and classification
        Plot of Watson's V CDF from Monte Carlo simulation (red line), V is solid and Vc is dashed.

    """
    D1, D2 = [], []
    plot = 1
    Flip = 1
    if "-h" in sys.argv:  # check if help is needed
        print main.__doc__
        sys.exit()  # graceful quit
    if "-P" in sys.argv:
        plot = 0
    if "-f" in sys.argv:
        ind = sys.argv.index("-f")
        file1 = sys.argv[ind + 1]
    f1 = open(file1, "rU")
    for line in f1.readlines():
        rec = line.split()
        Dec, Inc = float(rec[0]), float(rec[1])
        D1.append([Dec, Inc, 1.0])
    f1.close()
    if "-f2" in sys.argv:
        ind = sys.argv.index("-f2")
        file2 = sys.argv[ind + 1]
        f2 = open(file2, "rU")
        print "be patient, your computer is doing 5000 simulations..."
    for line in f2.readlines():
        rec = line.split()
        Dec, Inc = float(rec[0]), float(rec[1])
        D2.append([Dec, Inc, 1.0])
        f2.close()
    # take the antipode for the directions in file 2
    D2_flip = []
    for rec in D2:
        d, i = (rec[0] - 180.0) % 360.0, -rec[1]
        D2_flip.append([d, i, 1.0])

    pars_1 = pmag.fisher_mean(D1)
    pars_2 = pmag.fisher_mean(D2_flip)

    cart_1 = pmag.dir2cart([pars_1["dec"], pars_1["inc"], pars_1["r"]])
    cart_2 = pmag.dir2cart([pars_2["dec"], pars_2["inc"], pars_2["r"]])
    Sw = pars_1["k"] * pars_1["r"] + pars_2["k"] * pars_2["r"]  # k1*r1+k2*r2
    xhat_1 = pars_1["k"] * cart_1[0] + pars_2["k"] * cart_2[0]  # k1*x1+k2*x2
    xhat_2 = pars_1["k"] * cart_1[1] + pars_2["k"] * cart_2[1]  # k1*y1+k2*y2
    xhat_3 = pars_1["k"] * cart_1[2] + pars_2["k"] * cart_2[2]  # k1*z1+k2*z2
    Rw = numpy.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2)
    V = 2 * (Sw - Rw)
    #
    # keep weighted sum for later when determining the "critical angle" let's save it as Sr (notation of McFadden and McElhinny, 1990)
    #
    Sr = Sw
    #
    # do monte carlo simulation of datasets with same kappas, but common mean
    #
    counter, NumSims = 0, 5000
    Vp = []  # set of Vs from simulations
    for k in range(NumSims):
        #
        # get a set of N1 fisher distributed vectors with k1, calculate fisher stats
        #
        Dirp = []
        for i in range(pars_1["n"]):
            Dirp.append(pmag.fshdev(pars_1["k"]))
        pars_p1 = pmag.fisher_mean(Dirp)
        #
        # get a set of N2 fisher distributed vectors with k2, calculate fisher stats
        #
        Dirp = []
        for i in range(pars_2["n"]):
            Dirp.append(pmag.fshdev(pars_2["k"]))
        pars_p2 = pmag.fisher_mean(Dirp)
        #
        # get the V for these
        #
        Vk = pmag.vfunc(pars_p1, pars_p2)
        Vp.append(Vk)
    #
    # sort the Vs, get Vcrit (95th percentile one)
    #
    Vp.sort()
    k = int(0.95 * NumSims)
    Vcrit = Vp[k]
    #
    # equation 18 of McFadden and McElhinny, 1990 calculates the critical value of R (Rwc)
    #
    Rwc = Sr - (Vcrit / 2)
    #
    # following equation 19 of McFadden and McElhinny (1990) the critical angle is calculated.
    #
    k1 = pars_1["k"]
    k2 = pars_2["k"]
    R1 = pars_1["r"]
    R2 = pars_2["r"]
    critical_angle = numpy.degrees(
        numpy.arccos(((Rwc ** 2) - ((k1 * R1) ** 2) - ((k2 * R2) ** 2)) / (2 * k1 * R1 * k2 * R2))
    )
    D1_mean = (pars_1["dec"], pars_1["inc"])
    D2_mean = (pars_2["dec"], pars_2["inc"])
    angle = pmag.angle(D1_mean, D2_mean)
    #
    # print the results of the test
    #
    print ""
    print "Results of Watson V test: "
    print ""
    print "Watson's V:           " "%.1f" % (V)
    print "Critical value of V:  " "%.1f" % (Vcrit)

    if V < Vcrit:
        print '"Pass": Since V is less than Vcrit, the null hypothesis that the two populations are drawn from distributions that share a common mean direction (antipodal to one another) cannot be rejected.'
    elif V > Vcrit:
        print '"Fail": Since V is greater than Vcrit, the two means can be distinguished at the 95% confidence level.'
    print ""
    print "M&M1990 classification:"
    print ""
    print "Angle between data set means: " "%.1f" % (angle)
    print "Critical angle of M&M1990:   " "%.1f" % (critical_angle)

    if V > Vcrit:
        print ""
    elif V < Vcrit:
        if critical_angle < 5:
            print "The McFadden and McElhinny (1990) classification for this test is: 'A'"
        elif critical_angle < 10:
            print "The McFadden and McElhinny (1990) classification for this test is: 'B'"
        elif critical_angle < 20:
            print "The McFadden and McElhinny (1990) classification for this test is: 'C'"
        else:
            print "The McFadden and McElhinny (1990) classification for this test is: 'INDETERMINATE;"
    if plot == 1:
        CDF = {"cdf": 1}
        pmagplotlib.plot_init(CDF["cdf"], 5, 5)
        p1 = pmagplotlib.plotCDF(CDF["cdf"], Vp, "Watson's V", "r", "")
        p2 = pmagplotlib.plotVs(CDF["cdf"], [V], "g", "-")
        p3 = pmagplotlib.plotVs(CDF["cdf"], [Vp[k]], "b", "--")
        pmagplotlib.drawFIGS(CDF)
        files, fmt = {}, "svg"
        if file2 != "":
            files["cdf"] = "WatsonsV_" + file1 + "_" + file2 + "." + fmt
        else:
            files["cdf"] = "WatsonsV_" + file1 + "." + fmt
        if pmagplotlib.isServer:
            black = "#000000"
            purple = "#800080"
            titles = {}
            titles["cdf"] = "Cumulative Distribution"
            CDF = pmagplotlib.addBorders(CDF, titles, black, purple)
            pmagplotlib.saveP(CDF, files)
        else:
            ans = raw_input(" S[a]ve to save plot, [q]uit without saving:  ")
            if ans == "a":
                pmagplotlib.saveP(CDF, files)
Esempio n. 10
0
def main():
    """
    NAME
        eqarea_ell.py

    DESCRIPTION
       makes equal area projections from declination/inclination data
       and plot ellipses

    SYNTAX 
        eqarea_ell.py -h [command line options]
    
    INPUT 
       takes space delimited Dec/Inc data
    
    OPTIONS
        -h prints help message and quits
        -f FILE
        -fmt [svg,png,jpg] format for output plots
        -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
    """
    FIG = {}  # plot dictionary
    FIG["eq"] = 1  # eqarea is figure 1
    fmt, dist, mode = "svg", "F", 1
    plotE = 0
    if "-h" in sys.argv:
        print main.__doc__
        sys.exit()
    pmagplotlib.plot_init(FIG["eq"], 5, 5)
    if "-f" in sys.argv:
        ind = sys.argv.index("-f")
        title = sys.argv[ind + 1]
        f = open(title, "rU")
        data = f.readlines()
    if "-ell" in sys.argv:
        plotE = 1
        ind = sys.argv.index("-ell")
        ell_type = sys.argv[ind + 1]
        if ell_type == "F":
            dist = "F"
        if ell_type == "K":
            dist = "K"
        if ell_type == "B":
            dist = "B"
        if ell_type == "Be":
            dist = "BE"
        if ell_type == "Bv":
            dist = "BV"
            FIG["bdirs"] = 2
            pmagplotlib.plot_init(FIG["bdirs"], 5, 5)
    if "-fmt" in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    DIblock = []
    for line in data:
        if "\t" in line:
            rec = line.split("\t")  # split each line on space to get records
        else:
            rec = line.split()  # split each line on space to get records
        DIblock.append([float(rec[0]), float(rec[1])])
    if len(DIblock) > 0:
        pmagplotlib.plotEQ(FIG["eq"], DIblock, title)
    else:
        print "no data to plot"
        sys.exit()
    if plotE == 1:
        ppars = pmag.doprinc(DIblock)  # get principal directions
        nDIs, rDIs, npars, rpars = [], [], [], []
        for rec in DIblock:
            angle = pmag.angle([rec[0], rec[1]], [ppars["dec"], ppars["inc"]])
            if angle > 90.0:
                rDIs.append(rec)
            else:
                nDIs.append(rec)
        if dist == "B":  # do on whole dataset
            etitle = "Bingham confidence ellipse"
            bpars = pmag.dobingham(DIblock)
            for key in bpars.keys():
                if key != "n" and pmagplotlib.verbose:
                    print "    ", key, "%7.1f" % (bpars[key])
                if key == "n" and pmagplotlib.verbose:
                    print "    ", key, "       %i" % (bpars[key])
            npars.append(bpars["dec"])
            npars.append(bpars["inc"])
            npars.append(bpars["Zeta"])
            npars.append(bpars["Zdec"])
            npars.append(bpars["Zinc"])
            npars.append(bpars["Eta"])
            npars.append(bpars["Edec"])
            npars.append(bpars["Einc"])
        if dist == "F":
            etitle = "Fisher confidence cone"
            if len(nDIs) > 3:
                fpars = pmag.fisher_mean(nDIs)
                for key in fpars.keys():
                    if key != "n" and pmagplotlib.verbose:
                        print "    ", key, "%7.1f" % (fpars[key])
                    if key == "n" and pmagplotlib.verbose:
                        print "    ", key, "       %i" % (fpars[key])
                mode += 1
                npars.append(fpars["dec"])
                npars.append(fpars["inc"])
                npars.append(fpars["alpha95"])  # Beta
                npars.append(fpars["dec"])
                isign = abs(fpars["inc"]) / fpars["inc"]
                npars.append(fpars["inc"] - isign * 90.0)  # Beta inc
                npars.append(fpars["alpha95"])  # gamma
                npars.append(fpars["dec"] + 90.0)  # Beta dec
                npars.append(0.0)  # Beta inc
            if len(rDIs) > 3:
                fpars = pmag.fisher_mean(rDIs)
                if pmagplotlib.verbose:
                    print "mode ", mode
                for key in fpars.keys():
                    if key != "n" and pmagplotlib.verbose:
                        print "    ", key, "%7.1f" % (fpars[key])
                    if key == "n" and pmagplotlib.verbose:
                        print "    ", key, "       %i" % (fpars[key])
                mode += 1
                rpars.append(fpars["dec"])
                rpars.append(fpars["inc"])
                rpars.append(fpars["alpha95"])  # Beta
                rpars.append(fpars["dec"])
                isign = abs(fpars["inc"]) / fpars["inc"]
                rpars.append(fpars["inc"] - isign * 90.0)  # Beta inc
                rpars.append(fpars["alpha95"])  # gamma
                rpars.append(fpars["dec"] + 90.0)  # Beta dec
                rpars.append(0.0)  # Beta inc
        if dist == "K":
            etitle = "Kent confidence ellipse"
            if len(nDIs) > 3:
                kpars = pmag.dokent(nDIs, len(nDIs))
                if pmagplotlib.verbose:
                    print "mode ", mode
                for key in kpars.keys():
                    if key != "n" and pmagplotlib.verbose:
                        print "    ", key, "%7.1f" % (kpars[key])
                    if key == "n" and pmagplotlib.verbose:
                        print "    ", key, "       %i" % (kpars[key])
                mode += 1
                npars.append(kpars["dec"])
                npars.append(kpars["inc"])
                npars.append(kpars["Zeta"])
                npars.append(kpars["Zdec"])
                npars.append(kpars["Zinc"])
                npars.append(kpars["Eta"])
                npars.append(kpars["Edec"])
                npars.append(kpars["Einc"])
            if len(rDIs) > 3:
                kpars = pmag.dokent(rDIs, len(rDIs))
                if pmagplotlib.verbose:
                    print "mode ", mode
                for key in kpars.keys():
                    if key != "n" and pmagplotlib.verbose:
                        print "    ", key, "%7.1f" % (kpars[key])
                    if key == "n" and pmagplotlib.verbose:
                        print "    ", key, "       %i" % (kpars[key])
                mode += 1
                rpars.append(kpars["dec"])
                rpars.append(kpars["inc"])
                rpars.append(kpars["Zeta"])
                rpars.append(kpars["Zdec"])
                rpars.append(kpars["Zinc"])
                rpars.append(kpars["Eta"])
                rpars.append(kpars["Edec"])
                rpars.append(kpars["Einc"])
        else:  # assume bootstrap
            if len(nDIs) < 10 and len(rDIs) < 10:
                print "too few data points for bootstrap"
                sys.exit()
            if dist == "BE":
                if len(nDIs) >= 10:
                    BnDIs = pmag.di_boot(nDIs)
                    Bkpars = pmag.dokent(BnDIs, 1.0)
                    if pmagplotlib.verbose:
                        print "mode ", mode
                    for key in Bkpars.keys():
                        if key != "n" and pmagplotlib.verbose:
                            print "    ", key, "%7.1f" % (Bkpars[key])
                        if key == "n" and pmagplotlib.verbose:
                            print "    ", key, "       %i" % (Bkpars[key])
                    mode += 1
                    npars.append(Bkpars["dec"])
                    npars.append(Bkpars["inc"])
                    npars.append(Bkpars["Zeta"])
                    npars.append(Bkpars["Zdec"])
                    npars.append(Bkpars["Zinc"])
                    npars.append(Bkpars["Eta"])
                    npars.append(Bkpars["Edec"])
                    npars.append(Bkpars["Einc"])
                if len(rDIs) >= 10:
                    BrDIs = pmag.di_boot(rDIs)
                    Bkpars = pmag.dokent(BrDIs, 1.0)
                    if pmagplotlib.verbose:
                        print "mode ", mode
                    for key in Bkpars.keys():
                        if key != "n" and pmagplotlib.verbose:
                            print "    ", key, "%7.1f" % (Bkpars[key])
                        if key == "n" and pmagplotlib.verbose:
                            print "    ", key, "       %i" % (Bkpars[key])
                    mode += 1
                    rpars.append(Bkpars["dec"])
                    rpars.append(Bkpars["inc"])
                    rpars.append(Bkpars["Zeta"])
                    rpars.append(Bkpars["Zdec"])
                    rpars.append(Bkpars["Zinc"])
                    rpars.append(Bkpars["Eta"])
                    rpars.append(Bkpars["Edec"])
                    rpars.append(Bkpars["Einc"])
                etitle = "Bootstrapped confidence ellipse"
            elif dist == "BV":
                vsym = {"lower": ["+", "k"], "upper": ["x", "k"], "size": 5}
                if len(nDIs) > 5:
                    BnDIs = pmag.di_boot(nDIs)
                    pmagplotlib.plotEQsym(FIG["bdirs"], BnDIs, "Bootstrapped Eigenvectors", vsym)
                if len(rDIs) > 5:
                    BrDIs = pmag.di_boot(rDIs)
                    if len(nDIs) > 5:  # plot on existing plots
                        pmagplotlib.plotDIsym(FIG["bdirs"], BrDIs, vsym)
                    else:
                        pmagplotlib.plotEQ(FIG["bdirs"], BrDIs, "Bootstrapped Eigenvectors", vsym)
        if dist == "B":
            if len(nDIs) > 3 or len(rDIs) > 3:
                pmagplotlib.plotCONF(FIG["eq"], etitle, [], npars, 0)
        elif len(nDIs) > 3 and dist != "BV":
            pmagplotlib.plotCONF(FIG["eq"], etitle, [], npars, 0)
            if len(rDIs) > 3:
                pmagplotlib.plotCONF(FIG["eq"], etitle, [], rpars, 0)
        elif len(rDIs) > 3 and dist != "BV":
            pmagplotlib.plotCONF(FIG["eq"], etitle, [], rpars, 0)
    pmagplotlib.drawFIGS(FIG)
    #
    files = {}
    for key in FIG.keys():
        files[key] = title + "_" + key + "." + fmt
    if pmagplotlib.isServer:
        black = "#000000"
        purple = "#800080"
        titles = {}
        titles["eq"] = "Equal Area Plot"
        FIG = pmagplotlib.addBorders(FIG, titles, black, purple)
        pmagplotlib.saveP(FIG, files)
    else:
        ans = raw_input(" S[a]ve to save plot, [q]uit, Return to continue:  ")
        if ans == "q":
            sys.exit()
        if ans == "a":
            pmagplotlib.saveP(FIG, files)
Esempio n. 11
0
File: EI.py Progetto: jholmes/PmagPy
def main():
    """
    NAME
        EI.py [command line options]

