# 학습 데이터 분리 features_training_data = [ 'open_lastclose_ratio', 'high_close_ratio', 'low_close_ratio', 'close_lastclose_ratio', 'volume_lastvolume_ratio', 'close_ma5_ratio', 'volume_ma5_ratio', 'close_ma10_ratio', 'volume_ma10_ratio', 'close_ma20_ratio', 'volume_ma20_ratio', 'close_ma60_ratio', 'volume_ma60_ratio', 'close_ma120_ratio', 'volume_ma120_ratio' ] training_data = training_data[features_training_data] # 강화학습 시작 policy_learner = PolicyLearner(stock_code=stock_code, chart_data=chart_data, training_data=training_data, min_trading_unit=1, max_trading_unit=2, delayed_reward_threshold=.2, lr=.001) policy_learner.fit(balance=10000000, num_epoches=1000, discount_factor=0, start_epsilon=.5) # 정책 신경망을 파일로 저장 model_dir = os.path.join(settings.BASE_DIR, 'models/%s' % stock_code) if not os.path.isdir(model_dir): os.makedirs(model_dir) model_path = os.path.join(model_dir, 'model_%s.h5' % timestr) policy_learner.policy_network.save_model(model_path)
chart_data=chart_data, training_data=training_data, policy_model_path=os.path.join( settings.BASE_DIR, 'models/{}/model_{}.h5'.format(model_code, policy_model_ver)), value_model_path=os.path.join( settings.BASE_DIR, 'models/{}/model_{}.h5'.format(model_code, value_model_ver)), lr=0.00000001, discount_factor=0, start_epsilon=0, num_past_input=119, load_weight_and_learn=False) # 여기가 핵심 policy_learner.fit(balance=1, num_epoches=1000) # 정책 신경망을 파일로 저장 model_dir = os.path.join(settings.BASE_DIR, 'models/%s' % model_code) if not os.path.isdir(model_dir): os.makedirs(model_dir) model_path = os.path.join(model_dir, 'model_policy_%s.h5' % timestr) policy_learner.policy_network.save(model_path, include_optimizer=False, overwrite=True) #policy_learner.policy_network_obj.save_model(model_path) model_path = os.path.join(model_dir, 'model_value_%s.h5' % timestr) policy_learner.value_network.save(model_path, include_optimizer=False, overwrite=True) #policy_learner.value_network_obj.save_weights(model_path)
(training_data['date'] <= '2018-12-31')] training_data = training_data.dropna() # Chart Data Separation features_chart_data = ['date', 'open', 'high', 'low', 'close', 'volume'] chart_data = training_data[features_chart_data] # Training data separation features_training_data = [ 'open_lastclose_ratio', 'high_close_ratio', 'low_close_ratio', 'close_lastclose_ratio', 'volume_lastvolume_ratio', 'close_ma5_ratio', 'volume_ma5_ratio', 'close_ma10_ratio', 'volume_ma10_ratio', 'close_ma20_ratio', 'volume_ma20_ratio' ] training_data = training_data[features_training_data] # Strat reinforcement learning policy_learner = PolicyLearner( stock_code=stock_code, chart_data=chart_data, training_data=training_data, min_trading_unit=1, max_trading_unit=2, delayed_reward_threshold=reward, lr=.0001,tax=tax) policy_learner.fit(balance=bal, num_epoches=500, discount_factor=0, start_epsilon=.5,monkey=monkey) # Save Policy Neural Network to File model_dir = os.path.join(settings.BASE_DIR, 'models/%s' % stock_code) if not os.path.isdir(model_dir): os.makedirs(model_dir) model_path = os.path.join(model_dir, 'model_%s.h5' % timestr) policy_learner.policy_network.save_model(model_path)
stream_handler = logging.StreamHandler() # send logging output to stdout file_handler.setLevel(logging.DEBUG) stream_handler.setLevel(logging.INFO) logging.basicConfig(format="%(message)s", handlers=[file_handler, stream_handler], level=logging.DEBUG) # 강화학습 시작 if LEARNING: chart_data, data = prepare_data(STOCK_CODE, MARKET_CODE, TRAINING_START_DATE, TRAINING_END_DATE) policy_learner = PolicyLearner( stock_code=STOCK_CODE, chart_data=chart_data, training_data=data, min_trading_unit=MIN_TRADING_UNIT, max_trading_unit=MAX_TRADING_UNIT, delayed_reward_threshold=DELAYED_REWARD_THRESHOLD, lr=LEARNING_RATE) policy_learner.fit(balance=INITIAL_BALANCE, num_epoches=NUM_EPOCHS,max_memory=MAX_MEMORY, discount_factor=DISCOUNT_FACTOR, start_epsilon=START_EPSILON, learning=LEARNING_RATE) # 