Esempio n. 1
0
File: test.py Progetto: wx-b/SpinNet
    def select_patches(self,
                       pts,
                       refer_pts,
                       vicinity,
                       num_points_per_patch=1024):
        gc.collect()
        pts = torch.FloatTensor(pts).cuda().unsqueeze(0)
        refer_pts = torch.FloatTensor(refer_pts).cuda().unsqueeze(0)
        group_idx = pnt2.ball_query(vicinity, num_points_per_patch, pts,
                                    refer_pts)
        pts_trans = pts.transpose(1, 2).contiguous()
        new_points = pnt2.grouping_operation(pts_trans, group_idx)
        new_points = new_points.permute([0, 2, 3, 1])
        mask = group_idx[:, :, 0].unsqueeze(2).repeat(1, 1,
                                                      num_points_per_patch)
        mask = (group_idx == mask).float()
        mask[:, :, 0] = 0
        mask[:, :, num_points_per_patch - 1] = 1
        mask = mask.unsqueeze(3).repeat([1, 1, 1, 3])
        new_pts = refer_pts.unsqueeze(2).repeat(
            [1, 1, num_points_per_patch, 1])
        local_patches = new_points * (1 -
                                      mask).float() + new_pts * mask.float()
        # local_patches = list(local_patches.squeeze(0).detach().cpu().numpy())
        local_patches = local_patches.squeeze(0)
        del mask
        del new_points
        del group_idx
        del new_pts
        del pts
        del pts_trans

        return local_patches
Esempio n. 2
0
 def forward(self, x, feature, num_pool):
     x = x.contiguous()
     xyz_flipped = x.transpose(1, 2).contiguous()
     x_sub = (pointnet2_utils.gather_operation(
         x, pointnet2_utils.furthest_point_sample(xyz_flipped,
                                                  num_pool)).transpose(
                                                      1, 2).contiguous())
     # sub_index = self.knn(x_sub, xyz_flipped).int()
     sub_index = pointnet2_utils.ball_query(0.2 * self.nlayer, self.k,
                                            xyz_flipped, x_sub)
     x = pointnet2_utils.grouping_operation(x, sub_index)
     x = torch.max(x, dim=-1)[0]
     # x = soft_pool2d(x, [1, x.shape[-1]]).squeeze(-1)
     feature = pointnet2_utils.grouping_operation(feature, sub_index)
     feature = self.mlp(feature)
     feature = torch.max(feature, dim=-1)[0]
     # feature = soft_pool2d(feature, [1, feature.shape[-1]]).squeeze(-1)
     return x, feature
Esempio n. 3
0
def pool(xyz, points, k, npoint):
    xyz_flipped = xyz.transpose(1, 2).contiguous()
    new_xyz = pointnet2_utils.gather_operation(
        xyz_flipped, pointnet2_utils.furthest_point_sample(
            xyz_flipped, npoint)).transpose(1, 2).contiguous()
    _, idx = knn_point(k, xyz, new_xyz)
    new_points = torch.max(pointnet2_utils.grouping_operation(
        points.permute(0, 2, 1).contiguous(),
        idx.int().permute(0, 2, 1).contiguous()).permute(0, 3, 2, 1),
                           dim=2).values

    return new_xyz, new_points
Esempio n. 4
0
def sample_and_group(xyz, points, npoint, nsample, radius, use_xyz=True):
    """
    Args:
        xyz: Tensor, (B, 3, N)
        points: Tensor, (B, f, N)
        npoint: int
        nsample: int
        radius: float
        use_xyz: boolean

    Returns:
        new_xyz: Tensor, (B, 3, npoint)
        new_points: Tensor, (B, 3 | f+3 | f, npoint, nsample)
        idx_local: Tensor, (B, npoint, nsample)
        grouped_xyz: Tensor, (B, 3, npoint, nsample)

    """
    xyz_flipped = xyz.permute(0, 2, 1).contiguous()  # (B, N, 3)
    new_xyz = gather_operation(xyz,
                               furthest_point_sample(xyz_flipped,
                                                     npoint))  # (B, 3, npoint)

    idx = ball_query(radius, nsample, xyz_flipped,
                     new_xyz.permute(0, 2,
                                     1).contiguous())  # (B, npoint, nsample)
    grouped_xyz = grouping_operation(xyz, idx)  # (B, 3, npoint, nsample)
    grouped_xyz -= new_xyz.unsqueeze(3).repeat(1, 1, 1, nsample)

    if points is not None:
        grouped_points = grouping_operation(points,
                                            idx)  # (B, f, npoint, nsample)
        if use_xyz:
            new_points = torch.cat([grouped_xyz, grouped_points], 1)
        else:
            new_points = grouped_points
    else:
        new_points = grouped_xyz

    return new_xyz, new_points, idx, grouped_xyz
Esempio n. 5
0
def group(xyz, points, k, dilation=1, use_xyz=False):
    _, idx = knn_point(k * dilation + 1, xyz, xyz)
    idx = idx[:, :, 1::dilation].int().contiguous()
    # print("xyz",xyz.shape,idx.shape)
    xyz_trans = xyz.transpose(1, 2).contiguous()
    grouped_xyz = pointnet2_utils.grouping_operation(
        xyz_trans,
        idx.int().permute(0, 2, 1).contiguous())  # (batch_size, npoint, k, 3)
    # print("GRO",grouped_xyz.shape,xyz.shape)
    grouped_xyz -= torch.unsqueeze(xyz_trans, 2)  # translation normalization
    if points is not None:
        # print(points.shape)
        grouped_points = pointnet2_utils.grouping_operation(
            points.permute(0, 2, 1).contiguous(),
            idx.int().permute(
                0, 2, 1).contiguous())  # (batch_size, npoint, k, channel)
        if use_xyz:
            grouped_points = torch.cat(
                [grouped_xyz, grouped_points],
                dim=-1)  # (batch_size, npoint, k, 3+channel)
    else:
        grouped_points = grouped_xyz

    return grouped_xyz, grouped_points, idx
Esempio n. 6
0
def sphere_query_new(pts, new_pts, radius, nsample):
    """
    :param pts: all points, [B. N. 3]
    :param new_pts: query points, [B, S. 3]
    :param radius: local sperical radius
    :param nsample: max sample number in local sphere
    :return:
    """

    device = pts.device
    B, N, C = pts.shape
    _, S, _ = new_pts.shape

    pts = pts.contiguous()
    new_pts = new_pts.contiguous()
    group_idx = pnt2.ball_query(radius, nsample, pts, new_pts)
    mask = group_idx[:, :, 0].unsqueeze(2).repeat(1, 1, nsample)
    mask = (group_idx == mask).float()
    mask[:, :, 0] = 0

    mask1 = (group_idx[:, :, 0] == 0).unsqueeze(2).float()
    mask1 = torch.cat([mask1, torch.zeros_like(mask)[:, :, :-1]], dim=2)
    mask = mask + mask1

    # C implementation
    pts_trans = pts.transpose(1, 2).contiguous()
    new_points = pnt2.grouping_operation(pts_trans,
                                         group_idx)  # (B, 3, npoint, nsample)
    new_points = new_points.permute([0, 2, 3, 1])

    # replace the wrong points using new_pts
    mask = mask.unsqueeze(3).repeat([1, 1, 1, 3])
    n_points = new_points * (1 - mask).float()

    del mask
    del new_points
    del group_idx
    del new_pts
    del pts
    del pts_trans

    return n_points