    DESCRIPTION
        Finds bootstrap confidence bounds on Elongation and Inclination data

    SYNTAX
        EI.py  [command line options]

    OPTIONS
        -h prints help message and quits
        -f FILE specifies input file
        -p do parametric bootstrap

    INPUT
        dec/inc pairs

    OUTPUT
        makes a plot of the E/I pair and bootstrapped confidence bounds
        along with the E/I trend predicted by the TK03 field model
        prints out:
            Io (mean inclination), I_lower and I_upper are 95% confidence bounds on inclination
            Eo (elongation), E_lower and E_upper are 95% confidence bounds on elongation
            Edec,Einc are the elongation direction

    """
    par=0
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        file=open(sys.argv[ind+1],'rU')
    if '-p' in sys.argv: par=1
    rseed,nb,data=10,5000,[]
    upper,lower=int(round(.975*nb)),int(round(.025*nb))
    Es,Is=[],[]
    PLTS={'eq':1,'ei':2}
    pmagplotlib.plot_init(PLTS['eq'],5,5) 
    pmagplotlib.plot_init(PLTS['ei'],5,5) 
#    poly_tab= [  3.07448925e-06,  -3.49555831e-04,  -1.46990847e-02,   2.90905483e+00]
    poly_new= [  3.15976125e-06,  -3.52459817e-04,  -1.46641090e-02,   2.89538539e+00]
#    poly_cp88= [ 5.34558576e-06,  -7.70922659e-04,   5.18529685e-03,   2.90941351e+00]
#    poly_qc96= [  7.08210133e-06,  -8.79536536e-04,   1.09625547e-03,   2.92513660e+00]
#    poly_cj98=[  6.56675431e-06,  -7.91823539e-04,  -1.08211350e-03,   2.80557710e+00]
#    poly_tk03_g20= [  4.96757685e-06,  -6.02256097e-04,  -5.96103272e-03,   2.84227449e+00]
#    poly_tk03_g30= [  7.82525963e-06,  -1.39781724e-03,   4.47187092e-02,   2.54637535e+00]
#    poly_gr99_g=[  1.24362063e-07,  -1.69383384e-04,  -4.24479223e-03,   2.59257437e+00]
#    poly_gr99_e=[  1.26348154e-07,   2.01691452e-04,  -4.99142308e-02,   3.69461060e+00]
    E_EI,E_tab,E_new,E_cp88,E_cj98,E_qc96,E_tk03_g20=[],[],[],[],[],[],[]
    E_tk03_g30,E_gr99_g,E_gr99_e=[],[],[]
    I2=range(0,90,5)
    for inc in I2:
        E_new.append(EI(inc,poly_new)) # use the polynomial from Tauxe et al. (2008)
    pmagplotlib.plotEI(PLTS['ei'],E_new,I2,1)
    if '-f' in sys.argv:
        random.seed(rseed)
        for line in file.readlines():
            rec=line.split()
            dec=float(rec[0])
            inc=float(rec[1])
            if par==1:
                if  len(rec)==4:
                    N=(int(rec[2]))  # append n
                    K=float(rec[3])  # append k
                    rec=[dec,inc,N,K]
                    data.append(rec)
            else:
                rec=[dec,inc]
                data.append(rec)
        pmagplotlib.plotEQ(PLTS['eq'],data,'Data')
        ppars=pmag.doprinc(data)
        n=ppars["N"]
        Io=ppars['inc']
        Edec=ppars['Edir'][0]
        Einc=ppars['Edir'][1]
        Eo=(ppars['tau2']/ppars['tau3'])
        b=0
        print 'doing bootstrap - be patient'
        while b<nb:
            bdata=[]
            for j in range(n):
                boot=random.randint(0,n-1)
                random.jumpahead(rseed)
                if par==1:
                    DIs=[]
                    D,I,N,K=data[boot][0],data[boot][1],data[boot][2],data[boot][3]
                    for k in range(N):
                        dec,inc=pmag.fshdev(K)
                        drot,irot=pmag.dodirot(dec,inc,D,I)
                        DIs.append([drot,irot])
                    fpars=pmag.fisher_mean(DIs)
                    bdata.append([fpars['dec'],fpars['inc'],1.])  # replace data[boot] with parametric dec,inc    
                else:
                    bdata.append(data[boot])
            ppars=pmag.doprinc(bdata)
            Is.append(ppars['inc'])
            Es.append(ppars['tau2']/ppars['tau3'])
            b+=1
            if b%100==0:print b
        Is.sort()
        Es.sort()
        x,std=pmag.gausspars(Es)
        stderr=std/math.sqrt(len(data))
        pmagplotlib.plotX(PLTS['ei'],Io,Eo,Is[lower],Is[upper],Es[lower],Es[upper],'b-')
#        pmagplotlib.plotX(PLTS['ei'],Io,Eo,Is[lower],Is[upper],Eo-stderr,Eo+stderr,'b-')
        print 'Io, Eo, I_lower, I_upper, E_lower, E_upper, Edec, Einc'
        print '%7.1f %4.2f %7.1f %7.1f %4.2f %4.2f %7.1f %7.1f' %(Io,Eo,Is[lower],Is[upper],Es[lower],Es[upper], Edec,Einc)
#        print '%7.1f %4.2f %7.1f %7.1f %4.2f %4.2f' %(Io,Eo,Is[lower],Is[upper],Eo-stderr,Eo+stderr)
    pmagplotlib.drawFIGS(PLTS)
    files,fmt={},'svg'
    for key in PLTS.keys():
        files[key]=key+'.'+fmt 
    ans=raw_input(" S[a]ve to save plot, [q]uit without saving:  ")
    if ans=="a": pmagplotlib.saveP(PLTS,files) 
Esempio n. 12
0
def main():
    """
    NAME
        eqarea_magic.py

    DESCRIPTION
       makes equal area projections from declination/inclination data

    SYNTAX 
        eqarea_magic.py [command line options]
    
