def exec_saved_policy(env_name, policystr, num_trajs, deterministic, max_traj_len=None): import policyopt from policyopt import SimConfig, rl, util, nn, tqdm from environments import rlgymenv import gym # Load MDP and policy mdp, policy, _ = load_trained_policy_and_mdp(env_name, policystr) max_traj_len = min( mdp.env_spec.max_episode_steps, max_traj_len ) if max_traj_len is not None else mdp.env_spec.max_episode_steps print('Sampling {} trajs (max len {}) from policy {} in {}'.format( num_trajs, max_traj_len, policystr, env_name)) # Sample trajs trajbatch = mdp.sim_mp(policy_fn=lambda obs_B_Do: policy.sample_actions( obs_B_Do, deterministic), obsfeat_fn=lambda obs: obs, cfg=policyopt.SimConfig(min_num_trajs=num_trajs, min_total_sa=-1, batch_size=None, max_traj_len=max_traj_len)) return trajbatch, policy, mdp
def exec_saved_policy(env_name, policystr, num_trajs, deterministic, max_traj_len=None): """ For given env_name (e.g. CartPole-v0) with an expert policy, call `mdp.sim_mp` to get states and actions info for the sampled trajectories. The simulation's actually defined in `policyopt/__init__.py`, because the mdp (RLGymMDP) is a subclass of the MDP there. It mostly relies on a `sim_single` method which simulates one rollout in very readable code. Returns ------- trajbatch: [TrajBatch] A customized class encoding information about the trajectories, e.g. it can handle varying lengths. policy: [rl.Policy] The agent's policy, encoded as either rl.GaussianPolicy for continuous actions, or rl.GibbsPolicy for discrete actions. mdp: [RLGymMDP] Similar to a real gym env except with customized obs/action spaces and an `RLGyMSim` object. """ import policyopt from policyopt import SimConfig, rl, util, nn, tqdm from environments import rlgymenv import gym # Load MDP and policy mdp, policy, _ = load_trained_policy_and_mdp(env_name, policystr) max_traj_len = min(mdp.env_spec.timestep_limit, max_traj_len) if max_traj_len is not None else mdp.env_spec.timestep_limit print 'Sampling {} trajs (max len {}) from policy {} in {}'.format(num_trajs, max_traj_len, policystr, env_name) # Sample trajs trajbatch = mdp.sim_mp( policy_fn=lambda obs_B_Do: policy.sample_actions(obs_B_Do, deterministic), obsfeat_fn=lambda obs:obs, cfg=policyopt.SimConfig( min_num_trajs=num_trajs, min_total_sa=-1, batch_size=None, max_traj_len=max_traj_len)) return trajbatch, policy, mdp
def main(): np.set_printoptions(suppress=True, precision=5, linewidth=1000) parser = argparse.ArgumentParser() # MDP options parser.add_argument('policy', type=str) parser.add_argument('--eval_only', action='store_true') parser.add_argument('--max_traj_len', type=int, default=None) # only used for saving parser.add_argument('--out', type=str, default=None) parser.add_argument('--count', type=int, default=None) parser.add_argument('--deterministic', action='store_true') args = parser.parse_args() # Load the saved state policy_file, policy_key = util.split_h5_name(args.policy) print 'Loading policy parameters from %s in %s' % (policy_key, policy_file) with h5py.File(policy_file, 'r') as f: train_args = json.loads(f.attrs['args']) dset = f[policy_key] import pprint pprint.pprint(dict(dset.attrs)) # Initialize the MDP env_name = train_args['env_name'] print 'Loading environment', env_name mdp = rlgymenv.RLGymMDP(env_name) util.header('MDP observation space, action space sizes: %d, %d\n' % (mdp.obs_space.dim, mdp.action_space.storage_size)) if args.max_traj_len is None: args.max_traj_len = mdp.env_spec.timestep_limit util.header('Max traj len is {}'.format(args.max_traj_len)) # Initialize the policy and load its parameters enable_obsnorm = bool(train_args['enable_obsnorm'] ) if 'enable_obsnorm' in train_args else train_args[ 'obsnorm_mode'] != 'none' if isinstance(mdp.action_space, policyopt.ContinuousSpace): policy_cfg = rl.GaussianPolicyConfig( hidden_spec=train_args['policy_hidden_spec'], min_stdev=0., init_logstdev=0., enable_obsnorm=enable_obsnorm) policy = rl.GaussianPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GaussianPolicy') else: policy_cfg = rl.GibbsPolicyConfig( hidden_spec=train_args['policy_hidden_spec'], enable_obsnorm=enable_obsnorm) policy = rl.GibbsPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GibbsPolicy') policy.load_h5(policy_file, policy_key) if args.eval_only: n = 50 print 'Evaluating based on {} trajs'.format(n) if False: eval_trajbatch = mdp.sim_mp( policy_fn=lambda obs_B_Do: policy.sample_actions( obs_B_Do, args.deterministic), obsfeat_fn=lambda obs: obs, cfg=policyopt.SimConfig(min_num_trajs=n, min_total_sa=-1, batch_size=None, max_traj_len=args.max_traj_len)) returns = eval_trajbatch.r.padded(fill=0.).sum(axis=1) avgr = eval_trajbatch.r.stacked.mean() lengths = np.array([len(traj) for traj in eval_trajbatch]) ent = policy._compute_actiondist_entropy( eval_trajbatch.adist.stacked).mean() print 'ret: {} +/- {}'.format(returns.mean(), returns.std()) print 'avgr: {}'.format(avgr) print 'len: {} +/- {}'.format(lengths.mean(), lengths.std()) print 'ent: {}'.format(ent) print returns else: returns = [] lengths = [] sim = mdp.new_sim() for i_traj in xrange(n): iteration = 0 sim.reset() totalr = 0. l = 0 while not sim.done and iteration < args.max_traj_len: a = policy.sample_actions(sim.obs[None, :], bool( args.deterministic))[0][0, :] r = sim.step(a) totalr += r l += 1 iteration += 1 print i_traj, n, totalr, iteration returns.append(totalr) lengths.append(l) print 'Avg Return: ', np.array(returns).mean() print 'Std Return: ', np.array(returns).std() #import IPython; IPython.embed() elif args.out is not None: # Sample trajs and write to file print 'Saving traj samples to file: {}'.format(args.out) assert not os.path.exists(args.out) assert args.count > 0 # Simulate to create a trajectory batch util.header('Sampling {} trajectories of maximum length {}'.format( args.count, args.max_traj_len)) trajs = [] for i in tqdm.trange(args.count): trajs.append( mdp.sim_single( lambda obs: policy.sample_actions(obs, args.deterministic), lambda obs: obs, args.max_traj_len)) trajbatch = policyopt.TrajBatch.FromTrajs(trajs) print print 'Average return:', trajbatch.r.padded(fill=0.).sum(axis=1).mean() # Save the trajs to a file with h5py.File(args.out, 'w') as f: def write(name, a): # chunks of 128 trajs each f.create_dataset(name, data=a, chunks=(min(128, a.shape[0]), ) + a.shape[1:], compression='gzip', compression_opts=9) # Right-padded trajectory data write('obs_B_T_Do', trajbatch.obs.padded(fill=0.)) write('a_B_T_Da', trajbatch.a.padded(fill=0.)) write('r_B_T', trajbatch.r.padded(fill=0.)) # Trajectory lengths write('len_B', np.array([len(traj) for traj in trajbatch], dtype=np.int32)) # Also save args to this script argstr = json.dumps(vars(args), separators=(',', ':'), indent=2) f.attrs['args'] = argstr else: # Animate sim = mdp.new_sim() raw_obs, normalized_obs = [], [] tret_list = [] iteration = 0 while iteration < 50: sim.reset() totalr = 0. steps = 0 while not sim.done: raw_obs.append(sim.obs[None, :]) normalized_obs.append( policy.compute_internal_normalized_obsfeat( sim.obs[None, :])) a = policy.sample_actions(sim.obs[None, :], args.deterministic)[0][0, :] r = sim.step(a) totalr += r steps += 1 sim.draw() if steps % args.max_traj_len == 0: tmpraw = np.concatenate(raw_obs, axis=0) tmpnormed = np.concatenate(normalized_obs, axis=0) print 'raw mean, raw std, normed mean, normed std' print np.stack([ tmpraw.mean(0), tmpraw.std(0), tmpnormed.mean(0), tmpnormed.std(0) ]) break print 'Steps: %d, return: %.5f' % (steps, totalr) tret_list.append(totalr) iteration += 1 print 'Avg Return: ', np.array(tret_list).mean() print 'Std Return: ', np.array(tret_list).std()
def main(): np.set_printoptions(suppress=True, precision=5, linewidth=1000) parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=MODES, required=True) # Expert dataset parser.add_argument('--data', type=str, required=True) parser.add_argument('--resume_training', action='store_true', help="Resume training from a checkpoint: --policy_checkpoint. Currently only supports GAIL with nn policy, reward and vf") parser.add_argument('--checkpoint', type=str, help="Load from checkpoint if provided and if --resume_training") parser.add_argument('--limit_trajs', type=int, required=True, help="How many expert trajectories to be used for training. If None : full dataset is used.") parser.add_argument('--data_subsamp_freq', type=int, required=True, help="A number between 0 and max_traj_len. Rate of subsampling of expert trajectories while creating the dataset of expert transitions (state-action)") # MDP options parser.add_argument('--env_name', type=str, required=True) parser.add_argument('--max_traj_len', type=int, default=None) # Policy architecture parser.add_argument('--policy_hidden_spec', type=str, default=SIMPLE_ARCHITECTURE) parser.add_argument('--tiny_policy', action='store_true') parser.add_argument('--obsnorm_mode', choices=OBSNORM_MODES, default='expertdata') # Behavioral cloning optimizer parser.add_argument('--bclone_lr', type=float, default=1e-3) parser.add_argument('--bclone_batch_size', type=int, default=128) # parser.add_argument('--bclone_eval_nsa', type=int, default=128*100) parser.add_argument('--bclone_eval_ntrajs', type=int, default=20) parser.add_argument('--bclone_eval_freq', type=int, default=1000) parser.add_argument('--bclone_train_frac', type=float, default=.7) # Imitation optimizer parser.add_argument('--discount', type=float, default=.995) parser.add_argument('--lam', type=float, default=.97) parser.add_argument('--max_iter', type=int, default=1000000) parser.add_argument('--policy_max_kl', type=float, default=.01) parser.add_argument('--policy_cg_damping', type=float, default=.1) parser.add_argument('--no_vf', type=int, default=0) parser.add_argument('--vf_max_kl', type=float, default=.01) parser.add_argument('--vf_cg_damping', type=float, default=.1) parser.add_argument('--policy_ent_reg', type=float, default=0.) parser.add_argument('--reward_type', type=str, default='nn') # parser.add_argument('--linear_reward_bin_features', type=int, default=0) parser.add_argument('--reward_max_kl', type=float, default=.01) parser.add_argument('--reward_lr', type=float, default=.01) parser.add_argument('--reward_steps', type=int, default=1) parser.add_argument('--reward_ent_reg_weight', type=float, default=.001) parser.add_argument('--reward_include_time', type=int, default=0) parser.add_argument('--sim_batch_size', type=int, default=None) parser.add_argument('--min_total_sa', type=int, default=50000) parser.add_argument('--favor_zero_expert_reward', type=int, default=0) # Saving stuff parser.add_argument('--print_freq', type=int, default=1) parser.add_argument('--save_freq', type=int, default=20) parser.add_argument('--plot_freq', type=int, default=0) parser.add_argument('--log', type=str, required=False) args = parser.parse_args() # Initialize the MDP if args.tiny_policy: assert args.policy_hidden_spec == SIMPLE_ARCHITECTURE, 'policy_hidden_spec must remain unspecified if --tiny_policy is set' args.policy_hidden_spec = TINY_ARCHITECTURE argstr = json.dumps(vars(args), separators=(',', ':'), indent=2) print(argstr) print "\n\n========== Policy network specifications loaded ===========\n\n" mdp = rlgymenv.RLGymMDP(args.env_name) util.header('MDP observation space, action space sizes: %d, %d\n' % (mdp.obs_space.dim, mdp.action_space.storage_size)) print "\n\n========== MDP initialized ===========\n\n" # Initialize the policy enable_obsnorm = args.obsnorm_mode != 'none' if isinstance(mdp.action_space, policyopt.ContinuousSpace): policy_cfg = rl.GaussianPolicyConfig( hidden_spec=args.policy_hidden_spec, min_stdev=0., init_logstdev=0., enable_obsnorm=enable_obsnorm) policy = rl.GaussianPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GaussianPolicy') else: policy_cfg = rl.GibbsPolicyConfig( hidden_spec=args.policy_hidden_spec, enable_obsnorm=enable_obsnorm) policy = rl.GibbsPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GibbsPolicy') #Load from checkpoint if provided <<<<<<<<<<<<<=============================>>>>>>>>>>>>>>>>. if args.resume_training: if args.checkpoint is not None: file, policy_key = util.split_h5_name(args.checkpoint) policy_file = file[:-3]+'_policy.h5' policy.load_h5(policy_file, policy_key) util.header('Policy architecture') for v in policy.get_trainable_variables(): util.header('- %s (%d parameters)' % (v.name, v.get_value().size)) util.header('Total: %d parameters' % (policy.get_num_params(),)) print "\n\n========== Policy initialized ===========\n\n" # Load expert data exobs_Bstacked_Do, exa_Bstacked_Da, ext_Bstacked = load_dataset( args.data, args.limit_trajs, args.data_subsamp_freq) assert exobs_Bstacked_Do.shape[1] == mdp.obs_space.storage_size assert exa_Bstacked_Da.shape[1] == mdp.action_space.storage_size assert ext_Bstacked.ndim == 1 print "\n\n========== Expert data loaded ===========\n\n" # Start optimization max_traj_len = args.max_traj_len if args.max_traj_len is not None else mdp.env_spec.timestep_limit print 'Max traj len:', max_traj_len if args.mode == 'bclone': # For behavioral cloning, only print output when evaluating args.print_freq = args.bclone_eval_freq args.save_freq = args.bclone_eval_freq reward, vf = None, None #There is no role of the reward function or value function in behavioral cloning opt = imitation.BehavioralCloningOptimizer( mdp, policy, lr=args.bclone_lr, batch_size=args.bclone_batch_size, obsfeat_fn=lambda o:o, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, eval_sim_cfg=policyopt.SimConfig( min_num_trajs=args.bclone_eval_ntrajs, min_total_sa=-1, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), eval_freq=args.bclone_eval_freq, train_frac=args.bclone_train_frac) print "======= Behavioral Cloning optimizer initialized =======" elif args.mode == 'ga': if args.reward_type == 'nn': reward = imitation.TransitionClassifier( #Add resume training functionality hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, action_space=mdp.action_space, max_kl=args.reward_max_kl, adam_lr=args.reward_lr, adam_steps=args.reward_steps, ent_reg_weight=args.reward_ent_reg_weight, enable_inputnorm=True, include_time=bool(args.reward_include_time), time_scale=1./mdp.env_spec.timestep_limit, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), varscope_name='TransitionClassifier') #Load from checkpoint if provided <<<<<<<<<<<<<=============================>>>>>>>>>>>>>>>>. if args.resume_training: if args.checkpoint is not None: file, reward_key = util.split_h5_name(args.checkpoint) reward_file = file[:-3]+'_reward.h5' print reward_file reward.load_h5(reward_file, reward_key) elif args.reward_type in ['l2ball', 'simplex']: reward = imitation.LinearReward( obsfeat_space=mdp.obs_space, action_space=mdp.action_space, mode=args.reward_type, enable_inputnorm=True, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), include_time=bool(args.reward_include_time), time_scale=1./mdp.env_spec.timestep_limit, exobs_Bex_Do=exobs_Bstacked_Do, exa_Bex_Da=exa_Bstacked_Da, ext_Bex=ext_Bstacked) else: raise NotImplementedError(args.reward_type) vf = None if bool(args.no_vf) else rl.ValueFunc( #Add resume training functionality hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, enable_obsnorm=args.obsnorm_mode != 'none', enable_vnorm=True, max_kl=args.vf_max_kl, damping=args.vf_cg_damping, time_scale=1./mdp.env_spec.timestep_limit, varscope_name='ValueFunc') if args.resume_training: if args.checkpoint is not None: file, vf_key = util.split_h5_name(args.checkpoint) vf_file = file[:-3]+'_vf.h5' vf.load_h5(vf_file, vf_key) opt = imitation.ImitationOptimizer( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig( min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping), reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked) # Set observation normalization if args.obsnorm_mode == 'expertdata': policy.update_obsnorm(exobs_Bstacked_Do) if reward is not None: reward.update_inputnorm(opt.reward_obsfeat_fn(exobs_Bstacked_Do), exa_Bstacked_Da) if vf is not None: vf.update_obsnorm(opt.policy_obsfeat_fn(exobs_Bstacked_Do)) print "======== Observation normalization done ========" # Run optimizer print "======== Optimization begins ========" # Trial: make checkpoints for policy, reward and vf policy_log = nn.TrainingLog(args.log[:-3]+'_policy.h5', [('args', argstr)]) reward_log = nn.TrainingLog(args.log[:-3]+'_reward.h5', [('args', argstr)]) vf_log = nn.TrainingLog(args.log[:-3]+'_vf.h5', [('args', argstr)]) for i in xrange(args.max_iter): #Optimization step iter_info = opt.step() #Log and plot #pdb.set_trace() policy_log.write(iter_info, print_header=i % (20*args.print_freq) == 0, display=i % args.print_freq == 0 ## FIXME: AS remove comment ) reward_log.write(iter_info, print_header=i % (20*args.print_freq) == 0, display=i % args.print_freq == 0 ## FIXME: AS remove comment ) vf_log.write(iter_info, print_header=i % (20*args.print_freq) == 0, display=i % args.print_freq == 0 ## FIXME: AS remove comment ) if args.save_freq != 0 and i % args.save_freq == 0 and args.log is not None: policy_log.write_snapshot(policy, i) reward_log.write_snapshot(reward, i) vf_log.write_snapshot(vf, i) if args.plot_freq != 0 and i % args.plot_freq == 0: exdata_N_Doa = np.concatenate([exobs_Bstacked_Do, exa_Bstacked_Da], axis=1) pdata_M_Doa = np.concatenate([opt.last_sampbatch.obs.stacked, opt.last_sampbatch.a.stacked], axis=1) # Plot reward import matplotlib.pyplot as plt _, ax = plt.subplots() idx1, idx2 = 0,1 range1 = (min(exdata_N_Doa[:,idx1].min(), pdata_M_Doa[:,idx1].min()), max(exdata_N_Doa[:,idx1].max(), pdata_M_Doa[:,idx1].max())) range2 = (min(exdata_N_Doa[:,idx2].min(), pdata_M_Doa[:,idx2].min()), max(exdata_N_Doa[:,idx2].max(), pdata_M_Doa[:,idx2].max())) reward.plot(ax, idx1, idx2, range1, range2, n=100) # Plot expert data ax.scatter(exdata_N_Doa[:,idx1], exdata_N_Doa[:,idx2], color='blue', s=1, label='expert') # Plot policy samples ax.scatter(pdata_M_Doa[:,idx1], pdata_M_Doa[:,idx2], color='red', s=1, label='apprentice') ax.legend() plt.show()
