Esempio n. 1
0
class TrainPipeline():
    def __init__(self, init_model=None):
        # params of the board and the game
        self.board_width = 8  #6
        self.board_height = 8  #6
        self.n_in_row = 5  #4
        self.board = Board(width=self.board_width,
                           height=self.board_height,
                           n_in_row=self.n_in_row)
        self.game = Game(self.board)
        # training params
        self.learn_rate = 5e-3
        self.lr_multiplier = 1.0  # adaptively adjust the learning rate based on KL
        self.temp = 1.0  # the temperature param
        self.n_playout = 400  # num of simulations for each move
        # c_puct是MCTS里用来控制exploration-exploit tradeoff的参数
        # 这个参数越大的话MCTS搜索的过程中就偏向于均匀的探索,越小的话就偏向于直接选择访问次数多的分支
        self.c_puct = 5
        self.buffer_size = 10000
        self.batch_size = 512  # mini-batch size for training
        self.data_buffer = deque(maxlen=self.buffer_size)
        self.play_batch_size = 1
        self.epochs = 5  # num of train_steps for each update
        self.kl_targ = 0.025
        # 检查当前策咯胜率的频率,当前设置为每50次训练后通过自我对弈评价当前策略
        # 如果找到更优策略,则保存当前策咯模型
        self.check_freq = 50
        #训练迭代次数
        self.game_batch_num = 1500
        self.best_win_ratio = 0.0
        # num of simulations used for the pure mcts, which is used as the opponent to evaluate the trained policy
        #每次训练蒙特卡洛树搜索的次数,初始化为1000(后续训练过程中会不断增加)
        self.pure_mcts_playout_num = 1000
        if init_model:
            # start training from an initial policy-value net
            policy_param = pickle.load(open(init_model, 'rb'))
            self.policy_value_net = PolicyValueNet(self.board_width,
                                                   self.board_height,
                                                   net_params=policy_param)
        else:
            # start training from a new policy-value net
            self.policy_value_net = PolicyValueNet(self.board_width,
                                                   self.board_height)
        self.mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
                                      c_puct=self.c_puct,
                                      n_playout=self.n_playout,
                                      is_selfplay=1)

    def get_equi_data(self, play_data):
        """
        augment the data set by rotation and flipping
        play_data: [(state, mcts_prob, winner_z), ..., ...]"""
        extend_data = []
        for state, mcts_porb, winner in play_data:
            for i in [1, 2, 3, 4]:
                # rotate counterclockwise
                equi_state = np.array([np.rot90(s, i) for s in state])
                equi_mcts_prob = np.rot90(
                    np.flipud(
                        mcts_porb.reshape(self.board_height,
                                          self.board_width)), i)
                extend_data.append(
                    (equi_state, np.flipud(equi_mcts_prob).flatten(), winner))
                # flip horizontally
                equi_state = np.array([np.fliplr(s) for s in equi_state])
                equi_mcts_prob = np.fliplr(equi_mcts_prob)
                extend_data.append(
                    (equi_state, np.flipud(equi_mcts_prob).flatten(), winner))
        return extend_data

    def collect_selfplay_data(self, n_games=1):
        """collect self-play data for training"""
        for i in range(n_games):
            winner, play_data = self.game.start_self_play(self.mcts_player,
                                                          temp=self.temp)
            play_data_zip2list = list(play_data)  # add by haward
            self.episode_len = len(play_data_zip2list)
            # augment the data
            play_data = self.get_equi_data(play_data_zip2list)
            self.data_buffer.extend(play_data)