    INPUT 
       takes magic formatted pmag_results, pmag_sites, pmag_samples or pmag_specimens
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input magic format file from magic,default='pmag_results.txt'
         supported types=[magic_measurements,pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web]
        -obj OBJ: specify  level of plot  [all, sit, sam, spc], default is all
        -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted
                default is geographic
        -fmt [svg,png,jpg] format for output plots
        -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
        -c plot as colour contour 
    NOTE
        all: entire file; sit: site; sam: sample; spc: specimen
    """
    FIG={} # plot dictionary
    FIG['eq']=1 # eqarea is figure 1
    in_file,plot_key,coord,crd='pmag_results.txt','all',"-1",'g'
    fmt,dist,mode='svg','F',1
    plotE,contour=0,0
    dir_path='.'
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-WD' in sys.argv:
        ind=sys.argv.index('-WD')
        dir_path=sys.argv[ind+1]
    pmagplotlib.plot_init(FIG['eq'],5,5)
    if '-f' in sys.argv:
        ind=sys.argv.index("-f")
        in_file=dir_path+"/"+sys.argv[ind+1]
    if '-obj' in sys.argv:
        ind=sys.argv.index('-obj')
        plot_by=sys.argv[ind+1]
        if plot_by=='all':plot_key='all'
        if plot_by=='sit':plot_key='er_site_name'
        if plot_by=='sam':plot_key='er_sample_name'
        if plot_by=='spc':plot_key='er_specimen_name'
    if '-c' in sys.argv: contour=1
    if '-ell' in sys.argv:
        plotE=1
        ind=sys.argv.index('-ell')
        ell_type=sys.argv[ind+1]
        if ell_type=='F':dist='F' 
        if ell_type=='K':dist='K' 
        if ell_type=='B':dist='B' 
        if ell_type=='Be':dist='BE' 
        if ell_type=='Bv':
            dist='BV' 
            FIG['bdirs']=2
            pmagplotlib.plot_init(FIG['bdirs'],5,5)
    if '-crd' in sys.argv:
        ind=sys.argv.index("-crd")
        coord=sys.argv[ind+1]
        if coord=='g':coord="0"
        if coord=='t':coord="100"
    if '-fmt' in sys.argv:
        ind=sys.argv.index("-fmt")
        fmt=sys.argv[ind+1]
    Dec_keys=['site_dec','sample_dec','specimen_dec','measurement_dec','average_dec']
    Inc_keys=['site_inc','sample_inc','specimen_inc','measurement_inc','average_inc']
    Tilt_keys=['tilt_correction','site_tilt_correction','sample_tilt_correction','specimen_tilt_correction']
    Dir_type_keys=['','site_direction_type','sample_direction_type','specimen_direction_type']
    Name_keys=['er_specimen_name','er_sample_name','er_site_name','pmag_result_name']
    data,file_type=pmag.magic_read(in_file)
    if file_type=='pmag_results' and plot_key!="all":plot_key=plot_key+'s' # need plural for results table
    if pmagplotlib.verbose:    
        print len(data),' records read from ',in_file
    #
    #
    # find desired dec,inc data:
    #
    dir_type_key=''
    #
    # get plotlist if not plotting all records
    #
    plotlist=[]
    if plot_key!="all":
        for  rec in data:
            if rec[plot_key] not in plotlist:
                plotlist.append(rec[plot_key])
        plotlist.sort()
    else:
        plotlist.append('Whole file')
    for plot in plotlist:
        DIblock=[]
        GCblock=[]
        SLblock,SPblock=[],[]
        tilt_key=""
        mode=1
        for rec in data: # find what data are available
            if plot_key=='all' or rec[plot_key]==plot:
                if plot_key!="all":
                    title=rec[plot_key]
                else:
                    title=plot
                if coord=='-1':title=title+' Specimen Coordinates'
                if coord=='0':title=title+' Geographic Coordinates'
                if coord=='100':title=title+' Tilt corrected Coordinates'
                dec_key,inc_key,tilt_key,name_key,k="","","","",0
                while dec_key==""  and k<len(Dec_keys):
                    if Dec_keys[k]  in rec.keys() and rec[Dec_keys[k]]!="" and Inc_keys[k] in rec.keys() and rec[Inc_keys[k]]!="": 
                        dec_key,inc_key =Dec_keys[k],Inc_keys[k]
                    k+=1
                k=0
                while tilt_key==""  and k<len(Tilt_keys):
                    if Tilt_keys[k]  in rec.keys():tilt_key=Tilt_keys[k]
                    k+=1
                k=0
                while name_key==""  and k<len(Name_keys):
                    if Name_keys[k]  in rec.keys():name_key=Name_keys[k]
                    k+=1
                k=1
                while dir_type_key==""  and k<len(Dir_type_keys):
                    if Dir_type_keys[k]  in rec.keys():dir_type_key=Dir_type_keys[k]
                    k+=1
                if  dec_key!="":break 
        if tilt_key=="":tilt_key='-1'
        if dir_type_key=="":dir_type_key='direction_type'
        for rec in data: # pick out the data
          if (plot_key=='all' or rec[plot_key]==plot)  and rec[dec_key].strip()!="" and rec[inc_key].strip()!="":
            if dir_type_key not in rec.keys() or rec[dir_type_key]=="":rec[dir_type_key]='l'
            if tilt_key not in rec.keys():rec[tilt_key]='-1' # assume specimen coordinates unless otherwise specified
            if coord=='-1':
                    DIblock.append([float(rec[dec_key]),float(rec[inc_key])])
                    SLblock.append([rec[name_key],rec['magic_method_codes']])
            elif rec[tilt_key]==coord and rec[dir_type_key]=='l' and rec[dec_key]!="" and rec[inc_key]!="":
                if rec[tilt_key]==coord and rec[dir_type_key]=='l' and rec[dec_key]!="" and rec[inc_key]!="":
                    DIblock.append([float(rec[dec_key]),float(rec[inc_key])])
                    SLblock.append([rec[name_key],rec['magic_method_codes']])
            elif rec[tilt_key]==coord and rec[dir_type_key]!='l' and rec[dec_key]!="" and rec[inc_key]!="":
                    GCblock.append([float(rec[dec_key]),float(rec[inc_key])])
                    SPblock.append([rec[name_key],rec['magic_method_codes']])
        if len(DIblock)==0 and len(GCblock)==0:
            if pmagplotlib.verbose: print "no records for plotting"
            sys.exit()
        if pmagplotlib.verbose:
          for k in range(len(SLblock)):
            print '%s %s %7.1f %7.1f'%(SLblock[k][0],SLblock[k][1],DIblock[k][0],DIblock[k][1])
          for k in range(len(SPblock)):
            print '%s %s %7.1f %7.1f'%(SPblock[k][0],SPblock[k][1],GCblock[k][0],GCblock[k][1])
        if len(DIblock)>0: 
            if contour==0:
                pmagplotlib.plotEQ(FIG['eq'],DIblock,title)
            else:
                pmagplotlib.plotEQcont(FIG['eq'],DIblock)
        else:   pmagplotlib.plotNET(FIG['eq'])
        if len(GCblock)>0:
            for rec in GCblock: pmagplotlib.plotC(FIG['eq'],rec,90.,'g')
        if plotE==1:
            ppars=pmag.doprinc(DIblock) # get principal directions
            nDIs,rDIs,npars,rpars=[],[],[],[]
            for rec in DIblock:
                angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']])
                if angle>90.:
                    rDIs.append(rec)
                else:
                    nDIs.append(rec)
            if dist=='B': # do on whole dataset
                etitle="Bingham confidence ellipse"
                bpars=pmag.dobingham(DIblock)
                for key in bpars.keys():
                    if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(bpars[key])
                    if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(bpars[key])
                npars.append(bpars['dec']) 
                npars.append(bpars['inc'])
                npars.append(bpars['Zeta']) 
                npars.append(bpars['Zdec']) 
                npars.append(bpars['Zinc'])
                npars.append(bpars['Eta']) 
                npars.append(bpars['Edec']) 
                npars.append(bpars['Einc'])
            if dist=='F':
                etitle="Fisher confidence cone"
                if len(nDIs)>2:
                    fpars=pmag.fisher_mean(nDIs)
                    for key in fpars.keys():
                        if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(fpars[key])
                        if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(fpars[key])
                    mode+=1
                    npars.append(fpars['dec']) 
                    npars.append(fpars['inc'])
                    npars.append(fpars['alpha95']) # Beta
                    npars.append(fpars['dec']) 
                    isign=abs(fpars['inc'])/fpars['inc'] 
                    npars.append(fpars['inc']-isign*90.) #Beta inc
                    npars.append(fpars['alpha95']) # gamma 
                    npars.append(fpars['dec']+90.) # Beta dec
                    npars.append(0.) #Beta inc
                if len(rDIs)>2:
                    fpars=pmag.fisher_mean(rDIs)
                    if pmagplotlib.verbose:print "mode ",mode
                    for key in fpars.keys():
                        if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(fpars[key])
                        if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(fpars[key])
                    mode+=1
                    rpars.append(fpars['dec']) 
                    rpars.append(fpars['inc'])
                    rpars.append(fpars['alpha95']) # Beta
                    rpars.append(fpars['dec']) 
                    isign=abs(fpars['inc'])/fpars['inc'] 
                    rpars.append(fpars['inc']-isign*90.) #Beta inc
                    rpars.append(fpars['alpha95']) # gamma 
                    rpars.append(fpars['dec']+90.) # Beta dec
                    rpars.append(0.) #Beta inc
            if dist=='K':
                etitle="Kent confidence ellipse"
                if len(nDIs)>3:
                    kpars=pmag.dokent(nDIs,len(nDIs))
                    if pmagplotlib.verbose:print "mode ",mode
                    for key in kpars.keys():
                        if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(kpars[key])
                        if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(kpars[key])
                    mode+=1
                    npars.append(kpars['dec']) 
                    npars.append(kpars['inc'])
                    npars.append(kpars['Zeta']) 
                    npars.append(kpars['Zdec']) 
                    npars.append(kpars['Zinc'])
                    npars.append(kpars['Eta']) 
                    npars.append(kpars['Edec']) 
                    npars.append(kpars['Einc'])
                if len(rDIs)>3:
                    kpars=pmag.dokent(rDIs,len(rDIs))
                    if pmagplotlib.verbose:print "mode ",mode
                    for key in kpars.keys():
                        if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(kpars[key])
                        if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(kpars[key])
                    mode+=1
                    rpars.append(kpars['dec']) 
                    rpars.append(kpars['inc'])
                    rpars.append(kpars['Zeta']) 
                    rpars.append(kpars['Zdec']) 
                    rpars.append(kpars['Zinc'])
                    rpars.append(kpars['Eta']) 
                    rpars.append(kpars['Edec']) 
                    rpars.append(kpars['Einc'])
            else: # assume bootstrap
                if dist=='BE':
                    if len(nDIs)>5:
                        BnDIs=pmag.di_boot(nDIs)
                        Bkpars=pmag.dokent(BnDIs,1.)
                        if pmagplotlib.verbose:print "mode ",mode
                        for key in Bkpars.keys():
                            if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(Bkpars[key])
                            if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(Bkpars[key])
                        mode+=1
                        npars.append(Bkpars['dec']) 
                        npars.append(Bkpars['inc'])
                        npars.append(Bkpars['Zeta']) 
                        npars.append(Bkpars['Zdec']) 
                        npars.append(Bkpars['Zinc'])
                        npars.append(Bkpars['Eta']) 
                        npars.append(Bkpars['Edec']) 
                        npars.append(Bkpars['Einc'])
                    if len(rDIs)>5:
                        BrDIs=pmag.di_boot(rDIs)
                        Bkpars=pmag.dokent(BrDIs,1.)
                        if pmagplotlib.verbose:print "mode ",mode
                        for key in Bkpars.keys():
                            if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(Bkpars[key])
                            if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(Bkpars[key])
                        mode+=1
                        rpars.append(Bkpars['dec']) 
                        rpars.append(Bkpars['inc'])
                        rpars.append(Bkpars['Zeta']) 
                        rpars.append(Bkpars['Zdec']) 
                        rpars.append(Bkpars['Zinc'])
                        rpars.append(Bkpars['Eta']) 
                        rpars.append(Bkpars['Edec']) 
                        rpars.append(Bkpars['Einc'])
                    etitle="Bootstrapped confidence ellipse"
                elif dist=='BV':
                    if len(nDIs)>5:
                        BnDIs=pmag.di_boot(nDIs)
                        pmagplotlib.plotEQ(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors')
                    if len(rDIs)>5:
                        BrDIs=pmag.di_boot(rDIs)
                        if len(nDIs)>5:  # plot on existing plots
                            pmagplotlib.plotDI(FIG['bdirs'],BrDIs)
                        else:
                            pmagplotlib.plotEQ(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors')
            if dist=='B':
                if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plotCONF(FIG['eq'],etitle,[],npars,0)
            elif len(nDIs)>3 and dist!='BV':
                pmagplotlib.plotCONF(FIG['eq'],etitle,[],npars,0)
                if len(rDIs)>3:
                    pmagplotlib.plotCONF(FIG['eq'],etitle,[],rpars,0)
            elif len(rDIs)>3 and dist!='BV':
                pmagplotlib.plotCONF(FIG['eq'],etitle,[],rpars,0)
        pmagplotlib.drawFIGS(FIG)
            #
        files={}
        for key in FIG.keys():
            files[key]=title.replace(" ","_")+'_'+'eqarea'+'.'+fmt 
        if pmagplotlib.isServer:
            black     = '#000000'
            purple    = '#800080'
            titles={}
            titles['eq']='Equal Area Plot'
            FIG = pmagplotlib.addBorders(FIG,titles,black,purple)
            pmagplotlib.saveP(FIG,files)
        else:
            ans=raw_input(" S[a]ve to save plot, [q]uit, Return to continue:  ")
            if ans=="q": sys.exit()
            if ans=="a": 
                pmagplotlib.saveP(FIG,files) 
def main():
    """
    NAME
        eqarea_ell.py

    DESCRIPTION
       makes equal area projections from declination/inclination data
       and plot ellipses

    SYNTAX 
        eqarea_ell.py -h [command line options]
    
    INPUT 
       takes space delimited Dec/Inc data
    
    OPTIONS
        -h prints help message and quits
        -f FILE
        -fmt [svg,png,jpg] format for output plots
        -sav  saves figures and quits
        -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
    """
    FIG={} # plot dictionary
    FIG['eq']=1 # eqarea is figure 1
    fmt,dist,mode,plot='svg','F',1,0
    sym={'lower':['o','r'],'upper':['o','w'],'size':10}
    plotE=0
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    pmagplotlib.plot_init(FIG['eq'],5,5)
    if '-sav' in sys.argv:plot=1
    if '-f' in sys.argv:
        ind=sys.argv.index("-f")
        title=sys.argv[ind+1]
        data=numpy.loadtxt(title).transpose()
    if '-ell' in sys.argv:
        plotE=1
        ind=sys.argv.index('-ell')
        ell_type=sys.argv[ind+1]
        if ell_type=='F':dist='F' 
        if ell_type=='K':dist='K' 
        if ell_type=='B':dist='B' 
        if ell_type=='Be':dist='BE' 
        if ell_type=='Bv':
            dist='BV' 
            FIG['bdirs']=2
            pmagplotlib.plot_init(FIG['bdirs'],5,5)
    if '-fmt' in sys.argv:
        ind=sys.argv.index("-fmt")
        fmt=sys.argv[ind+1]
    DIblock=numpy.array([data[0],data[1]]).transpose()
    if len(DIblock)>0: 
        pmagplotlib.plotEQsym(FIG['eq'],DIblock,title,sym)
        if plot==0:pmagplotlib.drawFIGS(FIG)
    else:
        print "no data to plot"
        sys.exit()
    if plotE==1:
        ppars=pmag.doprinc(DIblock) # get principal directions
        nDIs,rDIs,npars,rpars=[],[],[],[]
        for rec in DIblock:
            angle=pmag.angle([rec[0],rec[1]],[ppars['dec'],ppars['inc']])
            if angle>90.:
                rDIs.append(rec)
            else:
                nDIs.append(rec)
        if dist=='B': # do on whole dataset
            etitle="Bingham confidence ellipse"
            bpars=pmag.dobingham(DIblock)
            for key in bpars.keys():
                if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(bpars[key])
                if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(bpars[key])
            npars.append(bpars['dec']) 
            npars.append(bpars['inc'])
            npars.append(bpars['Zeta']) 
            npars.append(bpars['Zdec']) 
            npars.append(bpars['Zinc'])
            npars.append(bpars['Eta']) 
            npars.append(bpars['Edec']) 
            npars.append(bpars['Einc'])
        if dist=='F':
            etitle="Fisher confidence cone"
            if len(nDIs)>3:
                fpars=pmag.fisher_mean(nDIs)
                for key in fpars.keys():
                    if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(fpars[key])
                    if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(fpars[key])
                mode+=1
                npars.append(fpars['dec']) 
                npars.append(fpars['inc'])
                npars.append(fpars['alpha95']) # Beta
                npars.append(fpars['dec']) 
                isign=abs(fpars['inc'])/fpars['inc'] 
                npars.append(fpars['inc']-isign*90.) #Beta inc
                npars.append(fpars['alpha95']) # gamma 
                npars.append(fpars['dec']+90.) # Beta dec
                npars.append(0.) #Beta inc
            if len(rDIs)>3:
                fpars=pmag.fisher_mean(rDIs)
                if pmagplotlib.verbose:print "mode ",mode
                for key in fpars.keys():
                    if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(fpars[key])
                    if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(fpars[key])
                mode+=1
                rpars.append(fpars['dec']) 
                rpars.append(fpars['inc'])
                rpars.append(fpars['alpha95']) # Beta
                rpars.append(fpars['dec']) 
                isign=abs(fpars['inc'])/fpars['inc'] 
                rpars.append(fpars['inc']-isign*90.) #Beta inc
                rpars.append(fpars['alpha95']) # gamma 
                rpars.append(fpars['dec']+90.) # Beta dec
                rpars.append(0.) #Beta inc
        if dist=='K':
            etitle="Kent confidence ellipse"
            if len(nDIs)>3:
                kpars=pmag.dokent(nDIs,len(nDIs))
                if pmagplotlib.verbose:print "mode ",mode
                for key in kpars.keys():
                    if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(kpars[key])
                    if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(kpars[key])
                mode+=1
                npars.append(kpars['dec']) 
                npars.append(kpars['inc'])
                npars.append(kpars['Zeta']) 
                npars.append(kpars['Zdec']) 
                npars.append(kpars['Zinc'])
                npars.append(kpars['Eta']) 
                npars.append(kpars['Edec']) 
                npars.append(kpars['Einc'])
            if len(rDIs)>3:
                kpars=pmag.dokent(rDIs,len(rDIs))
                if pmagplotlib.verbose:print "mode ",mode
                for key in kpars.keys():
                    if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(kpars[key])
                    if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(kpars[key])
                mode+=1
                rpars.append(kpars['dec']) 
                rpars.append(kpars['inc'])
                rpars.append(kpars['Zeta']) 
                rpars.append(kpars['Zdec']) 
                rpars.append(kpars['Zinc'])
                rpars.append(kpars['Eta']) 
                rpars.append(kpars['Edec']) 
                rpars.append(kpars['Einc'])
        else: # assume bootstrap
            if len(nDIs)<10 and len(rDIs)<10:
                print 'too few data points for bootstrap'
                sys.exit()
            if dist=='BE':
                print 'Be patient for bootstrap...'
                if len(nDIs)>=10:
                    BnDIs=pmag.di_boot(nDIs)
                    Bkpars=pmag.dokent(BnDIs,1.)
                    if pmagplotlib.verbose:print "mode ",mode
                    for key in Bkpars.keys():
                        if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(Bkpars[key])
                        if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(Bkpars[key])
                    mode+=1
                    npars.append(Bkpars['dec']) 
                    npars.append(Bkpars['inc'])
                    npars.append(Bkpars['Zeta']) 
                    npars.append(Bkpars['Zdec']) 
                    npars.append(Bkpars['Zinc'])
                    npars.append(Bkpars['Eta']) 
                    npars.append(Bkpars['Edec']) 
                    npars.append(Bkpars['Einc'])
                if len(rDIs)>=10:
                    BrDIs=pmag.di_boot(rDIs)
                    Bkpars=pmag.dokent(BrDIs,1.)
                    if pmagplotlib.verbose:print "mode ",mode
                    for key in Bkpars.keys():
                        if key!='n' and pmagplotlib.verbose:print "    ",key, '%7.1f'%(Bkpars[key])
                        if key=='n' and pmagplotlib.verbose:print "    ",key, '       %i'%(Bkpars[key])
                    mode+=1
                    rpars.append(Bkpars['dec']) 
                    rpars.append(Bkpars['inc'])
                    rpars.append(Bkpars['Zeta']) 
                    rpars.append(Bkpars['Zdec']) 
                    rpars.append(Bkpars['Zinc'])
                    rpars.append(Bkpars['Eta']) 
                    rpars.append(Bkpars['Edec']) 
                    rpars.append(Bkpars['Einc'])
                etitle="Bootstrapped confidence ellipse"
            elif dist=='BV':
                print 'Be patient for bootstrap...'
                vsym={'lower':['+','k'],'upper':['x','k'],'size':5}
                if len(nDIs)>5:
                    BnDIs=pmag.di_boot(nDIs)
                    pmagplotlib.plotEQsym(FIG['bdirs'],BnDIs,'Bootstrapped Eigenvectors',vsym)
                if len(rDIs)>5:
                    BrDIs=pmag.di_boot(rDIs)
                    if len(nDIs)>5:  # plot on existing plots
                        pmagplotlib.plotDIsym(FIG['bdirs'],BrDIs,vsym)
                    else:
                        pmagplotlib.plotEQ(FIG['bdirs'],BrDIs,'Bootstrapped Eigenvectors',vsym)
        if dist=='B':
            if len(nDIs)> 3 or len(rDIs)>3: pmagplotlib.plotCONF(FIG['eq'],etitle,[],npars,0)
        elif len(nDIs)>3 and dist!='BV':
            pmagplotlib.plotCONF(FIG['eq'],etitle,[],npars,0)
            if len(rDIs)>3:
                pmagplotlib.plotCONF(FIG['eq'],etitle,[],rpars,0)
        elif len(rDIs)>3 and dist!='BV':
            pmagplotlib.plotCONF(FIG['eq'],etitle,[],rpars,0)
        if plot==0:pmagplotlib.drawFIGS(FIG)
    if plot==0:pmagplotlib.drawFIGS(FIG)
        #
    files={}
    for key in FIG.keys():
        files[key]=title+'_'+key+'.'+fmt 
    if pmagplotlib.isServer:
        black     = '#000000'
        purple    = '#800080'
        titles={}
        titles['eq']='Equal Area Plot'
        FIG = pmagplotlib.addBorders(FIG,titles,black,purple)
        pmagplotlib.saveP(FIG,files)
    elif plot==0:
        ans=raw_input(" S[a]ve to save plot, [q]uit, Return to continue:  ")
        if ans=="q": sys.exit()
        if ans=="a": 
            pmagplotlib.saveP(FIG,files) 
    else:
        pmagplotlib.saveP(FIG,files)
Esempio n. 14
0
def main():
    """
    NAME
       watsonsV.py