def main(): np.set_printoptions(suppress=True, precision=5, linewidth=1000) parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=MODES, required=True) # Expert dataset parser.add_argument('--data', type=str, required=True) parser.add_argument( '--resume_training', action='store_true', help= "Resume training from a checkpoint: --policy_checkpoint. Currently only supports GAIL with nn policy, reward and vf" ) parser.add_argument( '--checkpoint', type=str, help="Load from checkpoint if provided and if --resume_training") parser.add_argument( '--limit_trajs', type=int, required=True, help= "How many expert trajectories to be used for training. If None : full dataset is used." ) parser.add_argument( '--data_subsamp_freq', type=int, required=True, help= "A number between 0 and max_traj_len. Rate of subsampling of expert trajectories while creating the dataset of expert transitions (state-action)" ) # MDP options parser.add_argument('--env_name', type=str, required=True) parser.add_argument('--max_traj_len', type=int, default=None) # Policy architecture parser.add_argument('--policy_hidden_spec', type=str, default=SIMPLE_ARCHITECTURE) parser.add_argument('--tiny_policy', action='store_true') parser.add_argument('--obsnorm_mode', choices=OBSNORM_MODES, default='expertdata') # Behavioral cloning optimizer parser.add_argument('--bclone_lr', type=float, default=1e-3) parser.add_argument('--bclone_batch_size', type=int, default=128) # parser.add_argument('--bclone_eval_nsa', type=int, default=128*100) parser.add_argument('--bclone_eval_ntrajs', type=int, default=20) parser.add_argument('--bclone_eval_freq', type=int, default=1000) parser.add_argument('--bclone_train_frac', type=float, default=.7) # Imitation optimizer parser.add_argument('--discount', type=float, default=.995) parser.add_argument('--lam', type=float, default=.97) parser.add_argument('--max_iter', type=int, default=1000000) parser.add_argument('--policy_max_kl', type=float, default=.01) parser.add_argument('--policy_cg_damping', type=float, default=.1, help="TRPO parameter") parser.add_argument('--no_vf', type=int, default=0) parser.add_argument('--vf_max_kl', type=float, default=.01) parser.add_argument('--vf_cg_damping', type=float, default=.1) parser.add_argument('--policy_ent_reg', type=float, default=0.) parser.add_argument('--reward_type', type=str, default='nn') # parser.add_argument('--linear_reward_bin_features', type=int, default=0) parser.add_argument('--reward_max_kl', type=float, default=.01, help="TRPO parameter") parser.add_argument('--reward_lr', type=float, default=.01) parser.add_argument('--reward_steps', type=int, default=1) parser.add_argument('--reward_ent_reg_weight', type=float, default=.001) parser.add_argument('--reward_include_time', type=int, default=0) parser.add_argument('--sim_batch_size', type=int, default=None) parser.add_argument('--min_total_sa', type=int, default=50000) parser.add_argument('--favor_zero_expert_reward', type=int, default=0) # Saving stuff parser.add_argument('--print_freq', type=int, default=1) parser.add_argument('--save_freq', type=int, default=20) parser.add_argument('--plot_freq', type=int, default=0) parser.add_argument('--log', type=str, required=False) # CVaR parameters parser.add_argument('--useCVaR', action='store_true') parser.add_argument('--CVaR_alpha', type=float, default=0.9) parser.add_argument('--CVaR_beta', type=float, default=0.) parser.add_argument('--CVaR_lr', type=float, default=0.01) # !!! The following argument --disc_CVaR_weight is not of use and should be removed parser.add_argument( '--disc_CVaR_weight', type=float, default=1., help= "Weight given to CVaR loss for the discriminator. Added by Anirban for smooth convergence." ) parser.add_argument('--CVaR_Lambda_not_trainable', action='store_false') parser.add_argument('--CVaR_Lambda_val_if_not_trainable', type=float, default=0.5) #Filtering expert trajectories parser.add_argument('--use_expert_traj_filtering', action='store_true') parser.add_argument('--expert_traj_filt_percentile_threshold', type=float, default=20) # Additive state prior formulation parser.add_argument('--use_additiveStatePrior', action='store_true') parser.add_argument('--additiveStatePrior_weight', type=float, default=1.) parser.add_argument('--n_gmm_components', type=int, default=5) parser.add_argument('--cov_type_gmm', type=str, default='diag') parser.add_argument('--familiarity_alpha', type=float, default=10000000) parser.add_argument('--familiarity_beta', type=float, default=100) parser.add_argument('--kickThreshold_percentile', type=float, default=100.0) parser.add_argument('--appendFlag', action='store_true') args = parser.parse_args() if args.useCVaR: print ">>>>>>>>>>>>>>>>>>> TRAINING RAIL <<<<<<<<<<<<<<<<<<<" elif args.use_additiveStatePrior: print ">>>>>>>>>>>>>>>>>>> USING ADDITIVE STATE PRIOR <<<<<<<<<<<<<<<<<<<" else: print ">>>>>>>>> TRAINING GAIL <<<<<<<<<<" # Initialize the MDP if args.tiny_policy: assert args.policy_hidden_spec == SIMPLE_ARCHITECTURE, 'policy_hidden_spec must remain unspecified if --tiny_policy is set' args.policy_hidden_spec = TINY_ARCHITECTURE argstr = json.dumps(vars(args), separators=(',', ':'), indent=2) print(argstr) print "\n\n========== Policy network specifications loaded ===========\n\n" mdp = rlgymenv.RLGymMDP(args.env_name) util.header('MDP observation space, action space sizes: %d, %d\n' % (mdp.obs_space.dim, mdp.action_space.storage_size)) print "\n\n========== MDP initialized ===========\n\n" # Initialize the policy enable_obsnorm = args.obsnorm_mode != 'none' if isinstance(mdp.action_space, policyopt.ContinuousSpace): policy_cfg = rl.GaussianPolicyConfig( hidden_spec=args.policy_hidden_spec, min_stdev=0., init_logstdev=0., enable_obsnorm=enable_obsnorm) policy = rl.GaussianPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GaussianPolicy', args.useCVaR) else: policy_cfg = rl.GibbsPolicyConfig(hidden_spec=args.policy_hidden_spec, enable_obsnorm=enable_obsnorm) policy = rl.GibbsPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GibbsPolicy', args.useCVaR) offset = 0 #Load from checkpoint if provided <<<<<<<<<<<<<=============================>>>>>>>>>>>>>>>>. if args.resume_training: if args.checkpoint is not None: file, policy_key = util.split_h5_name(args.checkpoint) offset = int(policy_key.split('/')[-1][4:]) print '\n**************************************************' print 'Resuming from checkpoint : %d of %s' % (offset, file) print '**************************************************\n' if args.appendFlag and file != args.log: raise RuntimeError( 'Log file and checkpoint should have the same name if appendFlag is on. %s vs %s' % file, args.log) policy_file = file[:-3] + '_policy.h5' # Because we're naming the file as *_policy.h5 itself policy.load_h5(policy_file, policy_key) util.header('Policy architecture') for v in policy.get_trainable_variables(): util.header('- %s (%d parameters)' % (v.name, v.get_value().size)) util.header('Total: %d parameters' % (policy.get_num_params(), )) print "\n\n========== Policy initialized ===========\n\n" # Load expert data exobs_Bstacked_Do, exa_Bstacked_Da, ext_Bstacked = load_dataset( args.data, args.limit_trajs, args.data_subsamp_freq, len_filtering=args.use_expert_traj_filtering, len_filter_threshold=args.expert_traj_filt_percentile_threshold) assert exobs_Bstacked_Do.shape[1] == mdp.obs_space.storage_size assert exa_Bstacked_Da.shape[1] == mdp.action_space.storage_size assert ext_Bstacked.ndim == 1 print "\n\n========== Expert data loaded ===========\n\n" print '\n==================== Hyperparams ====================' print '\texpert_traj_filt_percentile_threshold = %f' % args.expert_traj_filt_percentile_threshold print '\tfamiliarity_alpha = %f' % args.familiarity_alpha print '\tfamiliarity_beta = %f' % args.familiarity_beta print '\tkickThreshold_percentile = %f' % args.kickThreshold_percentile print '==============================================\n' # Start optimization max_traj_len = args.max_traj_len if args.max_traj_len is not None else mdp.env_spec.timestep_limit print 'Max traj len:', max_traj_len if args.mode == 'bclone': # For behavioral cloning, only print output when evaluating args.print_freq = args.bclone_eval_freq args.save_freq = args.bclone_eval_freq reward, vf = None, None #There is no role of the reward function or value function in behavioral cloning opt = imitation.BehavioralCloningOptimizer( mdp, policy, lr=args.bclone_lr, batch_size=args.bclone_batch_size, obsfeat_fn=lambda o: o, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, eval_sim_cfg=policyopt.SimConfig( min_num_trajs=args.bclone_eval_ntrajs, min_total_sa=-1, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), eval_freq=args.bclone_eval_freq, train_frac=args.bclone_train_frac) print "======= Behavioral Cloning optimizer initialized =======" elif args.mode == 'ga': if args.reward_type == 'nn': reward = imitation.TransitionClassifier( #Add resume training functionality hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, action_space=mdp.action_space, max_kl=args.reward_max_kl, adam_lr=args.reward_lr, adam_steps=args.reward_steps, ent_reg_weight=args.reward_ent_reg_weight, enable_inputnorm=True, include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), varscope_name='TransitionClassifier', useCVaR=args.useCVaR, CVaR_loss_weightage=args.disc_CVaR_weight) #Load from checkpoint if provided <<<<<<<<<<<<<=============================>>>>>>>>>>>>>>>>. if args.resume_training: if args.checkpoint is not None: file, reward_key = util.split_h5_name(args.checkpoint) reward_file = file[:-3] + '_reward.h5' print reward_file reward.load_h5(reward_file, reward_key) elif args.reward_type in ['l2ball', 'simplex']: reward = imitation.LinearReward( obsfeat_space=mdp.obs_space, action_space=mdp.action_space, mode=args.reward_type, enable_inputnorm=True, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, exobs_Bex_Do=exobs_Bstacked_Do, exa_Bex_Da=exa_Bstacked_Da, ext_Bex=ext_Bstacked) else: raise NotImplementedError(args.reward_type) vf = None if bool( args.no_vf) else rl.ValueFunc( #Add resume training functionality hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, enable_obsnorm=args.obsnorm_mode != 'none', enable_vnorm=True, max_kl=args.vf_max_kl, damping=args.vf_cg_damping, time_scale=1. / mdp.env_spec.timestep_limit, varscope_name='ValueFunc') if args.resume_training: if args.checkpoint is not None: file, vf_key = util.split_h5_name(args.checkpoint) vf_file = file[:-3] + '_vf.h5' vf.load_h5(vf_file, vf_key) if args.useCVaR: opt = imitation.ImitationOptimizer_CVaR( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig(min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping, useCVaR=True), reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked, #For CVaR CVaR_alpha=args.CVaR_alpha, CVaR_beta=args.CVaR_beta, CVaR_lr=args.CVaR_lr, CVaR_Lambda_trainable=args.CVaR_Lambda_not_trainable, CVaR_Lambda_val_if_not_trainable=args. CVaR_Lambda_val_if_not_trainable, offset=offset + 1) elif args.use_additiveStatePrior: opt = imitation.ImitationOptimizer_additiveStatePrior( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig(min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping, useCVaR=False), reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked, n_gmm_components=args.n_gmm_components, cov_type_gmm=args.cov_type_gmm, additiveStatePrior_weight=args.additiveStatePrior_weight, alpha=args.familiarity_alpha, beta=args.familiarity_beta, kickThreshold_percentile=args.kickThreshold_percentile, offset=offset + 1) else: opt = imitation.ImitationOptimizer( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig(min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping, useCVaR=False), reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked) # Set observation normalization if args.obsnorm_mode == 'expertdata': policy.update_obsnorm(exobs_Bstacked_Do) if reward is not None: reward.update_inputnorm(opt.reward_obsfeat_fn(exobs_Bstacked_Do), exa_Bstacked_Da) if vf is not None: vf.update_obsnorm(opt.policy_obsfeat_fn(exobs_Bstacked_Do)) print "======== Observation normalization done ========" # Run optimizer print "======== Optimization begins ========" # Trial: make checkpoints for policy, reward and vf policy_log = nn.TrainingLog(args.log[:-3] + '_policy.h5', [('args', argstr)], args.appendFlag) reward_log = nn.TrainingLog(args.log[:-3] + '_reward.h5', [('args', argstr)], args.appendFlag) vf_log = nn.TrainingLog(args.log[:-3] + '_vf.h5', [('args', argstr)], args.appendFlag) kickStatesData = [] print '\n**************************************' print 'Running iterations from %d to %d' % (offset + 1, args.max_iter) for i in xrange(offset + 1, args.max_iter): # for i in range(1): #FIXME: this is just for studying the insides of the training algo # All training a.k.a. optimization happens in the next line!!! -_- # pdb.set_trace() iter_info = opt.step( i, kickStatesData) if args.use_additiveStatePrior else opt.step(i) #========= The rest is fluff ============= #Log and plot #pdb.set_trace() policy_log.write( iter_info, print_header=i % (20 * args.print_freq) == 0, # display=False display=i % args.print_freq == 0 ## FIXME: AS remove comment ) # reward_log.write(iter_info, # print_header=i % (20*args.print_freq) == 0, # display=False # # display=i % args.print_freq == 0 ## FIXME: AS remove comment # ) # vf_log.write(iter_info, # print_header=i % (20*args.print_freq) == 0, # display=False # # display=i % args.print_freq == 0 ## FIXME: AS remove comment # ) #FIXME: problem running this on 211 and 138. No problem on 151 if args.save_freq != 0 and i % args.save_freq == 0 and args.log is not None: policy_log.write_snapshot(policy, i) reward_log.write_snapshot(reward, i) vf_log.write_snapshot(vf, i) # analysisFile=open(args.log[:-3]+'_kickedStates' + str(i) + '.pkl', 'wb') analysisFile = open(args.log[:-3] + '_kickedStates.pkl', 'wb') pkl.dump({'kickStatesData': kickStatesData}, analysisFile, protocol=2) analysisFile.close() if args.plot_freq != 0 and i % args.plot_freq == 0: exdata_N_Doa = np.concatenate([exobs_Bstacked_Do, exa_Bstacked_Da], axis=1) pdata_M_Doa = np.concatenate( [opt.last_sampbatch.obs.stacked, opt.last_sampbatch.a.stacked], axis=1) # Plot reward import matplotlib.pyplot as plt _, ax = plt.subplots() idx1, idx2 = 0, 1 range1 = (min(exdata_N_Doa[:, idx1].min(), pdata_M_Doa[:, idx1].min()), max(exdata_N_Doa[:, idx1].max(), pdata_M_Doa[:, idx1].max())) range2 = (min(exdata_N_Doa[:, idx2].min(), pdata_M_Doa[:, idx2].min()), max(exdata_N_Doa[:, idx2].max(), pdata_M_Doa[:, idx2].max())) reward.plot(ax, idx1, idx2, range1, range2, n=100) # Plot expert data ax.scatter(exdata_N_Doa[:, idx1], exdata_N_Doa[:, idx2], color='blue', s=1, label='expert') # Plot policy samples ax.scatter(pdata_M_Doa[:, idx1], pdata_M_Doa[:, idx2], color='red', s=1, label='apprentice') ax.legend() plt.show()
def main(): np.set_printoptions(suppress=True, precision=5, linewidth=1000) parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=MODES, required=True) # Expert dataset parser.add_argument('--data', type=str, required=True) parser.add_argument('--limit_trajs', type=int, required=True) parser.add_argument('--data_subsamp_freq', type=int, required=True) # MDP options parser.add_argument('--env_name', type=str, required=True) parser.add_argument('--max_traj_len', type=int, default=None) # Policy architecture parser.add_argument('--policy_hidden_spec', type=str, default=SIMPLE_ARCHITECTURE) parser.add_argument('--tiny_policy', action='store_true') parser.add_argument('--obsnorm_mode', choices=OBSNORM_MODES, default='expertdata') # add a spec for transition classifier parser.add_argument('--clf_hidden_spec', type=str, default=SIMPLE_ARCHITECTURE) # Behavioral cloning optimizer parser.add_argument('--bclone_lr', type=float, default=1e-3) parser.add_argument('--bclone_batch_size', type=int, default=128) # parser.add_argument('--bclone_eval_nsa', type=int, default=128*100) parser.add_argument('--bclone_eval_ntrajs', type=int, default=20) parser.add_argument('--bclone_eval_freq', type=int, default=1000) parser.add_argument('--bclone_train_frac', type=float, default=.7) # Imitation optimizer parser.add_argument('--discount', type=float, default=.995) parser.add_argument('--lam', type=float, default=.97) parser.add_argument('--max_iter', type=int, default=1000000) parser.add_argument('--policy_max_kl', type=float, default=.01) parser.add_argument('--policy_cg_damping', type=float, default=.1) parser.add_argument('--no_vf', type=int, default=0) parser.add_argument('--vf_max_kl', type=float, default=.01) parser.add_argument('--vf_cg_damping', type=float, default=.1) parser.add_argument('--policy_ent_reg', type=float, default=0.) parser.add_argument('--reward_type', type=str, default='nn') # parser.add_argument('--linear_reward_bin_features', type=int, default=0) parser.add_argument('--reward_max_kl', type=float, default=.01) parser.add_argument('--reward_lr', type=float, default=.01) parser.add_argument('--reward_steps', type=int, default=1) parser.add_argument('--reward_ent_reg_weight', type=float, default=.001) parser.add_argument('--reward_include_time', type=int, default=0) parser.add_argument('--sim_batch_size', type=int, default=None) parser.add_argument('--min_total_sa', type=int, default=50000) parser.add_argument('--favor_zero_expert_reward', type=int, default=0) # Saving