정책 신경망을 파일로 저장 model_dir = os.path.join(settings.BASE_DIR, 'models/%s' % STOCK_CODE) if not os.path.isdir(model_dir): os.makedirs(model_dir) #model_path = os.path.join(model_dir, 'model_%s.h5' % timestr) model_path = os.path.join(model_dir, 'model_%s.h5' % STOCK_CODE) policy_learner.policy_network.save_model(model_path) if SIMULATION: chart_data, data = prepare_data(STOCK_CODE, MARKET_CODE, SIMULATION_START_DATE, SIMULATION_END_DATE) policy_learner = PolicyLearner( stock_code=STOCK_CODE, chart_data=chart_data, training_data=data, min_trading_unit=MIN_TRADING_UNIT, max_trading_unit=MAX_TRADING_UNIT)
def learnFunc(self): if self.code is None or self.df is None: return self.change_value.emit(ZERO) # 데이터 전처리 code = self.code chart_data = self.df prep_data = data_manager.preprocess(chart_data) training_data = data_manager.build_training_data(prep_data) training_data = training_data.dropna() # 차트데이터 분리 feature_chart_data = ['date', 'open', 'high', 'low', 'close', 'volume'] chart_data = training_data[feature_chart_data] # emit self.change_value.emit(TWENTY_FIVE) # 학습데이터 분리 feature_chart_data = [ 'open_lastclose_ratio', 'high_close_ratio', 'low_close_ratio', 'close_lastclose_ratio', 'volume_lastvolume_ratio', 'close_ma5_ratio', 'volume_ma5_ratio', 'close_ma10_ratio', 'volume_ma10_ratio', 'close_ma20_ratio', 'volume_ma20_ratio', 'close_ma60_ratio', 'volume_ma60_ratio', 'close_ma120_ratio', 'volume_ma120_ratio', ] training_data = training_data[feature_chart_data] # 정책 신경망을 파일로 저장 self.createFolder('model') mdir = os.path.join(settings.BASE_DIR, 'model') self.createFolder(os.path.join(mdir, code)) model_dir = os.path.join(mdir, code) model_path = os.path.join(model_dir, 'model%s.h5' % code) # model_path 경로가 없으면 학습모델을 해당 dir에 만들어서 학습 # model_path가 있으면 해당 모델 선택 후 예측 print(model_path) # emit self.change_value.emit(FIFTY) if not os.path.isfile(model_path): start_time = time.time() policy_learner = PolicyLearner(stock_code=code, chart_data=chart_data, training_data=training_data, fig=self.fig, canvas=self.canvas, min_trading_unit=1, max_trading_unit=2, delayed_reward_threshold=0.2, lr=0.001) policy_learner.fit(balance=10000000, num_epoches=200, discount_factor=0, start_epsilon=0.5) end_time = time.time() policy_learner.policy_network.save_model(model_path) print("LearningTime: {} sec".format(end_time - start_time)) else: start_time = time.time() policy_learner = PolicyLearner(stock_code=code, chart_data=chart_data, training_data=training_data, fig=self.fig, canvas=self.canvas, min_trading_unit=1, max_trading_unit=2) end_time = time.time() print("LearningTime: {} sec".format(end_time - start_time)) policy_learner.trade(balance=1000000, model_path=os.path.join( model_dir, 'model%s.h5' % (code))) # emit self.change_value.emit(A_HUNDRED)
# 학습 데이터 분리 features_training_data = [ 'open_lastclose_ratio', 'high_close_ratio', 'low_close_ratio', 'close_lastclose_ratio', 'volume_lastvolume_ratio', 'close_ma5_ratio', 'volume_ma5_ratio', 'close_ma10_ratio', 'volume_ma10_ratio', 'close_ma20_ratio', 'volume_ma20_ratio', 'close_ma60_ratio', 'volume_ma60_ratio', 'close_ma120_ratio', 'volume_ma120_ratio' ] training_data = training_data[features_training_data] # 강화학습 시작 policy_learner = PolicyLearner(stock_code=stock_code, chart_data=chart_data, training_data=training_data, min_trading_unit=1, max_trading_unit=2, delayed_reward_threshold=.2, lr=.001) policy_learner.fit(balance=10000000, num_epoches=100, discount_factor=0, start_epsilon=.5, index_change_rate=index_change_rate) # 정책 신경망을 파일로 저장 model_dir = os.path.join(settings.BASE_DIR, 'models/%s' % stock_code) if not os.path.isdir(model_dir): os.makedirs(model_dir) model_path = os.path.join(model_dir, 'model_%s.h5' % timestr) policy_learner.policy_network.save_model(model_path)