    DESCRIPTION
       calculates Watson's V statistic from input files

    INPUT FORMAT
       takes dec/inc as first two columns in two space delimited files
   
    SYNTAX
       watsonsV.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f FILE (with optional second)
        -f2 FILE (second file) 
        -ant,  flip antipodal directions in FILE to opposite direction
        -P  (don't plot)

    OUTPUT
        Watson's V and the Monte Carlo Critical Value Vc.
        in plot, V is solid and Vc is dashed.

    """
    D1,D2=[],[]
    Flip=0
    plot=1
    if '-h' in sys.argv: # check if help is needed
        print main.__doc__
        sys.exit() # graceful quit
    if '-ant' in  sys.argv: Flip=1
    if '-P' in  sys.argv: plot=0
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        file1=sys.argv[ind+1]
    f=open(file1,'rU')
    for line in f.readlines():
        rec=line.split()
        Dec,Inc=float(rec[0]),float(rec[1]) 
        D1.append([Dec,Inc,1.])
    f.close()
    if '-f2' in sys.argv:
        ind=sys.argv.index('-f2')
        file2=sys.argv[ind+1]
        f=open(file2,'rU')
        for line in f.readlines():
            if '\t' in line:
                rec=line.split('\t') # split each line on space to get records
            else:
                rec=line.split() # split each line on space to get records
            Dec,Inc=float(rec[0]),float(rec[1]) 
            if Flip==0:
                D2.append([Dec,Inc,1.])
            else:
                D1.append([Dec,Inc,1.])
        f.close()
        if Flip==1:
            D1,D2=pmag.flip(D1)
#
    counter,NumSims=0,5000
#
# first calculate the fisher means and cartesian coordinates of each set of Directions
#
    pars_1=pmag.fisher_mean(D1)
    pars_2=pmag.fisher_mean(D2)
#
# get V statistic for these
#
    V=pmag.vfunc(pars_1,pars_2)
#
# do monte carlo simulation of datasets with same kappas, but common mean
# 
    Vp=[] # set of Vs from simulations
    if plot==1:print "Doing ",NumSims," simulations"
    for k in range(NumSims):
        counter+=1
        if counter==50:
            if plot==1:print k+1
            counter=0
        Dirp=[]
# get a set of N1 fisher distributed vectors with k1, calculate fisher stats
        for i in range(pars_1["n"]):
            Dirp.append(pmag.fshdev(pars_1["k"]))
        pars_p1=pmag.fisher_mean(Dirp)
# get a set of N2 fisher distributed vectors with k2, calculate fisher stats
        Dirp=[]
        for i in range(pars_2["n"]):
            Dirp.append(pmag.fshdev(pars_2["k"]))
        pars_p2=pmag.fisher_mean(Dirp)
# get the V for these
        Vk=pmag.vfunc(pars_p1,pars_p2)
        Vp.append(Vk)
#
# sort the Vs, get Vcrit (95th one)
#
    Vp.sort()
    k=int(.95*NumSims)
    print "Watson's V,  Vcrit: " 
    print '   %10.1f %10.1f'%(V,Vp[k])
    if plot==1:
        CDF={'cdf':1}
        pmagplotlib.plot_init(CDF['cdf'],5,5)
        pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"")
        pmagplotlib.plotVs(CDF['cdf'],[V],'g','-')
        pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--')
        pmagplotlib.drawFIGS(CDF)
        files,fmt={},'svg'
        if file2!="":
            files['cdf']='WatsonsV_'+file1+'_'+file2+'.'+fmt
        else:
            files['cdf']='WatsonsV_'+file1+'.'+fmt
        if pmagplotlib.isServer:
            black     = '#000000'
            purple    = '#800080'
            titles={}
            titles['cdf']='Cumulative Distribution'
            CDF = pmagplotlib.addBorders(CDF,titles,black,purple)
            pmagplotlib.saveP(CDF,files)
        else:
            ans=raw_input(" S[a]ve to save plot, [q]uit without saving:  ")
            if ans=="a": pmagplotlib.saveP(CDF,files) 
Esempio n. 15
0
def main():
    """
    NAME
        orientation_magic.py
   
    DESCRIPTION
        takes tab delimited field notebook information and converts to MagIC formatted tables
 
    SYNTAX
        orientation_magic.py [command line options]

    OPTIONS
        -f FILE: specify input file, default is: orient.txt
        -Fsa FILE: specify output file, default is: er_samples.txt 
        -Fsi FILE: specify output site location file, default is: er_sites.txt 
        -app  append/update these data in existing er_samples.txt, er_sites.txt files
        -ocn OCON:  specify orientation convention, default is #1 below
        -dcn DCON [DEC]: specify declination convention, default is #1 below
            if DCON = 2, you must supply the declination correction 
        -BCN don't correct bedding_dip_dir for magnetic declination -already corrected 
        -ncn NCON:  specify naming convention: default is #1 below
        -a: averages all bedding poles and uses average for all samples: default is NO
        -gmt HRS:  specify hours to subtract from local time to get GMT: default is 0
        -mcd: specify sampling method codes as a colon delimited string:  [default is: FS-FD:SO-POM]
             FS-FD field sampling done with a drill
             FS-H field sampling done with hand samples
             FS-LOC-GPS  field location done with GPS
             FS-LOC-MAP  field location done with map
             SO-POM   a Pomeroy orientation device was used
             SO-ASC   an ASC orientation device was used

    INPUT FORMAT
        Input files must be tab delimited and have in the first line:
tab  location_name
        Note: The "location_name" will facilitate searching in the MagIC database. Data from different
            "locations" should be put in separate files.  The definition of a "location" is rather loose.
             Also this is the word 'tab' not a tab, which will be indicated by '\t'.
        The second line has the names of the columns (tab delimited), e.g.:
site_name sample_name mag_azimuth field_dip date lat long sample_lithology sample_type sample_class shadow_angle hhmm stratigraphic_height bedding_dip_direction bedding_dip GPS_baseline image_name image_look image_photographer participants method_codes site_description sample_description GPS_Az, sample_igsn, sample_texture, sample_cooling_rate, cooling_rate_corr, cooling_rate_mcd

    
      Notes: 
        1) column order doesn't matter but the NAMES do.   
        2) sample_name, sample_lithology, sample_type, sample_class, lat and long are required.  all others are optional.
        3) If subsequent data are the same (e.g., date, bedding orientation, participants, stratigraphic_height), 
            you can leave the field blank and the program will fill in the last recorded information. BUT if you really want a blank stratigraphic_height, enter a '-1'.    These will not be inherited and must be specified for each entry: image_name, look, photographer or method_codes
        4) hhmm must be in the format:  hh:mm and the hh must be in 24 hour time.
    date must be mm/dd/yy (years < 50 will be converted to  20yy and >50 will be assumed 19yy)
        5) image_name, image_look and image_photographer are colon delimited lists of file name (e.g., IMG_001.jpg) image look direction and the name of the photographer respectively.  If all images had same look and photographer, just enter info once.  The images will be assigned to the site for which they were taken - not at the sample level.  
        6) participants:  Names of who helped take the samples.  These must be a colon delimited list.
        7) method_codes:  Special method codes on a sample level, e.g., SO-GT5 which means the orientation is has an uncertainty of >5 degrees
             for example if it broke off before orienting....
        8) GPS_Az is the place to put directly determined GPS Azimuths, using, e.g., points along the drill direction.
        9) sample_cooling_rate is the cooling rate in K per Ma 
        10) int_corr_cooling_rate
        11) cooling_rate_mcd:  data adjustment method code for cooling rate correction;  DA-CR-EG is educated guess; DA-CR-PS is percent estimated from pilot samples; DA-CR-TRM is comparison between 2 TRMs acquired with slow and rapid cooling rates.
is the percent cooling rate factor to apply to specimens from this sample, DA-CR-XX is the method code
    
        Orientation convention:
            Samples are oriented in the field with a "field arrow" and measured in the laboratory with a "lab arrow". The lab arrow is the positive X direction of the right handed coordinate system of the specimen measurements. The lab and field arrows may  not be the same. In the MagIC database, we require the orientation (azimuth and plunge) of the X direction of the measurements (lab arrow). Here are some popular conventions that convert the field arrow azimuth (mag_azimuth in the orient.txt file) and dip (field_dip in orient.txt) to the azimuth and plunge  of the laboratory arrow (sample_azimuth and sample_dip in er_samples.txt). The two angles, mag_azimuth and field_dip are explained below. 

            [1] Standard Pomeroy convention of azimuth and hade (degrees from vertical down) 
                 of the drill direction (field arrow).  lab arrow azimuth= sample_azimuth = mag_azimuth; 
                 lab arrow dip = sample_dip =-field_dip. i.e. the lab arrow dip is minus the hade.
            [2] Field arrow is the strike  of the plane orthogonal to the drill direction,
                 Field dip is the hade of the drill direction.  Lab arrow azimuth = mag_azimuth-90 
                 Lab arrow dip = -field_dip 
            [3] Lab arrow is the same as the drill direction; 
                 hade was measured in the field.  
                 Lab arrow azimuth = mag_azimuth; Lab arrow dip = 90-field_dip
            [4] lab azimuth and dip are same as mag_azimuth, field_dip : use this for unoriented samples too
            [5] Same as AZDIP convention explained below - 
                azimuth and inclination of the drill direction are mag_azimuth and field_dip; 
                lab arrow is as in [1] above. 
                lab azimuth is same as mag_azimuth,lab arrow dip=field_dip-90
            [6] Lab arrow azimuth = mag_azimuth-90; Lab arrow dip = 90-field_dip
            [7] all others you will have to either customize your 
                self or e-mail [email protected] for help.  
       