    def policy_update(self):
        """update the policy-value net"""
        mini_batch = random.sample(self.data_buffer, self.batch_size)
        state_batch = [data[0] for data in mini_batch]
        mcts_probs_batch = [data[1] for data in mini_batch]
        winner_batch = [data[2] for data in mini_batch]
        old_probs, old_v = self.policy_value_net.policy_value(state_batch)
        for i in range(self.epochs):
            loss, entropy = self.policy_value_net.train_step(
                state_batch, mcts_probs_batch, winner_batch,
                self.learn_rate * self.lr_multiplier)
            new_probs, new_v = self.policy_value_net.policy_value(state_batch)
            # kl距离,也叫做相对熵,衡量的是相同事件空间里的两个概率分布的差异情况
            kl = np.mean(
                np.sum(old_probs *
                       (np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
                       axis=1))
            if kl > self.kl_targ * 4:  # early stopping if D_KL diverges badly
                break
        # adaptively adjust the learning rate
        # 通过比较新旧两个神经网络输出的KL散度(信息增益)来控制学习率,使得学习率快死增加然后逐渐减少
        if kl > self.kl_targ * 2 and self.lr_multiplier > 0.1:
            self.lr_multiplier /= 1.5
        elif kl < self.kl_targ / 2 and self.lr_multiplier < 10:
            self.lr_multiplier *= 1.5

        explained_var_old = 1 - np.var(
            np.array(winner_batch) - old_v.flatten()) / np.var(
                np.array(winner_batch))
        explained_var_new = 1 - np.var(
            np.array(winner_batch) - new_v.flatten()) / np.var(
                np.array(winner_batch))
        print(
            "kl:{:.5f},lr_multiplier:{:.3f},loss:{},entropy:{},explained_var_old:{:.3f},explained_var_new:{:.3f}"
            .format(kl, self.lr_multiplier, loss, entropy, explained_var_old,
                    explained_var_new))
        return loss, entropy

    def policy_evaluate(self, n_games=10):
        """
        Evaluate the trained policy by playing games against the pure MCTS player
        Note: this is only for monitoring the progress of training
        """
        current_mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
                                         c_puct=self.c_puct,
                                         n_playout=self.n_playout)
        pure_mcts_player = MCTS_Pure(c_puct=5,
                                     n_playout=self.pure_mcts_playout_num)
        win_cnt = defaultdict(int)
        for i in range(n_games):
            winner = self.game.start_play(current_mcts_player,
                                          pure_mcts_player,
                                          start_player=i % 2,
                                          is_shown=0)
            win_cnt[winner] += 1
        #计算赢率,获胜积一分,平局积0.5分,失败不计分,再以总积分除以总比赛次数
        win_ratio = 1.0 * (win_cnt[1] + 0.5 * win_cnt[-1]) / n_games
        print("num_playouts:{}, win: {}, lose: {}, tie:{}".format(
            self.pure_mcts_playout_num, win_cnt[1], win_cnt[2], win_cnt[-1]))
        return win_ratio

