def testImageTransformBatch(self): file_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/spam_test1.txt" read_file_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image_Samples/" save_file_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image_Filtered/" FileIO.FileHandler.create_file_if_not_exist(save_file_path) domain_list = FileIO.FileHandler.read_lines_from_file(file_path) for item in domain_list: print("doing: item:", item) peak_scale_factor = 0.9 image_path = read_file_path + item + ".png" matrix, width, height = read_image(image_path) new_matrix, one_d_array, average = get_1d_array( matrix, 255, height, width, 0.5, 0.97) first_ref, second_ref, min_ref, min_v = find_peak( one_d_array, max_value=height, average_scale=peak_scale_factor, amplitude_scale=0.3, min_deviation=3) insert_line(new_matrix, first_ref, 50) insert_line(new_matrix, second_ref, 50) insert_line(new_matrix, min_ref, 50) insert_line(new_matrix, int(average * peak_scale_factor), 200, is_vertical=False) formated = png.from_array(new_matrix, mode='L') new_path = save_file_path + item + ".png" formated.save(new_path)
def testImageTransform1(self): peak_scale_factor = 0.9 image_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image_Samples/3xstar.net.png" matrix, width, height = read_image(image_path) new_matrix, one_d_array, average = get_1d_array(matrix, 255, height, width, 0.5, 0.97) first_ref, second_ref, min_ref, min_v = find_peak(one_d_array, max_value=height, average_scale=peak_scale_factor, amplitude_scale=0.3, min_deviation=3) insert_line(new_matrix, first_ref, 50) insert_line(new_matrix, second_ref, 50) insert_line(new_matrix, min_ref, 50) insert_line(new_matrix, int(average*peak_scale_factor), 200, is_vertical=False) formated = png.from_array(new_matrix, mode='L') new_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/test_filterd1.png" formated.save(new_path) im = Image.open(new_path) im.show()
def testRead(self): image_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/BacklinkHistoryChart.png" new_image_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image/{0:d}.png" matrix = [] reader = png.Reader(filename=image_path) pixel_dict = {} w, h, pixels, metadata = reader.asRGBA() for row in pixels: matrix.append(row) for pixcel in row: if pixcel in pixel_dict.keys(): v = pixel_dict[pixcel] pixel_dict.update({pixcel: v + 1}) else: pixel_dict.update({pixcel: 1}) height = len(matrix) width = len(matrix[0]) print("height:", height, "width:", width) print("variations:") sort = [ x for x in sorted(pixel_dict.items(), key=lambda pixel_count: pixel_count[1], reverse=True) if 20000 > x[1] > 50 ] count = 0 for item in sort: new_matrix = [] for row in matrix: new_row = [] for pixel in row: if pixel == item[0]: new_row.append(255) else: new_row.append(0) new_matrix.append(new_row) formated = png.from_array(new_matrix, mode='L') new_path = new_image_path.format(item[0], ) FileIO.FileHandler.create_file_if_not_exist(new_path) formated.save(new_path) count += 1 if count == 10: break
def testRead(self): image_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/BacklinkHistoryChart.png" new_image_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image/{0:d}.png" matrix = [] reader = png.Reader(filename=image_path) pixel_dict = {} w, h, pixels, metadata = reader.asRGBA() for row in pixels: matrix.append(row) for pixcel in row: if pixcel in pixel_dict.keys(): v = pixel_dict[pixcel] pixel_dict.update({pixcel: v+1}) else: pixel_dict.update({pixcel: 1}) height = len(matrix) width = len(matrix[0]) print("height:", height, "width:", width) print("variations:") sort = [x for x in sorted(pixel_dict.items(), key=lambda pixel_count: pixel_count[1], reverse=True) if 20000> x[1] > 50] count = 0 for item in sort: new_matrix= [] for row in matrix: new_row = [] for pixel in row: if pixel == item[0]: new_row.append(255) else: new_row.append(0) new_matrix.append(new_row) formated = png.from_array(new_matrix, mode='L') new_path = new_image_path.format(item[0],) FileIO.FileHandler.create_file_if_not_exist(new_path) formated.save(new_path) count += 1 if count == 10: break
def testImageTransformBatch(self): file_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/spam_test1.txt" read_file_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image_Samples/" save_file_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image_Filtered/" FileIO.FileHandler.create_file_if_not_exist(save_file_path) domain_list = FileIO.FileHandler.read_lines_from_file(file_path) for item in domain_list: print("doing: item:", item) peak_scale_factor = 0.9 image_path = read_file_path + item + ".png" matrix, width, height = read_image(image_path) new_matrix, one_d_array, average = get_1d_array(matrix, 255, height, width, 0.5, 0.97) first_ref, second_ref, min_ref, min_v = find_peak(one_d_array, max_value=height, average_scale=peak_scale_factor, amplitude_scale=0.3, min_deviation=3) insert_line(new_matrix, first_ref, 50) insert_line(new_matrix, second_ref, 50) insert_line(new_matrix, min_ref, 50) insert_line(new_matrix, int(average*peak_scale_factor), 200, is_vertical=False) formated = png.from_array(new_matrix, mode='L') new_path = save_file_path + item + ".png" formated.save(new_path)
def testImageTransform1(self): peak_scale_factor = 0.9 image_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/Image_Samples/3xstar.net.png" matrix, width, height = read_image(image_path) new_matrix, one_d_array, average = get_1d_array( matrix, 255, height, width, 0.5, 0.97) first_ref, second_ref, min_ref, min_v = find_peak( one_d_array, max_value=height, average_scale=peak_scale_factor, amplitude_scale=0.3, min_deviation=3) insert_line(new_matrix, first_ref, 50) insert_line(new_matrix, second_ref, 50) insert_line(new_matrix, min_ref, 50) insert_line(new_matrix, int(average * peak_scale_factor), 200, is_vertical=False) formated = png.from_array(new_matrix, mode='L') new_path = "/Users/superCat/Desktop/PycharmProjectPortable/test/test_filterd1.png" formated.save(new_path) im = Image.open(new_path) im.show()