         Magnetic declination convention:
            [1] Use the IGRF value at the lat/long and date supplied [default]
            [2] Will supply declination correction
            [3] mag_az is already corrected in file 
            [4] Correct mag_az but not bedding_dip_dir
    
         Sample naming convention:
            [1] XXXXY: where XXXX is an arbitrary length site designation and Y
                is the single character sample designation.  e.g., TG001a is the
                first sample from site TG001.    [default]
            [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)
            [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)
            [4-Z] XXXX[YYY]:  YYY is sample designation with Z characters from site XXX
            [5] site name = sample name
            [6] site name entered in site_name column in the orient.txt format input file  
            [7-Z] [XXX]YYY:  XXX is site designation with Z characters from samples  XXXYYY
            NB: all others you will have to either customize your 
                self or e-mail [email protected] for help.  
    OUTPUT
            output saved in er_samples.txt and er_sites.txt - will overwrite any existing files 
    """
    #
    # initialize variables
    #
    stratpos=""
    args=sys.argv
    date,lat,lon="","",""  # date of sampling, latitude (pos North), longitude (pos East)
    bed_dip,bed_dip_dir="",""
    participantlist=""
    Lats,Lons=[],[] # list of latitudes and longitudes
    SampOuts,SiteOuts,ImageOuts=[],[],[]  # lists of Sample records and Site records
    samplelist,sitelist,imagelist=[],[],[]
    samp_con,Z,average_bedding,DecCorr="1",1,"0",0.
    newbaseline,newbeddir,newbeddip="","",""
    meths=''
    delta_u="0"
    sclass,lithology,type="","",""
    newclass,newlith,newtype='','',''
    user=""
    BPs=[]# bedding pole declinations, bedding pole inclinations
    #
    #
    dir_path,AddTo='.',0
    if "-WD" in args:
        ind=args.index("-WD")
        dir_path=sys.argv[ind+1]
    orient_file,samp_file,or_con,corr = dir_path+"/orient.txt",dir_path+"/er_samples.txt","1","1"
    site_file=dir_path+"/er_sites.txt"
    image_file=dir_path+"/er_images.txt"
    SampRecs,SiteRecs,ImageRecs=[],[],[]
    if "-h" in args:
        print main.__doc__
        sys.exit()
    if "-f" in args:
        ind=args.index("-f")
        orient_file=dir_path+'/'+sys.argv[ind+1]
    if "-Fsa" in args:
        ind=args.index("-Fsa")
        samp_file=dir_path+'/'+sys.argv[ind+1]
    if "-Fsi" in args:
        ind=args.index("-Fsi")
        site_file=dir_path+'/'+sys.argv[ind+1]
    if '-app' in args:
        AddTo=1
        try:
            SampRecs,file_type=pmag.magic_read(samp_file)
            print 'sample data to be appended to: ', samp_file
        except:
            print 'problem with existing file: ',samp_file, ' will create new.'
        try:
            SiteRecs,file_type=pmag.magic_read(site_file)
            print 'site data to be appended to: ',site_file
        except:
            print 'problem with existing file: ',site_file,' will create new.'
        try:
            ImageRecs,file_type=pmag.magic_read(image_file)
            print 'image data to be appended to: ',image_file
        except:
            print 'problem with existing file: ',image_file,' will create new.'
    if "-ocn" in args:
        ind=args.index("-ocn")
        or_con=sys.argv[ind+1]
    if "-dcn" in args:
        ind=args.index("-dcn")
        corr=sys.argv[ind+1] 
        if corr=="2":
            DecCorr=float(sys.argv[ind+2])
        elif corr=="3":
            DecCorr=0.
    if '-BCN' in args:
        BedCorr=0
    else:
        BedCorr=1
    if "-ncn" in args:
        ind=args.index("-ncn")
        samp_con=sys.argv[ind+1]
        if "4" in samp_con:
            if "-" not in samp_con:
                print "option [4] must be in form 4-Z where Z is an integer"
                sys.exit()
            else:
                Z=samp_con.split("-")[1]
                samp_con="4"
        if "7" in samp_con:
            if "-" not in samp_con:
                print "option [7] must be in form 7-Z where Z is an integer"
                sys.exit()
            else:
                Z=samp_con.split("-")[1]
                samp_con="7"
    if "-gmt" in args:
        ind=args.index("-gmt")
        delta_u=(sys.argv[ind+1])
    if "-mcd" in args:
        ind=args.index("-mcd")
        meths=(sys.argv[ind+1])
    if "-a" in args: average_bedding="1"
    #
    # read in file to convert
    #
    OrData,location_name=pmag.magic_read(orient_file)
    #
    # step through the data sample by sample
    #
    for OrRec in OrData:
        if 'mag_azimuth' not in OrRec.keys():OrRec['mag_azimuth']=""
        if 'field_dip' not in OrRec.keys():OrRec['field_dip']=""
        if OrRec['mag_azimuth']==" ":OrRec["mag_azimuth"]=""
        if OrRec['field_dip']==" ":OrRec["field_dip"]=""
        if 'sample_description' in OrRec.keys():
            sample_description=OrRec['sample_description']
        else:
            sample_description=""
        if 'sample_igsn' in OrRec.keys():
            sample_igsn=OrRec['sample_igsn']
        else:
            sample_igsn=""
        if 'sample_texture' in OrRec.keys():
            sample_texture=OrRec['sample_texture']
        else:
            sample_texture=""
        if 'sample_cooling_rate' in OrRec.keys():
            sample_cooling_rate=OrRec['sample_cooling_rate']
        else:
            sample_cooling_rate=""
        if 'cooling_rate_corr' in OrRec.keys():
            cooling_rate_corr=OrRec['cooling_rate_corr']
            if 'cooling_rate_mcd' in OrRec.keys():
                cooling_rate_mcd=OrRec['cooling_rate_mcd']
            else:
                cooling_rate_mcd='DA-CR'
        else:
            cooling_rate_corr=""
            cooling_rate_mcd=""
        sample_orientation_flag='g'
        if 'sample_orientation_flag' in OrRec.keys():
            if OrRec['sample_orientation_flag']=='b' or OrRec["mag_azimuth"]=="": 
                sample_orientation_flag='b'
        methcodes=meths  # initialize method codes
        if meths!='':
            if 'method_codes' in OrRec.keys() and OrRec['method_codes'].strip()!="":methcodes=methcodes+":"+OrRec['method_codes'] # add notes 
        else:
            if 'method_codes' in OrRec.keys() and OrRec['method_codes'].strip()!="":methcodes=OrRec['method_codes'] # add notes 
        codes=methcodes.replace(" ","").split(":")
        MagRec={}
        MagRec["er_location_name"]=location_name
        MagRec["er_citation_names"]="This study"
        MagRec['sample_orientation_flag']=sample_orientation_flag
        MagRec['sample_igsn']=sample_igsn
        MagRec['sample_texture']=sample_texture
        MagRec['sample_cooling_rate']=sample_cooling_rate
        MagRec['cooling_rate_corr']=cooling_rate_corr
        MagRec['cooling_rate_mcd']=cooling_rate_mcd
    #
    # parse information common to all orientation methods
    #
        MagRec["er_sample_name"]=OrRec["sample_name"]
        if "IGSN" in OrRec.keys():
            MagRec["sample_igsn"]=OrRec["IGSN"]
        else:
            MagRec["sample_igsn"]=""
        MagRec["sample_height"],MagRec["sample_bed_dip_direction"],MagRec["sample_bed_dip"]="","",""
        if "er_sample_alternatives" in OrRec.keys():MagRec["er_sample_alternatives"]=OrRec["sample_alternatives"]
        sample=OrRec["sample_name"]
        if OrRec['mag_azimuth']=="" and OrRec['field_dip']!="":
            OrRec['mag_azimuth']='999'
        if OrRec["mag_azimuth"]!="":
            labaz,labdip=pmag.orient(float(OrRec["mag_azimuth"]),float(OrRec["field_dip"]),or_con)
            if labaz<0:labaz+=360.
        else:
            labaz,labdip="",""
        if  OrRec['mag_azimuth']=='999':labaz=""
        if "GPS_baseline" in OrRec.keys() and OrRec['GPS_baseline']!="":newbaseline=OrRec["GPS_baseline"]
        if newbaseline!="":baseline=float(newbaseline)
        if 'participants' in OrRec.keys() and OrRec['participants']!="" and OrRec['participants']!=participantlist: 
            participantlist=OrRec['participants']
        MagRec['er_scientist_mail_names']=participantlist
        newlat=OrRec["lat"]
        if newlat!="":lat=float(newlat)
        if lat=="":
            print "No latitude specified for ! ",sample
            sys.exit()
        MagRec["sample_lat"]='%11.5f'%(lat)
        newlon=OrRec["long"]
        if newlon!="":lon=float(newlon)
        if lon=="":
            print "No longitude specified for ! ",sample
            sys.exit()
        MagRec["sample_lon"]='%11.5f'%(lon)
        if 'bedding_dip_direction' in OrRec.keys(): newbeddir=OrRec["bedding_dip_direction"]
        if newbeddir!="":bed_dip_dir=OrRec['bedding_dip_direction']
        if 'bedding_dip' in OrRec.keys(): newbeddip=OrRec["bedding_dip"]
        if newbeddip!="":bed_dip=OrRec['bedding_dip']
        MagRec["sample_bed_dip"]=bed_dip
        MagRec["sample_bed_dip_direction"]=bed_dip_dir
        if "sample_class" in OrRec.keys():newclass=OrRec["sample_class"]
        if newclass!="":sclass=newclass
        if sclass=="": sclass="Not Specified"
        MagRec["sample_class"]=sclass
        if "sample_lithology" in OrRec.keys():newlith=OrRec["sample_lithology"]
        if newlith!="":lithology=newlith
        if lithology=="": lithology="Not Specified"
        MagRec["sample_lithology"]=lithology
        if "sample_type" in OrRec.keys():newtype=OrRec["sample_type"]
        if newtype!="":type=newtype
        if type=="": type="Not Specified"
        MagRec["sample_type"]=type
        if labdip!="":
            MagRec["sample_dip"]='%7.1f'%labdip
        else:
            MagRec["sample_dip"]=""
        if "date" in OrRec.keys():
            newdate=OrRec["date"]
            if newdate!="":date=newdate
            mmddyy=date.split('/')
            yy=int(mmddyy[2])
            if yy>50: 
                yy=1900+yy
            else:
                yy=2000+yy
            decimal_year=yy+float(mmddyy[0])/12
            sample_date='%i:%s:%s'%(yy,mmddyy[0],mmddyy[1])
            MagRec["sample_date"]=sample_date
        if labaz!="":
            MagRec["sample_azimuth"]='%7.1f'%(labaz)
        else:
            MagRec["sample_azimuth"]=""
        if "stratigraphic_height" in OrRec.keys():
            if OrRec["stratigraphic_height"]!="": 
                MagRec["sample_height"]=OrRec["stratigraphic_height"]
                stratpos=OrRec["stratigraphic_height"]
            elif OrRec["stratigraphic_height"]=='-1':
                MagRec["sample_height"]=""   # make empty
            else:
                MagRec["sample_height"]=stratpos   # keep last record if blank
#
        if corr=="1" and MagRec['sample_azimuth']!="": # get magnetic declination (corrected with igrf value)
            x,y,z,f=pmag.doigrf(lon,lat,0,decimal_year)
            Dir=pmag.cart2dir( (x,y,z)) 
            DecCorr=Dir[0]
        if "bedding_dip" in OrRec.keys(): 
            if OrRec["bedding_dip"]!="":
                MagRec["sample_bed_dip"]=OrRec["bedding_dip"]
                bed_dip=OrRec["bedding_dip"]
            else:
                MagRec["sample_bed_dip"]=bed_dip
        else: MagRec["sample_bed_dip"]='0'
        if "bedding_dip_direction" in OrRec.keys():
            if OrRec["bedding_dip_direction"]!="" and BedCorr==1: 
                dd=float(OrRec["bedding_dip_direction"])+DecCorr
                if dd>360.:dd=dd-360.
                MagRec["sample_bed_dip_direction"]='%7.1f'%(dd)
                dip_dir=MagRec["sample_bed_dip_direction"]
            else: 
                MagRec["sample_bed_dip_direction"]=OrRec['bedding_dip_direction']
        else: MagRec["sample_bed_dip_direction"]='0'
        if average_bedding!="0": BPs.append([float(MagRec["sample_bed_dip_direction"]),float(MagRec["sample_bed_dip"])-90.,1.])
        if MagRec['sample_azimuth']=="" and MagRec['sample_dip']=="":
            MagRec["sample_declination_correction"]=''
            methcodes=methcodes+':SO-NO'
        MagRec["magic_method_codes"]=methcodes
        MagRec['sample_description']=sample_description
    #
    # work on the site stuff too
        if 'site_name' in OrRec.keys():
            site=OrRec['site_name']
        else:
            site=pmag.parse_site(OrRec["sample_name"],samp_con,Z) # parse out the site name
        MagRec["er_site_name"]=site
        site_description="" # overwrite any prior description
        if 'site_description' in OrRec.keys() and OrRec['site_description']!="":
            site_description=OrRec['site_description'].replace(",",";")
        if "image_name" in OrRec.keys():
            images=OrRec["image_name"].split(":")
            if "image_look" in OrRec.keys():
                looks=OrRec['image_look'].split(":")
            else:
                looks=[]
            if "image_photographer" in OrRec.keys():
                photographers=OrRec['image_photographer'].split(":")
            else:
                photographers=[]
            for image in images:
                if image !="" and image not in imagelist:
                    imagelist.append(image)
                    ImageRec={}
                    ImageRec['er_image_name']=image
                    ImageRec['image_type']="outcrop"
                    ImageRec['image_date']=sample_date
                    ImageRec['er_citation_names']="This study"
                    ImageRec['er_location_name']=location_name
                    ImageRec['er_site_name']=MagRec['er_site_name']
                    k=images.index(image)
                    if len(looks)>k:
                        ImageRec['er_image_description']="Look direction: "+looks[k]
                    elif len(looks)>=1:
                        ImageRec['er_image_description']="Look direction: "+looks[-1]
                    else:
                        ImageRec['er_image_description']="Look direction: unknown"
                    if len(photographers)>k:
                        ImageRec['er_photographer_mail_names']=photographers[k]
                    elif len(photographers)>=1:
                        ImageRec['er_photographer_mail_names']=photographers[-1]
                    else:
                        ImageRec['er_photographer_mail_names']="unknown"
                    ImageOuts.append(ImageRec)
        if site not in sitelist:
    	    sitelist.append(site) # collect unique site names
    	    SiteRec={}
    	    SiteRec["er_site_name"]=site 
            SiteRec["site_definition"]="s"
    	    SiteRec["er_location_name"]=location_name
    	    SiteRec["er_citation_names"]="This study"
            SiteRec["site_lat"]=MagRec["sample_lat"]
            SiteRec["site_lon"]=MagRec["sample_lon"]
            SiteRec["site_height"]=MagRec["sample_height"]
            SiteRec["site_class"]=MagRec["sample_class"]
            SiteRec["site_lithology"]=MagRec["sample_lithology"]
            SiteRec["site_type"]=MagRec["sample_type"]
            SiteRec["site_description"]=site_description
            SiteOuts.append(SiteRec)
        if sample not in samplelist:
            samplelist.append(sample)
            if MagRec['sample_azimuth']!="": # assume magnetic compass only
                MagRec['magic_method_codes']=MagRec['magic_method_codes']+':SO-MAG'
                MagRec['magic_method_codes']=MagRec['magic_method_codes'].strip(":")
            SampOuts.append(MagRec)
            if MagRec['sample_azimuth']!="" and corr!='3':
                az=labaz+DecCorr
                if az>360.:az=az-360.
                CMDRec={}
                for key in MagRec.keys():
                    CMDRec[key]=MagRec[key] # make a copy of MagRec
                CMDRec["sample_azimuth"]='%7.1f'%(az)
                CMDRec["magic_method_codes"]=methcodes+':SO-CMD-NORTH'
                CMDRec["magic_method_codes"]=CMDRec['magic_method_codes'].strip(':')
                CMDRec["sample_declination_correction"]='%7.1f'%(DecCorr)
                if corr=='1':
                    CMDRec['sample_description']=sample_description+':Declination correction calculated from IGRF'
                else:
                    CMDRec['sample_description']=sample_description+':Declination correction supplied by user'
                CMDRec["sample_description"]=CMDRec['sample_description'].strip(':')
                SampOuts.append(CMDRec)
            if "mag_az_bs" in OrRec.keys() and OrRec["mag_az_bs"] !="" and OrRec["mag_az_bs"]!=" ":
                SRec={}
                for key in MagRec.keys():
                    SRec[key]=MagRec[key] # make a copy of MagRec
                labaz=float(OrRec["mag_az_bs"])
                az=labaz+DecCorr
                if az>360.:az=az-360.
                SRec["sample_azimuth"]='%7.1f'%(az)
                SRec["sample_declination_correction"]='%7.1f'%(DecCorr)
                SRec["magic_method_codes"]=methcodes+':SO-SIGHT-BACK:SO-CMD-NORTH'
                SampOuts.append(SRec)
    #
    # check for suncompass data
    #
            if "shadow_angle" in OrRec.keys() and OrRec["shadow_angle"]!="":  # there are sun compass data
                if delta_u=="":
                    delta_u=raw_input("Enter hours to SUBTRACT from time for  GMT: [0] ")
                    if delta_u=="":delta_u="0"
                SunRec,sundata={},{}
                shad_az=float(OrRec["shadow_angle"])
                sundata["date"]='%i:%s:%s:%s'%(yy,mmddyy[0],mmddyy[1],OrRec["hhmm"])
#                if eval(delta_u)<0:
#                        MagRec["sample_time_zone"]='GMT'+delta_u+' hours'
#                else:
#                    MagRec["sample_time_zone"]='GMT+'+delta_u+' hours'
                sundata["delta_u"]=delta_u
                sundata["lon"]='%7.1f'%(lon)   
                sundata["lat"]='%7.1f'%(lat)  
                sundata["shadow_angle"]=OrRec["shadow_angle"]
                sundec=pmag.dosundec(sundata)
                for key in MagRec.keys():
                    SunRec[key]=MagRec[key]  # make a copy of MagRec
                SunRec["sample_azimuth"]='%7.1f'%(sundec) 
                SunRec["sample_declination_correction"]=''
                SunRec["magic_method_codes"]=methcodes+':SO-SUN'
                SunRec["magic_method_codes"]=SunRec['magic_method_codes'].strip(':')
                SampOuts.append(SunRec)
    #
    # check for differential GPS data
    #
            if "prism_angle" in OrRec.keys() and OrRec["prism_angle"]!="":  # there are diff GPS data   
                GPSRec={}
                for key in MagRec.keys():
                    GPSRec[key]=MagRec[key]  # make a copy of MagRec
                prism_angle=float(OrRec["prism_angle"])
                laser_angle=float(OrRec["laser_angle"])
                if OrRec["GPS_baseline"]!="": baseline=float(OrRec["GPS_baseline"]) # new baseline
                gps_dec=baseline+laser_angle+prism_angle-90.
                while gps_dec>360.:
                    gps_dec=gps_dec-360.
                while gps_dec<0:
                    gps_dec=gps_dec+360. 
                for key in MagRec.keys():
                    GPSRec[key]=MagRec[key]  # make a copy of MagRec
                GPSRec["sample_azimuth"]='%7.1f'%(gps_dec) 
                GPSRec["sample_declination_correction"]=''
                GPSRec["magic_method_codes"]=methcodes+':SO-GPS-DIFF'
                SampOuts.append(GPSRec)
            if "GPS_Az" in OrRec.keys() and OrRec["GPS_Az"]!="":  # there are differential GPS Azimuth data   
                GPSRec={}
                for key in MagRec.keys():
                    GPSRec[key]=MagRec[key]  # make a copy of MagRec
                GPSRec["sample_azimuth"]='%7.1f'%(float(OrRec["GPS_Az"])) 
                GPSRec["sample_declination_correction"]=''
                GPSRec["magic_method_codes"]=methcodes+':SO-GPS-DIFF'
                SampOuts.append(GPSRec)
        if average_bedding!="0":  
            fpars=pmag.fisher_mean(BPs)
            print 'over-writing all bedding with average '
    Samps=[]
    for  rec in SampOuts:
        if average_bedding!="0":
            rec['sample_bed_dip_direction']='%7.1f'%(fpars['dec'])
            rec['sample_bed_dip']='%7.1f'%(fpars['inc']+90.)
            Samps.append(rec)
        else:
            Samps.append(rec)
    for rec in SampRecs:
        if rec['er_sample_name'] not in samplelist: # overwrite prior for this sample 
            Samps.append(rec)
    for rec in SiteRecs:
        if rec['er_site_name'] not in sitelist: # overwrite prior for this sample
            SiteOuts.append(rec)
    for rec in ImageRecs:
        if rec['er_image_name'] not in imagelist: # overwrite prior for this sample
            ImageOuts.append(rec)
    print 'saving data...'
    SampsOut,keys=pmag.fillkeys(Samps)
    Sites,keys=pmag.fillkeys(SiteOuts)
    pmag.magic_write(samp_file,SampsOut,"er_samples")
    pmag.magic_write(site_file,Sites,"er_sites")
    print "Data saved in ", samp_file,' and ',site_file
    if len(ImageOuts)>0:
        Images,keys=pmag.fillkeys(ImageOuts)
        pmag.magic_write(image_file,Images,"er_images")
        print "Image info saved in ",image_file
Esempio n. 16
0
def dokent(data, NN):  #From PmagPy (Tauxe et al., 2016)
    """
    gets Kent  parameters for data ([D,I],N)
    """
    X, kpars = [], {}
    N = len(data)
    if N < 2:
        return kpars
#
#  get fisher mean and convert to co-inclination (theta)/dec (phi) in radians
#
    fpars = pmag.fisher_mean(data)
    pbar = fpars["dec"] * np.pi / 180.
    tbar = (90. - fpars["inc"]) * np.pi / 180.
    #
    #   initialize matrices
    #
    H = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]
    w = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]
    b = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]
    gam = [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]
    xg = []
    #
    #  set up rotation matrix H
    #
    H = [[
        np.cos(tbar) * np.cos(pbar), -np.sin(pbar),
        np.sin(tbar) * np.cos(pbar)
    ], [
        np.cos(tbar) * np.sin(pbar),
        np.cos(pbar),
        np.sin(pbar) * np.sin(tbar)
    ], [-np.sin(tbar), 0., np.cos(tbar)]]
    #
    #  get cartesian coordinates of data
    #
    for rec in data:
        X.append(pmag.dir2cart([rec[0], rec[1], 1.]))
#
#   put in T matrix
#
    T = pmag.Tmatrix(X)
    for i in range(3):
        for j in range(3):
            T[i][j] = old_div(T[i][j], float(NN))
#
# compute B=H'TH
#
    for i in range(3):
        for j in range(3):
            for k in range(3):
                w[i][j] += T[i][k] * H[k][j]
    for i in range(3):
        for j in range(3):
            for k in range(3):
                b[i][j] += H[k][i] * w[k][j]
#
# choose a rotation w about North pole to diagonalize upper part of B
#
    psi = 0.5 * np.arctan(2. * b[0][1] / (b[0][0] - b[1][1]))
    w = [[np.cos(psi), -np.sin(psi), 0], [np.sin(psi),
                                          np.cos(psi), 0], [0., 0., 1.]]
    for i in range(3):
        for j in range(3):
            gamtmp = 0.
            for k in range(3):
                gamtmp += H[i][k] * w[k][j]
            gam[i][j] = gamtmp
    for i in range(N):
        xg.append([0., 0., 0.])
        for k in range(3):
            xgtmp = 0.
            for j in range(3):
                xgtmp += gam[j][k] * X[i][j]
            xg[i][k] = xgtmp
# compute asymptotic ellipse parameters
#
    xmu, sigma1, sigma2 = 0., 0., 0.
    for i in range(N):
        xmu += xg[i][2]
        sigma1 = sigma1 + xg[i][0]**2
        sigma2 = sigma2 + xg[i][1]**2
    xmu = old_div(xmu, float(N))
    sigma1 = old_div(sigma1, float(N))
    sigma2 = old_div(sigma2, float(N))
    g = -2.0 * np.log(0.05) / (float(NN) * xmu**2)
    if np.sqrt(sigma1 * g) < 1:
        eta = np.arcsin(np.sqrt(sigma1 * g))
    if np.sqrt(sigma2 * g) < 1:
        zeta = np.arcsin(np.sqrt(sigma2 * g))
    if np.sqrt(sigma1 * g) >= 1.:
        eta = old_div(np.pi, 2.)
    if np.sqrt(sigma2 * g) >= 1.:
        zeta = old_div(np.pi, 2.)
#
#  convert Kent parameters to directions,angles
#
    kpars["dec"] = fpars["dec"]
    kpars["inc"] = fpars["inc"]
    kpars["n"] = NN
    ZDir = pmag.cart2dir([gam[0][1], gam[1][1], gam[2][1]])
    EDir = pmag.cart2dir([gam[0][0], gam[1][0], gam[2][0]])
    kpars["Zdec"] = ZDir[0]
    kpars["Zinc"] = ZDir[1]
    kpars["Edec"] = EDir[0]
    kpars["Einc"] = EDir[1]
    if kpars["Zinc"] < 0:
        kpars["Zinc"] = -kpars["Zinc"]
        kpars["Zdec"] = (kpars["Zdec"] + 180.) % 360.
    if kpars["Einc"] < 0:
        kpars["Einc"] = -kpars["Einc"]
        kpars["Edec"] = (kpars["Edec"] + 180.) % 360.
    kpars["Zeta"] = zeta * 180. / np.pi
    kpars["Eta"] = eta * 180. / np.pi
    return kpars
Esempio n. 17
0
def main():
    """
    NAME
       watsonsF.py