    def run(self):
        """run the training pipeline"""
        try:
            for i in range(self.game_batch_num):
                self.collect_selfplay_data(self.play_batch_size)
                print("batch i:{}, episode_len:{}".format(
                    i + 1, self.episode_len))
                if len(self.data_buffer) > self.batch_size:
                    loss, entropy = self.policy_update()
                # check the performance of the current model and save the model params
                if (i + 1) % self.check_freq == 0:
                    print("current self-play batch: {}".format(i + 1))
                    # 与纯蒙特卡洛树进行十局对弈,计算对弈胜率
                    win_ratio = self.policy_evaluate()
                    net_params = self.policy_value_net.get_policy_param(
                    )  # get model params
                    pickle.dump(
                        net_params, open('current_policy_8_8_5_new.model',
                                         'wb'),
                        pickle.HIGHEST_PROTOCOL)  # save model param to file
                    if win_ratio > self.best_win_ratio:
                        print("New best policy!!!!!!!!")
                        self.best_win_ratio = win_ratio
                        pickle.dump(
                            net_params,
                            open('best_policy_8_8_5_new.model', 'wb'),
                            pickle.HIGHEST_PROTOCOL)  # update the best_policy
                        #如果当前策咯价值网络胜率为1,则提高纯蒙特卡洛树的搜索次数,继续训练
                        if self.best_win_ratio == 1.0 and self.pure_mcts_playout_num < 5000:
                            self.pure_mcts_playout_num += 1000
                            self.best_win_ratio = 0.0
        except KeyboardInterrupt:
            print('\n\rquit')
Esempio n. 2
0
class TrainPipeline():
    def __init__(self, init_model=None):
        # params of the board and the game
        #width of chessboard
        self.board_width = 8  #6 #10
        #height of chessboard
        self.board_height = 8 #6 #10
        #conditions for victory
        self.n_in_row = 5     #4 #5
        self.board = Board(width=self.board_width, height=self.board_height, n_in_row=self.n_in_row)
        self.game = Game(self.board)
        # training params 
        self.learn_rate = 5e-3   #learning rate
        self.lr_multiplier = 1.0  # adaptively adjust the learning rate based on KL
        self.temp = 1.0 # the temperature param
        self.n_playout = 400 # num of simulations for each move
        self.c_puct = 5
        self.buffer_size = 10000 #The number of maximum elements in the queue
        self.batch_size = 512 # mini-batch size for training
        self.data_buffer = deque(maxlen=self.buffer_size) # queue size      
        self.play_batch_size = 1 # collect a set of data if it self-play once
        self.epochs = 5 # num of train_steps for each update
        self.kl_targ = 0.025 #KL target
        #check frequency: evaluate the game and current AI model every 50 times of self-play
        #The evaluation method is to use the latest AI model and MCTs-pure AI (based on random roll out) to fight 10 rounds
        self.check_freq = 50  #50
        self.game_batch_num = 200 #the number of training batches
        self.best_win_ratio = 0.0 #historical best winning rate
        # num of simulations used for the pure mcts, which is used as the opponent to evaluate the trained policy
        self.pure_mcts_playout_num = 1000  
        if init_model:
            # start training from an initial policy-value net
            #pickle.load(file)反序列化对象。将文件中的数据解析为一个pytorch对象
            policy_param = pickle.load(open(init_model, 'rb')) #使用‘rb’按照二进制位读取
            self.policy_value_net = PolicyValueNet(self.board_width, self.board_height, net_params = policy_param)
        else:
            # start training from a new policy-value net
            self.policy_value_net = PolicyValueNet(self.board_width, self.board_height) 
        self.mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn, c_puct=self.c_puct, n_playout=self.n_playout, is_selfplay=1)

    def get_equi_data(self, play_data):
        """
        augment the data set by rotation and flipping
        play_data: [(state, mcts_prob, winner_z), ..., ...]"""
        extend_data = []
        for state, mcts_porb, winner in play_data:
            for i in [1,2,3,4]:
                # rotate counterclockwise 
                equi_state = np.array([np.rot90(s,i) for s in state])
                equi_mcts_prob = np.rot90(np.flipud(mcts_porb.reshape(self.board_height, self.board_width)), i)
                extend_data.append((equi_state, np.flipud(equi_mcts_prob).flatten(), winner))
                # flip horizontally
                equi_state = np.array([np.fliplr(s) for s in equi_state])
                equi_mcts_prob = np.fliplr(equi_mcts_prob)
                extend_data.append((equi_state, np.flipud(equi_mcts_prob).flatten(), winner))
        return extend_data
                
    def collect_selfplay_data(self, n_games=1):
        """collect self-play data for training"""
        for i in range(n_games):
            winner, play_data = self.game.start_self_play(self.mcts_player, temp=self.temp)
            play_data_zip2list = list(play_data)  # add by haward
            self.episode_len = len(play_data_zip2list)
            # augment the data
            play_data = self.get_equi_data(play_data_zip2list)
            self.data_buffer.extend(play_data)
                        
    def policy_update(self):
        """update the policy-value net"""
        mini_batch = random.sample(self.data_buffer, self.batch_size)
        state_batch = [data[0] for data in mini_batch]
        mcts_probs_batch = [data[1] for data in mini_batch]
        winner_batch = [data[2] for data in mini_batch]            
        old_probs, old_v = self.policy_value_net.policy_value(state_batch) 
        for i in range(self.epochs): 
            loss, entropy = self.policy_value_net.train_step(state_batch, mcts_probs_batch, winner_batch, self.learn_rate*self.lr_multiplier)
            new_probs, new_v = self.policy_value_net.policy_value(state_batch)
            kl = np.mean(np.sum(old_probs * (np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)), axis=1))  
            if kl > self.kl_targ * 4:   # early stopping if D_KL diverges badly
                break
        # adaptively adjust the learning rate
        if kl > self.kl_targ * 2 and self.lr_multiplier > 0.1:
            self.lr_multiplier /= 1.5
        elif kl < self.kl_targ / 2 and self.lr_multiplier < 10:
            self.lr_multiplier *= 1.5
            