    DESCRIPTION
       calculates Watson's F statistic from input files

    INPUT FORMAT
       takes dec/inc as first two columns in two space delimited files
   
    SYNTAX
       watsonsF.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f FILE (with optional second)
        -f2 FILE (second file) 
        -ant,  flip antipodal directions in FILE to opposite direction

    OUTPUT
        Watson's F, critical value from F-tables for 2, 2(N-2) degrees of freedom

    """
    D,D1,D2=[],[],[]
    Flip=0
    if '-h' in sys.argv: # check if help is needed
        print main.__doc__
        sys.exit() # graceful quit
    if '-ant' in  sys.argv: Flip=1
    if '-f' in sys.argv:
        ind=sys.argv.index('-f')
        file1=sys.argv[ind+1]
    if '-f2' in sys.argv:
        ind=sys.argv.index('-f2')
        file2=sys.argv[ind+1]
    f=open(file1,'rU')
    for line in f.readlines():
        if '\t' in line:
            rec=line.split('\t') # split each line on space to get records
        else:
            rec=line.split() # split each line on space to get records
        Dec,Inc=float(rec[0]),float(rec[1]) 
        D1.append([Dec,Inc,1.])
        D.append([Dec,Inc,1.])
    f.close()
    if Flip==0:
        f=open(file2,'rU')
        for line in f.readlines():
            rec=line.split()
            Dec,Inc=float(rec[0]),float(rec[1]) 
            D2.append([Dec,Inc,1.])
            D.append([Dec,Inc,1.])
        f.close()
    else:
        D1,D2=pmag.flip(D1)
        for d in D2: D.append(d) 
#
# first calculate the fisher means and cartesian coordinates of each set of Directions
#
    pars_0=pmag.fisher_mean(D)
    pars_1=pmag.fisher_mean(D1)
    pars_2=pmag.fisher_mean(D2)
#
# get F statistic for these
#
    N= len(D)
    R=pars_0['r']
    R1=pars_1['r']
    R2=pars_2['r']
    F=(N-2)*((R1+R2-R)/(N-R1-R2))
    Fcrit=pmag.fcalc(2,2*(N-2))
    print F,Fcrit
Esempio n. 18
0
def common_dir_MM90(dir1,dir2,NumSims=5000,plot='no'):
    dir1['r']=get_R(dir1)
    dir2['r']=get_R(dir2)
    #largely based on iWatsonV routine of Swanson-Hyell in IPMag    
    cart_1=pmag.dir2cart([dir1["dec"],dir1["inc"],dir1["r"]])
    cart_2=pmag.dir2cart([dir2['dec'],dir2['inc'],dir2["r"]])
    Sw=dir1['k']*dir1['r']+dir2['k']*dir2['r'] # k1*r1+k2*r2
    xhat_1=dir1['k']*cart_1[0]+dir2['k']*cart_2[0] # k1*x1+k2*x2
    xhat_2=dir1['k']*cart_1[1]+dir2['k']*cart_2[1] # k1*y1+k2*y2
    xhat_3=dir1['k']*cart_1[2]+dir2['k']*cart_2[2] # k1*z1+k2*z2
    Rw=np.sqrt(xhat_1**2+xhat_2**2+xhat_3**2)
    V=2*(Sw-Rw)
    # keep weighted sum for later when determining the "critical angle" 
    # let's save it as Sr (notation of McFadden and McElhinny, 1990)
    Sr=Sw 
    
    # do monte carlo simulation of datasets with same kappas as data, 
    # but a common mean
    counter=0
    Vp=[] # set of Vs from simulations
    for k in range(NumSims): 
       
    # get a set of N1 fisher distributed vectors with k1,
    # calculate fisher stats
        Dirp=[]
        for i in range(int(dir1["n"])):
            Dirp.append(pmag.fshdev(dir1["k"]))
        pars_p1=pmag.fisher_mean(Dirp)
    # get a set of N2 fisher distributed vectors with k2, 
    # calculate fisher stats
        Dirp=[]
        for i in range(int(dir2["n"])):
            Dirp.append(pmag.fshdev(dir2["k"]))
        pars_p2=pmag.fisher_mean(Dirp)
    # get the V for these
        Vk=pmag.vfunc(pars_p1,pars_p2)
        Vp.append(Vk)

    # sort the Vs, get Vcrit (95th percentile one)

    Vp.sort()
    k=int(.95*NumSims)
    Vcrit=Vp[k]

    # equation 18 of McFadden and McElhinny, 1990 calculates the critical
    # value of R (Rwc)

    Rwc=Sr-(Vcrit/2)

    # following equation 19 of McFadden and McElhinny (1990) the critical
    # angle is calculated. If the observed angle (also calculated below)
    # between the data set means exceeds the critical angle the hypothesis 
    # of a common mean direction may be rejected at the 95% confidence
    # level. The critical angle is simply a different way to present 
    # Watson's V parameter so it makes sense to use the Watson V parameter
    # in comparison with the critical value of V for considering the test
    # results. What calculating the critical angle allows for is the 
    # classification of McFadden and McElhinny (1990) to be made
    # for data sets that are consistent with sharing a common mean.

    k1=dir1['k']
    k2=dir2['k']
    R1=dir1['r']
    R2=dir2['r']
    critical_angle=np.degrees(np.arccos(((Rwc**2)-((k1*R1)**2)
                                               -((k2*R2)**2))/
                                              (2*k1*R1*k2*R2)))
    D1=(dir1['dec'],dir1['inc'])
    D2=(dir2['dec'],dir2['inc'])
    angle=pmag.angle(D1,D2)

    if V<Vcrit: 
        outcome='Pass'
        if critical_angle<5: MM90class='A'
        elif critical_angle<10: MM90class='B'
        elif critical_angle<20: MM90class='C'
        else: MM90class='INDETERMINATE'
    else:
        outcome='Fail'
        MM90class='FAIL'
        
    result=pd.Series([outcome,V,Vcrit,angle[0],critical_angle,MM90class], index=['Outcome','VWatson','Vcrit','angle','critangle','MM90class'])

    if plot=='yes':
        CDF={'cdf':1}
        #pmagplotlib.plot_init(CDF['cdf'],5,5)
        p1 = pmagplotlib.plotCDF(CDF['cdf'],Vp,"Watson's V",'r',"")
        p2 = pmagplotlib.plotVs(CDF['cdf'],[V],'g','-')
        p3 = pmagplotlib.plotVs(CDF['cdf'],[Vp[k]],'b','--')
        pmagplotlib.drawFIGS(CDF)
    
    return result
Esempio n. 19
0
def main():
    """
    NAME
        eqarea_magic.py

    DESCRIPTION
       makes equal area projections from declination/inclination data

    SYNTAX 
        eqarea_magic.py [command line options]
    
    INPUT 
       takes magic formatted pmag_results, pmag_sites, pmag_samples or pmag_specimens
    
    OPTIONS
        -h prints help message and quits
        -f FILE: specify input magic format file from magic,default='pmag_results.txt'
         supported types=[magic_measurements,pmag_specimens, pmag_samples, pmag_sites, pmag_results, magic_web]
        -obj OBJ: specify  level of plot  [all, sit, sam, spc], default is all
        -crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted
                default is geographic, unspecified assumed geographic
        -fmt [svg,png,jpg] format for output plots
        -ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
        -c plot as colour contour 
        -sav save plot and quit quietly
    NOTE
        all: entire file; sit: site; sam: sample; spc: specimen
    """
    FIG = {} # plot dictionary
    FIG['eqarea'] = 1 # eqarea is figure 1
    in_file, plot_key, coord, crd = 'pmag_results.txt', 'all', "0", 'g'
    plotE, contour = 0, 0
    dir_path = '.'
    fmt = 'svg'
    verbose = pmagplotlib.verbose
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-WD' in sys.argv:
        ind = sys.argv.index('-WD')
        dir_path = sys.argv[ind + 1]
    pmagplotlib.plot_init(FIG['eqarea'], 5, 5)
    if '-f' in sys.argv:
        ind = sys.argv.index("-f")
        in_file = dir_path + "/" + sys.argv[ind + 1]
    if '-obj' in sys.argv:
        ind = sys.argv.index('-obj')
        plot_by = sys.argv[ind + 1]
        if plot_by == 'all': plot_key = 'all'
        if plot_by == 'sit': plot_key = 'er_site_name'
        if plot_by == 'sam': plot_key = 'er_sample_name'
        if plot_by == 'spc': plot_key = 'er_specimen_name'
    if '-c' in sys.argv: contour = 1
    plots = 0
    if '-sav' in sys.argv:
        plots = 1
        verbose = 0
    if '-ell' in sys.argv:
        plotE = 1
        ind = sys.argv.index('-ell')
        ell_type = sys.argv[ind + 1]
        if ell_type == 'F': dist = 'F'
        if ell_type == 'K': dist = 'K'
        if ell_type == 'B': dist = 'B'
        if ell_type == 'Be': dist = 'BE'
        if ell_type == 'Bv':
            dist = 'BV'
            FIG['bdirs'] = 2
            pmagplotlib.plot_init(FIG['bdirs'], 5, 5)
    if '-crd' in sys.argv:
        ind = sys.argv.index("-crd")
        crd = sys.argv[ind + 1]
        if crd == 's': coord = "-1"
        if crd == 'g': coord = "0"
        if crd == 't': coord = "100"
    if '-fmt' in sys.argv:
        ind = sys.argv.index("-fmt")
        fmt = sys.argv[ind + 1]
    Dec_keys = ['site_dec', 'sample_dec', 'specimen_dec', 'measurement_dec', 'average_dec', 'none']
    Inc_keys = ['site_inc', 'sample_inc', 'specimen_inc', 'measurement_inc', 'average_inc', 'none']
    Tilt_keys = ['tilt_correction', 'site_tilt_correction', 'sample_tilt_correction', 'specimen_tilt_correction',
                 'none']
    Dir_type_keys = ['', 'site_direction_type', 'sample_direction_type', 'specimen_direction_type']
    Name_keys = ['er_specimen_name', 'er_sample_name', 'er_site_name', 'pmag_result_name']
    data, file_type = pmag.magic_read(in_file)
    if file_type == 'pmag_results' and plot_key != "all": plot_key = plot_key + 's' # need plural for results table
    if verbose:
        print len(data), ' records read from ', in_file
        #
    #
    # find desired dec,inc data:
    #
    dir_type_key = ''
    #
    # get plotlist if not plotting all records
    #
    plotlist = []
    if plot_key != "all":
        plots = pmag.get_dictitem(data, plot_key, '', 'F')
        for rec in plots:
            if rec[plot_key] not in plotlist:
                plotlist.append(rec[plot_key])
        plotlist.sort()
    else:
        plotlist.append('All')
    for plot in plotlist:
        if verbose: print plot
        DIblock = []
        GCblock = []
        SLblock, SPblock = [], []
        title = plot
        mode = 1
        dec_key, inc_key, tilt_key, name_key, k = "", "", "", "", 0
        if plot != "All":
            odata = pmag.get_dictitem(data, plot_key, plot, 'T')
        else:
            odata = data # data for this obj
        for dec_key in Dec_keys:
            Decs = pmag.get_dictitem(odata, dec_key, '', 'F') # get all records with this dec_key not blank
            if len(Decs) > 0: break
        for inc_key in Inc_keys:
            Incs = pmag.get_dictitem(Decs, inc_key, '', 'F') # get all records with this inc_key not blank
            if len(Incs) > 0: break
        for tilt_key in Tilt_keys:
            if tilt_key in Incs[0].keys(): break # find the tilt_key for these records
        if tilt_key == 'none': # no tilt key in data, need to fix this with fake data which will be unknown tilt
            tilt_key = 'tilt_correction'
            for rec in Incs: rec[tilt_key] = ''
        cdata = pmag.get_dictitem(Incs, tilt_key, coord, 'T') # get all records matching specified coordinate system
        if coord == '0': # geographic
            udata = pmag.get_dictitem(Incs, tilt_key, '', 'T') # get all the blank records - assume geographic
            if len(cdata) == 0: crd = ''
            if len(udata) > 0:
                for d in udata: cdata.append(d)
                crd = crd + 'u'
        for name_key in Name_keys:
            Names = pmag.get_dictitem(cdata, name_key, '', 'F') # get all records with this name_key not blank
            if len(Names) > 0: break
        for dir_type_key in Dir_type_keys:
            Dirs = pmag.get_dictitem(cdata, dir_type_key, '', 'F') # get all records with this direction type
            if len(Dirs) > 0: break
        if dir_type_key == "": dir_type_key = 'direction_type'
        locations, site, sample, specimen = "", "", "", ""
        for rec in cdata: # pick out the data
            if 'er_location_name' in rec.keys() and rec['er_location_name'] != "" and rec[
                'er_location_name'] not in locations: locations = locations + rec['er_location_name'].replace("/",
                                                                                                              "") + "_"
            if 'er_location_names' in rec.keys() and rec['er_location_names'] != "":
                locs = rec['er_location_names'].split(':')
                for loc in locs:
                    if loc not in locations: locations = locations + loc.replace("/", "") + '_'
            if plot_key == 'er_site_name' or plot_key == 'er_sample_name' or plot_key == 'er_specimen_name':
                site = rec['er_site_name']
            if plot_key == 'er_sample_name' or plot_key == 'er_specimen_name':
                sample = rec['er_sample_name']
            if plot_key == 'er_specimen_name':
                specimen = rec['er_specimen_name']
            if plot_key == 'er_site_names' or plot_key == 'er_sample_names' or plot_key == 'er_specimen_names':
                site = rec['er_site_names']
            if plot_key == 'er_sample_names' or plot_key == 'er_specimen_names':
                sample = rec['er_sample_names']
            if plot_key == 'er_specimen_names':
                specimen = rec['er_specimen_names']
            if dir_type_key not in rec.keys() or rec[dir_type_key] == "": rec[dir_type_key] = 'l'
            if 'magic_method_codes' not in rec.keys(): rec['magic_method_codes'] = ""
            DIblock.append([float(rec[dec_key]), float(rec[inc_key])])
            SLblock.append([rec[name_key], rec['magic_method_codes']])
            if rec[tilt_key] == coord and rec[dir_type_key] != 'l' and rec[dec_key] != "" and rec[inc_key] != "":
                GCblock.append([float(rec[dec_key]), float(rec[inc_key])])
                SPblock.append([rec[name_key], rec['magic_method_codes']])
        if len(DIblock) == 0 and len(GCblock) == 0:
            if verbose: print "no records for plotting"
            sys.exit()
        if verbose:
            for k in range(len(SLblock)):
                print '%s %s %7.1f %7.1f' % (SLblock[k][0], SLblock[k][1], DIblock[k][0], DIblock[k][1])
            for k in range(len(SPblock)):
                print '%s %s %7.1f %7.1f' % (SPblock[k][0], SPblock[k][1], GCblock[k][0], GCblock[k][1])
        if len(DIblock) > 0:
            if contour == 0:
                pmagplotlib.plotEQ(FIG['eqarea'], DIblock, title)
            else:
                pmagplotlib.plotEQcont(FIG['eqarea'], DIblock)
        else:
            pmagplotlib.plotNET(FIG['eqarea'])
        if len(GCblock) > 0:
            for rec in GCblock: pmagplotlib.plotC(FIG['eqarea'], rec, 90., 'g')
        if plotE == 1:
            ppars = pmag.doprinc(DIblock) # get principal directions
            nDIs, rDIs, npars, rpars = [], [], [], []
            for rec in DIblock:
                angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])
                if angle > 90.:
                    rDIs.append(rec)
                else:
                    nDIs.append(rec)
            if dist == 'B': # do on whole dataset
                etitle = "Bingham confidence ellipse"
                bpars = pmag.dobingham(DIblock)
                for key in bpars.keys():
                    if key != 'n' and verbose: print "    ", key, '%7.1f' % (bpars[key])
                    if key == 'n' and verbose: print "    ", key, '       %i' % (bpars[key])
                npars.append(bpars['dec'])
                npars.append(bpars['inc'])
                npars.append(bpars['Zeta'])
                npars.append(bpars['Zdec'])
                npars.append(bpars['Zinc'])
                npars.append(bpars['Eta'])
                npars.append(bpars['Edec'])
                npars.append(bpars['Einc'])
            if dist == 'F':
                etitle = "Fisher confidence cone"
                if len(nDIs) > 2:
                    fpars = pmag.fisher_mean(nDIs)
                    for key in fpars.keys():
                        if key != 'n' and verbose: print "    ", key, '%7.1f' % (fpars[key])
                        if key == 'n' and verbose: print "    ", key, '       %i' % (fpars[key])
                    mode += 1
                    npars.append(fpars['dec'])
                    npars.append(fpars['inc'])
                    npars.append(fpars['alpha95']) # Beta
                    npars.append(fpars['dec'])
                    isign = abs(fpars['inc']) / fpars['inc']
                    npars.append(fpars['inc'] - isign * 90.) #Beta inc
                    npars.append(fpars['alpha95']) # gamma 
                    npars.append(fpars['dec'] + 90.) # Beta dec
                    npars.append(0.) #Beta inc
                if len(rDIs) > 2:
                    fpars = pmag.fisher_mean(rDIs)
                    if verbose: print "mode ", mode
                    for key in fpars.keys():
                        if key != 'n' and verbose: print "    ", key, '%7.1f' % (fpars[key])
                        if key == 'n' and verbose: print "    ", key, '       %i' % (fpars[key])
                    mode += 1
                    rpars.append(fpars['dec'])
                    rpars.append(fpars['inc'])
                    rpars.append(fpars['alpha95']) # Beta
                    rpars.append(fpars['dec'])
                    isign = abs(fpars['inc']) / fpars['inc']
                    rpars.append(fpars['inc'] - isign * 90.) #Beta inc
                    rpars.append(fpars['alpha95']) # gamma 
                    rpars.append(fpars['dec'] + 90.) # Beta dec
                    rpars.append(0.) #Beta inc
            if dist == 'K':
                etitle = "Kent confidence ellipse"
                if len(nDIs) > 3:
                    kpars = pmag.dokent(nDIs, len(nDIs))
                    if verbose: print "mode ", mode
                    for key in kpars.keys():
                        if key != 'n' and verbose: print "    ", key, '%7.1f' % (kpars[key])
                        if key == 'n' and verbose: print "    ", key, '       %i' % (kpars[key])
                    mode += 1
                    npars.append(kpars['dec'])
                    npars.append(kpars['inc'])
                    npars.append(kpars['Zeta'])
                    npars.append(kpars['Zdec'])
                    npars.append(kpars['Zinc'])
                    npars.append(kpars['Eta'])
                    npars.append(kpars['Edec'])
                    npars.append(kpars['Einc'])
                if len(rDIs) > 3:
                    kpars = pmag.dokent(rDIs, len(rDIs))
                    if verbose: print "mode ", mode
                    for key in kpars.keys():
                        if key != 'n' and verbose: print "    ", key, '%7.1f' % (kpars[key])
                        if key == 'n' and verbose: print "    ", key, '       %i' % (kpars[key])
                    mode += 1
                    rpars.append(kpars['dec'])
                    rpars.append(kpars['inc'])
                    rpars.append(kpars['Zeta'])
                    rpars.append(kpars['Zdec'])
                    rpars.append(kpars['Zinc'])
                    rpars.append(kpars['Eta'])
                    rpars.append(kpars['Edec'])
                    rpars.append(kpars['Einc'])
            else: # assume bootstrap
                if dist == 'BE':
                    if len(nDIs) > 5:
                        BnDIs = pmag.di_boot(nDIs)
                        Bkpars = pmag.dokent(BnDIs, 1.)
                        if verbose: print "mode ", mode
                        for key in Bkpars.keys():
                            if key != 'n' and verbose: print "    ", key, '%7.1f' % (Bkpars[key])
                            if key == 'n' and verbose: print "    ", key, '       %i' % (Bkpars[key])
                        mode += 1
                        npars.append(Bkpars['dec'])
                        npars.append(Bkpars['inc'])
                        npars.append(Bkpars['Zeta'])
                        npars.append(Bkpars['Zdec'])
                        npars.append(Bkpars['Zinc'])
                        npars.append(Bkpars['Eta'])
                        npars.append(Bkpars['Edec'])
                        npars.append(Bkpars['Einc'])
                    if len(rDIs) > 5:
                        BrDIs = pmag.di_boot(rDIs)
                        Bkpars = pmag.dokent(BrDIs, 1.)
                        if verbose: print "mode ", mode
                        for key in Bkpars.keys():
                            if key != 'n' and verbose: print "    ", key, '%7.1f' % (Bkpars[key])
                            if key == 'n' and verbose: print "    ", key, '       %i' % (Bkpars[key])
                        mode += 1
                        rpars.append(Bkpars['dec'])
                        rpars.append(Bkpars['inc'])
                        rpars.append(Bkpars['Zeta'])
                        rpars.append(Bkpars['Zdec'])
                        rpars.append(Bkpars['Zinc'])
                        rpars.append(Bkpars['Eta'])
                        rpars.append(Bkpars['Edec'])
                        rpars.append(Bkpars['Einc'])
                    etitle = "Bootstrapped confidence ellipse"
                elif dist == 'BV':
                    sym = {'lower': ['o', 'c'], 'upper': ['o', 'g'], 'size': 3, 'edgecolor': 'face'}
                    if len(nDIs) > 5:
                        BnDIs = pmag.di_boot(nDIs)
                        pmagplotlib.plotEQsym(FIG['bdirs'], BnDIs, 'Bootstrapped Eigenvectors', sym)
                    if len(rDIs) > 5:
                        BrDIs = pmag.di_boot(rDIs)
                        if len(nDIs) > 5:  # plot on existing plots
                            pmagplotlib.plotDIsym(FIG['bdirs'], BrDIs, sym)
                        else:
                            pmagplotlib.plotEQ(FIG['bdirs'], BrDIs, 'Bootstrapped Eigenvectors')
            if dist == 'B':
                if len(nDIs) > 3 or len(rDIs) > 3: pmagplotlib.plotCONF(FIG['eqarea'], etitle, [], npars, 0)
            elif len(nDIs) > 3 and dist != 'BV':
                pmagplotlib.plotCONF(FIG['eqarea'], etitle, [], npars, 0)
                if len(rDIs) > 3:
                    pmagplotlib.plotCONF(FIG['eqarea'], etitle, [], rpars, 0)
            elif len(rDIs) > 3 and dist != 'BV':
                pmagplotlib.plotCONF(FIG['eqarea'], etitle, [], rpars, 0)
        if verbose: pmagplotlib.drawFIGS(FIG)
        #
        files = {}
        locations = locations[:-1]
        for key in FIG.keys():
            filename = 'LO:_' + locations + '_SI:_' + site + '_SA:_' + sample + '_SP:_' + specimen + '_CO:_' + crd + '_TY:_' + key + '_.' + fmt
            files[key] = filename
        if pmagplotlib.isServer:
            black = '#000000'
            purple = '#800080'
            titles = {}
            titles['eq'] = 'Equal Area Plot'
            FIG = pmagplotlib.addBorders(FIG, titles, black, purple)
            pmagplotlib.saveP(FIG, files)
        elif verbose:
            ans = raw_input(" S[a]ve to save plot, [q]uit, Return to continue:  ")
            if ans == "q": sys.exit()
            if ans == "a":
                pmagplotlib.saveP(FIG, files)
        if plots:
            pmagplotlib.saveP(FIG, files)
def sb_vgp_calc(dataframe):
    """
    This function calculates the angular dispersion of VGPs and corrects
    for within site dispersion to return a value S_b. The input data
    needs to be within a pandas Dataframe. The function also plots the
    VGPs and their associated Fisher mean on a projection centered on
    the mean.
    