        explained_var_old =  1 - np.var(np.array(winner_batch) - old_v.flatten())/np.var(np.array(winner_batch))
        explained_var_new = 1 - np.var(np.array(winner_batch) - new_v.flatten())/np.var(np.array(winner_batch))        
        print("kl:{:.5f},lr_multiplier:{:.3f},loss:{},entropy:{},explained_var_old:{:.3f},explained_var_new:{:.3f}".format(
                kl, self.lr_multiplier, loss, entropy, explained_var_old, explained_var_new))
        return loss, entropy
        
    def policy_evaluate(self, n_games=10,batch=0):
        """
        Evaluate the trained policy by playing games against the pure MCTS player
        Note: this is only for monitoring the progress of training
        """
        current_mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn, c_puct=self.c_puct, n_playout=self.n_playout)
        pure_mcts_player = MCTS_Pure(c_puct=5, n_playout=self.pure_mcts_playout_num)
        win_cnt = defaultdict(int)
        for i in range(n_games):
            winner = self.game.start_play(current_mcts_player, pure_mcts_player, start_player=i%2, is_shown=0)
            win_cnt[winner] += 1
        win_ratio = 1.0*(win_cnt[1] + 0.5*win_cnt[-1])/n_games
        print("batch_i:{}, num_playouts:{}, win: {}, lose: {}, tie:{}".format(batch, self.pure_mcts_playout_num, win_cnt[1], win_cnt[2], win_cnt[-1]))
        logging.debug("batch_i {} num_playouts {} win {} lose {} tie {}".format(batch, self.pure_mcts_playout_num, win_cnt[1], win_cnt[2], win_cnt[-1]))
        return win_ratio
    
    def run(self):
        """run the training pipeline"""
        try:
            for i in range(self.game_batch_num):                
                self.collect_selfplay_data(self.play_batch_size)# collect a set of data if it self-play once
                print("batch_i:{}, episode_len:{}".format(i+1, self.episode_len))
                #logging.debug("batch_i:{}, episode_len:{}".format(i+1, self.episode_len))
                if len(self.data_buffer) > self.batch_size:
                    #当队列中的数据量大于mini-batch梯度下降所需的最小批量数目时,我们便可以从队列中随机选择最小批量的数据,用于训练更新网络
                    loss, entropy = self.policy_update()
                    logging.debug("batch_i {} loss {}".format(i+1, loss))
                #check the performance of the current model and save the model params
                if (i+1) % self.check_freq == 0: #每隔50次self-play对局就对当前AI模型进行一次评估
                    print("current self-play batch: {}".format(i+1))
                    win_ratio = self.policy_evaluate(batch= i+1)
                    net_params = self.policy_value_net.get_policy_param() # get model params
                    #保存模型,序列化对象,并将结果数据流写入到文件对象中
                    pickle.dump(net_params, open('current_policy_8_8_5_new.model', 'wb'), pickle.HIGHEST_PROTOCOL) # save model param to file
                    if win_ratio > self.best_win_ratio: #胜率提高,更新模型参数
                        print("New best policy!!!!!!!!")
                        self.best_win_ratio = win_ratio
                        pickle.dump(net_params, open('best_policy_8_8_5_new.model', 'wb'), pickle.HIGHEST_PROTOCOL) # update the best_policy
                        if self.best_win_ratio == 1.0 and self.pure_mcts_playout_num < 5000:
                            #当胜率达到100的时候纯蒙特卡洛模拟次数增加1000次,胜率清0
                            self.pure_mcts_playout_num += 1000
                            self.best_win_ratio = 0.0
        except KeyboardInterrupt:
            print('\n\rquit')