    Parameters
    ----------- 
    dataframe : the name of the pandas.DataFrame containing the data
    
    the data frame needs to contain these columns:
    dataframe['site_lat'] : latitude of the site
    dataframe['site_lon'] : longitude of the site ---- changed to site_long so that it works for a given DF
    dataframe['inc_tc'] : tilt-corrected inclination
    dataframe['dec_tc'] : tilt-corrected declination
    dataframe['k'] : fisher precision parameter for directions
    dataframe['vgp_lat'] : VGP latitude ---- changed to pole_lat so that it works for a given DF
    dataframe['vgp_lon'] : VGP longitude ---- changed to pole_long so that it works for a given DF
    """

    # calculate the mean from the directional data
    dataframe_dirs = []
    for n in range(0, len(dataframe)):
        dataframe_dirs.append(
            [dataframe['dec_tc'][n], dataframe['inc_tc'][n], 1.])
    dataframe_dir_mean = pmag.fisher_mean(dataframe_dirs)

    # calculate the mean from the vgp data
    dataframe_poles = []
    dataframe_pole_lats = []
    dataframe_pole_lons = []
    for n in range(0, len(dataframe)):
        dataframe_poles.append(
            [dataframe['pole_long'][n], dataframe['pole_lat'][n], 1.])
        dataframe_pole_lats.append(dataframe['pole_lat'][n])
        dataframe_pole_lons.append(dataframe['pole_long'][n])
    dataframe_pole_mean = pmag.fisher_mean(dataframe_poles)

    # calculate mean paleolatitude from the directional data
    dataframe['paleolatitude'] = lat_from_inc(dataframe_dir_mean['inc'])

    angle_list = []
    for n in range(0, len(dataframe)):
        angle = pmag.angle(
            [dataframe['pole_long'][n], dataframe['pole_lat'][n]],
            [dataframe_pole_mean['dec'], dataframe_pole_mean['inc']])
        angle_list.append(angle[0])
    dataframe['delta_mean-pole'] = angle_list

    # use eq. 2 of Cox (1970) to translate the directional precision parameter
    # into pole coordinates using the assumption of a Fisherian distribution in
    # directional coordinates and the paleolatitude as calculated from mean
    # inclination using the dipole equation
    dataframe['K'] = dataframe['k'] / (
        0.125 * (5 + 18 * np.sin(np.deg2rad(dataframe['paleolatitude']))**2 +
                 9 * np.sin(np.deg2rad(dataframe['paleolatitude']))**4))
    dataframe['Sw'] = 81 / (dataframe['K']**0.5)

    summation = 0
    N = 0
    for n in range(0, len(dataframe)):
        quantity = dataframe['delta_mean-pole'][
            n]**2 - dataframe['Sw'][n]**2 / np.float(dataframe['n'][n])
        summation += quantity
        N += 1

    Sb = ((1.0 / (N - 1.0)) * summation)**0.5

    plt.figure(figsize=(6, 6))
    m = Basemap(projection='ortho',
                lat_0=dataframe_pole_mean['inc'],
                lon_0=dataframe_pole_mean['dec'],
                resolution='c',
                area_thresh=50000)
    m.drawcoastlines(linewidth=0.25)
    m.fillcontinents(color='bisque', lake_color='white', zorder=1)
    m.drawmapboundary(fill_color='white')
    m.drawmeridians(np.arange(0, 360, 30))
    m.drawparallels(np.arange(-90, 90, 30))

    plot_vgp(m, dataframe_pole_lons, dataframe_pole_lats, dataframe_pole_lons)
    plot_pole(m,
              dataframe_pole_mean['dec'],
              dataframe_pole_mean['inc'],
              dataframe_pole_mean['alpha95'],
              color='r',
              marker='s')
    return Sb
def watson_common_mean(Data1, Data2, NumSims=5000, plot='no'):
    """
    Conduct a Watson V test for a common mean on two declination, inclination data sets
    
    This function calculates Watson's V statistic from input files through Monte Carlo
    simulation in order to test whether two populations of directional data could have
    been drawn from a common mean. The critical angle between the two sample mean
    directions and the corresponding McFadden and McElhinny (1990) classification is printed.


    Required Arguments
    ----------
    Data1 : a list of directional data [dec,inc]
    Data2 : a list of directional data [dec,inc]
    
    Optional Arguments
    ----------
    NumSims : number of Monte Carlo simulations (default is 5000)
    plot : the default is no plot ('no'). Putting 'yes' will the plot the CDF from
    the Monte Carlo simulations.
    """
    pars_1 = pmag.fisher_mean(Data1)
    pars_2 = pmag.fisher_mean(Data2)

    cart_1 = pmag.dir2cart([pars_1["dec"], pars_1["inc"], pars_1["r"]])
    cart_2 = pmag.dir2cart([pars_2['dec'], pars_2['inc'], pars_2["r"]])
    Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r']  # k1*r1+k2*r2
    xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0]  # k1*x1+k2*x2
    xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1]  # k1*y1+k2*y2
    xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2]  # k1*z1+k2*z2
    Rw = np.sqrt(xhat_1**2 + xhat_2**2 + xhat_3**2)
    V = 2 * (Sw - Rw)
    # keep weighted sum for later when determining the "critical angle"
    # let's save it as Sr (notation of McFadden and McElhinny, 1990)
    Sr = Sw

    # do monte carlo simulation of datasets with same kappas as data,
    # but a common mean
    counter = 0
    Vp = []  # set of Vs from simulations
    for k in range(NumSims):

        # get a set of N1 fisher distributed vectors with k1,
        # calculate fisher stats
        Dirp = []
        for i in range(pars_1["n"]):
            Dirp.append(pmag.fshdev(pars_1["k"]))
        pars_p1 = pmag.fisher_mean(Dirp)
        # get a set of N2 fisher distributed vectors with k2,
        # calculate fisher stats
        Dirp = []
        for i in range(pars_2["n"]):
            Dirp.append(pmag.fshdev(pars_2["k"]))
        pars_p2 = pmag.fisher_mean(Dirp)
        # get the V for these
        Vk = pmag.vfunc(pars_p1, pars_p2)
        Vp.append(Vk)

    # sort the Vs, get Vcrit (95th percentile one)

    Vp.sort()
    k = int(.95 * NumSims)
    Vcrit = Vp[k]

    # equation 18 of McFadden and McElhinny, 1990 calculates the critical
    # value of R (Rwc)

    Rwc = Sr - (Vcrit / 2)

    # following equation 19 of McFadden and McElhinny (1990) the critical
    # angle is calculated. If the observed angle (also calculated below)
    # between the data set means exceeds the critical angle the hypothesis
    # of a common mean direction may be rejected at the 95% confidence
    # level. The critical angle is simply a different way to present
    # Watson's V parameter so it makes sense to use the Watson V parameter
    # in comparison with the critical value of V for considering the test
    # results. What calculating the critical angle allows for is the
    # classification of McFadden and McElhinny (1990) to be made
    # for data sets that are consistent with sharing a common mean.

    k1 = pars_1['k']
    k2 = pars_2['k']
    R1 = pars_1['r']
    R2 = pars_2['r']
    critical_angle = np.degrees(
        np.arccos(((Rwc**2) - ((k1 * R1)**2) - ((k2 * R2)**2)) /
                  (2 * k1 * R1 * k2 * R2)))
    D1 = (pars_1['dec'], pars_1['inc'])
    D2 = (pars_2['dec'], pars_2['inc'])
    angle = pmag.angle(D1, D2)

    print "Results of Watson V test: "
    print ""
    print "Watson's V:           " '%.1f' % (V)
    print "Critical value of V:  " '%.1f' % (Vcrit)

    if V < Vcrit:
        print '"Pass": Since V is less than Vcrit, the null hypothesis'
        print 'that the two populations are drawn from distributions'
        print 'that share a common mean direction can not be rejected.'
    elif V > Vcrit:
        print '"Fail": Since V is greater than Vcrit, the two means can'
        print 'be distinguished at the 95% confidence level.'
    print ""
    print "M&M1990 classification:"
    print ""
    print "Angle between data set means: " '%.1f' % (angle)
    print "Critical angle for M&M1990:   " '%.1f' % (critical_angle)

    if V > Vcrit:
        print ""
    elif V < Vcrit:
        if critical_angle < 5:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'A'"
        elif critical_angle < 10:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'B'"
        elif critical_angle < 20:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'C'"
        else:
            print "The McFadden and McElhinny (1990) classification for"
            print "this test is: 'INDETERMINATE;"

    if plot == 'yes':
        CDF = {'cdf': 1}
        #pmagplotlib.plot_init(CDF['cdf'],5,5)
        p1 = pmagplotlib.plotCDF(CDF['cdf'], Vp, "Watson's V", 'r', "")
        p2 = pmagplotlib.plotVs(CDF['cdf'], [V], 'g', '-')
        p3 = pmagplotlib.plotVs(CDF['cdf'], [Vp[k]], 'b', '--')
        pmagplotlib.drawFIGS(CDF)
Esempio n. 22
0
#!/usr/bin/env python
import pmag, matplotlib, math
matplotlib.use("TkAgg")
import pylab
k = 29.2
Dels, A95s, CSDs, Ns = [], [], [], range(4, 31)
DIs = []
for i in range(31):
    dec, inc = pmag.fshdev(k)
    DIs.append([dec, inc])
pars = pmag.fisher_mean(DIs)
pDIs = []
for i in range(3):
    pDIs.append(DIs[i])
for n in Ns:
    pDIs.append(DIs[n])
    fpars = pmag.fisher_mean(pDIs)
    A95s.append(fpars['alpha95'])
    CSDs.append(fpars['csd'])
    Dels.append((180. / math.pi) * math.acos(fpars['r'] / float(n)))
pylab.plot(Ns, A95s, 'ro')
pylab.plot(Ns, A95s, 'r-')
pylab.plot(Ns, CSDs, 'bs')
pylab.plot(Ns, CSDs, 'b-')
pylab.plot(Ns, Dels, 'g^')
pylab.plot(Ns, Dels, 'g-')
pylab.axhline(pars['csd'], color='k')
pylab.show()
raw_input()