stuff parser.add_argument('--print_freq', type=int, default=1) parser.add_argument('--save_freq', type=int, default=20) parser.add_argument('--plot_freq', type=int, default=100) parser.add_argument('--log', type=str, required=False) # Sequential model parser.add_argument('--seq_model', type=int, default=0) parser.add_argument('--time_step', type=int, default=10) args = parser.parse_args() # Initialize the MDP if not args.seq_model: if args.tiny_policy: assert args.policy_hidden_spec == SIMPLE_ARCHITECTURE, 'policy_hidden_spec must remain unspecified if --tiny_policy is set' args.policy_hidden_spec = TINY_ARCHITECTURE argstr = json.dumps(vars(args), separators=(',', ':'), indent=2) print(argstr) # Add sequential model else: if args.tiny_policy: assert args.policy_hidden_spec == SEQ_SIMPLE_ARCHITECTURE, 'policy_hidden_spec must remain unspecified if --tiny_policy is set' args.policy_hidden_spec = SEQ_TINY_ARCHITECTURE # # change the default architecture to fit sequential model # if args.policy_hidden_spec == SIMPLE_ARCHITECTURE: # args.policy_hidden_spec = SEQ_SIMPLE_ARCHITECTURE if args.clf_hidden_spec == SIMPLE_ARCHITECTURE: args.clf_hidden_spec = SEQ_SIMPLE_ARCHITECTURE argstr = json.dumps(vars(args), separators=(',', ':'), indent=2) mdp = rlgymenv.RLGymMDP(args.env_name) util.header('MDP observation space, action space sizes: %d, %d\n' % (mdp.obs_space.dim, mdp.action_space.storage_size)) # Initialize the policy enable_obsnorm = args.obsnorm_mode != 'none' if not args.seq_model: if isinstance(mdp.action_space, policyopt.ContinuousSpace): policy_cfg = rl.GaussianPolicyConfig( hidden_spec=args.policy_hidden_spec, min_stdev=0., init_logstdev=0., enable_obsnorm=enable_obsnorm) policy = rl.GaussianPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GaussianPolicy') else: policy_cfg = rl.GibbsPolicyConfig( hidden_spec=args.policy_hidden_spec, enable_obsnorm=enable_obsnorm) policy = rl.GibbsPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GibbsPolicy') # Add squential model else: if isinstance(mdp.action_space, policyopt.ContinuousSpace): policy_cfg = rl.SeqGaussianPolicyConfig( hidden_spec=args.policy_hidden_spec, time_step=args.time_step, # add time step min_stdev=0., init_logstdev=0., enable_obsnorm=enable_obsnorm, enable_actnorm=False) # XXX not implement actnorm yet policy = rl.SeqGaussianPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'SeqGaussianPolicy') else: policy_cfg = rl.SeqGibbsPolicyConfig( hidden_spec=args.policy_hidden_spec, time_step=args.time_step, # add time step enable_obsnorm=enable_obsnorm, enable_actnorm=False) # XXX not implement actnorm yet policy = rl.SeqGibbsPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'SeqGibbsPolicy') util.header('Policy architecture') for v in policy.get_trainable_variables(): util.header('- %s (%d parameters)' % (v.name, v.get_value().size)) util.header('Total: %d parameters' % (policy.get_num_params(), )) # Load expert data exobs_Bstacked_Do, exa_Bstacked_Da, ext_Bstacked = load_dataset( args.data, args.limit_trajs, args.data_subsamp_freq) assert exobs_Bstacked_Do.shape[1] == mdp.obs_space.storage_size assert exa_Bstacked_Da.shape[1] == mdp.action_space.storage_size assert ext_Bstacked.ndim == 1 # print 'Debug: exobs_Bstacked_Do dtype:', exobs_Bstacked_Do.dtype # print 'Debug: exa_Bstacked_Da dtype:', exa_Bstacked_Da.dtype # print 'Debug: ext_Bstacked dtype:', ext_Bstacked.dtype # assert 1 == 0 # Start optimization max_traj_len = args.max_traj_len if args.max_traj_len is not None else mdp.env_spec.timestep_limit print('Max traj len:', max_traj_len) if args.mode == 'bclone': # For behavioral cloning, only print output when evaluating # args.print_freq = args.bclone_eval_freq # args.save_freq = args.bclone_eval_freq reward, vf = None, None opt = imitation.BehavioralCloningOptimizer( mdp, policy, lr=args.bclone_lr, batch_size=args.bclone_batch_size, obsfeat_fn=lambda o: o, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, eval_sim_cfg=policyopt.SimConfig( min_num_trajs=args.bclone_eval_ntrajs, min_total_sa=-1, batch_size=args.sim_batch_size, max_traj_len=max_traj_len, smp_traj_len=-1), eval_freq=args. bclone_eval_freq, # XXX set a value when using bclone train_frac=args.bclone_train_frac) elif args.mode == 'ga': if args.reward_type == 'nn': reward = imitation.TransitionClassifier( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, action_space=mdp.action_space, max_kl=args.reward_max_kl, adam_lr=args.reward_lr, adam_steps=args.reward_steps, ent_reg_weight=args.reward_ent_reg_weight, enable_inputnorm=True, include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), varscope_name='TransitionClassifier') elif args.reward_type in ['l2ball', 'simplex']: reward = imitation.LinearReward( obsfeat_space=mdp.obs_space, action_space=mdp.action_space, mode=args.reward_type, enable_inputnorm=True, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, exobs_Bex_Do=exobs_Bstacked_Do, exa_Bex_Da=exa_Bstacked_Da, ext_Bex=ext_Bstacked) else: raise NotImplementedError(args.reward_type) vf = None if bool(args.no_vf) else rl.ValueFunc( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, enable_obsnorm=args.obsnorm_mode != 'none', enable_vnorm=True, max_kl=args.vf_max_kl, damping=args.vf_cg_damping, time_scale=1. / mdp.env_spec.timestep_limit, varscope_name='ValueFunc') opt = imitation.ImitationOptimizer( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig(min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len, smp_traj_len=-1), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping, sequential_model=False), # add sequential model reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked) # Add Sequential Model elif args.mode == 'sga': if args.reward_type == 'nn': reward = imitation.SequentialTransitionClassifier( hidden_spec=args.clf_hidden_spec, obsfeat_space=mdp.obs_space, action_space=mdp.action_space, max_kl=args.reward_max_kl, adam_lr=args.reward_lr, adam_steps=args.reward_steps, ent_reg_weight=args.reward_ent_reg_weight, time_step=args.time_step, # add time step enable_inputnorm=True, include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), varscope_name='SequentialTransitionClassifier') # elif args.reward_type in ['l2ball', 'simplex']: # reward = imitation.LinearReward( # obsfeat_space=mdp.obs_space, # action_space=mdp.action_space, # mode=args.reward_type, # enable_inputnorm=True, # favor_zero_expert_reward=bool(args.favor_zero_expert_reward), # include_time=bool(args.reward_include_time), # time_scale=1./mdp.env_spec.timestep_limit, # exobs_Bex_Do=exobs_Bstacked_Do, # exa_Bex_Da=exa_Bstacked_Da, # ext_Bex=ext_Bstacked) else: raise NotImplementedError(args.reward_type) vf = None if bool(args.no_vf) else rl.SequentialValueFunc( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, time_step=args.time_step, # add time step enable_obsnorm=args.obsnorm_mode != 'none', enable_vnorm=True, max_kl=args.vf_max_kl, damping=args.vf_cg_damping, time_scale=1. / mdp.env_spec.timestep_limit, varscope_name='SequentialValueFunc') opt = imitation.SequentialImitationOptimizer( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SeqSimConfig( min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len, time_step=args.time_step), # add time step step_func=rl.TRPO( max_kl=args.policy_max_kl, damping=args.policy_cg_damping, sequential_model=False), # XXX not use sequential trpo reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked) # Set observation normalization if args.obsnorm_mode == 'expertdata': if not args.seq_model: policy.update_obsnorm(exobs_Bstacked_Do) if reward is not None: reward.update_inputnorm( opt.reward_obsfeat_fn(exobs_Bstacked_Do), exa_Bstacked_Da) if vf is not None: vf.update_obsnorm(opt.policy_obsfeat_fn(exobs_Bstacked_Do)) # Add sequential model else: Bstacked, Do, T = exobs_Bstacked_Do.shape[ 0], exobs_Bstacked_Do.shape[1], args.time_step exobs_BT_Do = exobs_Bstacked_Do[:T * (Bstacked // T), :] exa_BT_Da = exa_Bstacked_Da[:T * (Bstacked // T), :] # reshape:(B*T, ...) => (B, T, ...) exobs_B_T_Do = np.reshape( exobs_BT_Do, (Bstacked // T, T, exobs_Bstacked_Do.shape[1])) exa_B_T_Da = np.reshape( exa_BT_Da, (Bstacked // T, T, exa_Bstacked_Da.shape[1])) print("Debug: exobs_Bstacked_Do:", exobs_Bstacked_Do.shape[0], exobs_Bstacked_Do.shape[1]) print("Debug: exobs_B_T_Do:", exobs_B_T_Do.shape[0], exobs_B_T_Do.shape[1], exobs_B_T_Do.shape[2]) # XXX use original policy (not sequential) policy.update_obsnorm(exobs_Bstacked_Do) if reward is not None: reward.update_inputnorm(opt.reward_obsfeat_fn(exobs_B_T_Do), exa_B_T_Da) if vf is not None: vf.update_obsnorm(opt.policy_obsfeat_fn(exobs_Bstacked_Do)) # Run optimizer # log = nn.TrainingLog(args.log, [('args', argstr)]) log = nn.BasicTrainingLog(args.log, [('args', argstr)]) for i in xrange(args.max_iter): iter_info = opt.step() # log.write(iter_info, print_header=i % (20*args.print_freq) == 0, display=i % args.print_freq == 0) log.add_log(iter_info, print_header=i % (20 * args.print_freq) == 0, display=i % args.print_freq == 0) if args.save_freq != 0 and i % args.save_freq == 0 and args.log is not None: print('%i/%i iters is done. Save snapshot.' % (i, args.max_iter)) # log.write_snapshot(policy, i) log.write_snapshot(policy, i) if args.mode == 'ga' and args.plot_freq != 0 and i % args.plot_freq == 0: print('%i/%i iters is done. Save plot.' % (i, args.max_iter)) exdata_N_Doa = np.concatenate([exobs_Bstacked_Do, exa_Bstacked_Da], axis=1) pdata_M_Doa = np.concatenate( [opt.last_sampbatch.obs.stacked, opt.last_sampbatch.a.stacked], axis=1) # convert dtype to follow theano config exdata_N_Doa = exdata_N_Doa.astype(theano.config.floatX) pdata_M_Doa = pdata_M_Doa.astype(theano.config.floatX) # print 'Debug: exobs_Bstacked_Do dtype:', exobs_Bstacked_Do.dtype # float32 # print 'Debug: exa_Bstacked_Da dtype:', exa_Bstacked_Da.dtype # int64 # print 'Debug: opt.last_sampbatch.obs.stacked dtype:', opt.last_sampbatch.obs.stacked.dtype # float32 # print 'Debug: opt.last_sampbatch.a.stacked dtype:', opt.last_sampbatch.a.stacked.dtype # int64 # print 'Debug: exdata_N_Doa dtype:', exdata_N_Doa.dtype # float32 # print 'Debug: pdata_M_Doa dtype:', pdata_M_Doa.dtype # float32 # Plot reward # import matplotlib # matplotlib.use('Agg') # import matplotlib.pyplot as plt _, ax = plt.subplots() idx1, idx2 = 0, 1 range1 = (min(exdata_N_Doa[:, idx1].min(), pdata_M_Doa[:, idx1].min()), max(exdata_N_Doa[:, idx1].max(), pdata_M_Doa[:, idx1].max())) range2 = (min(exdata_N_Doa[:, idx2].min(), pdata_M_Doa[:, idx2].min()), max(exdata_N_Doa[:, idx2].max(), pdata_M_Doa[:, idx2].max())) # print 'Debug: range1 types:', type(range1[0]), type(range1[1]) # float32, float32 # print 'Debug: range2 types:', type(range2[0]), type(range2[1]) # float32, float32 x, y, z = reward.plot(ax, idx1, idx2, range1, range2, n=100) plot = [ x, y, z, exdata_N_Doa[:, idx1], exdata_N_Doa[:, idx2], pdata_M_Doa[:, idx1], pdata_M_Doa[:, idx2] ] log.write_plot(plot, i) # Plot expert data # ax.scatter(exdata_N_Doa[:,idx1], exdata_N_Doa[:,idx2], color='blue', s=1, label='expert') # Plot policy samples # ax.scatter(pdata_M_Doa[:,idx1], pdata_M_Doa[:,idx2], color='red', s=1, label='apprentice') # ax.legend() # plt.show() # plt.savefig() # plot = [x, y, z, exdata_N_Doa[:,idx1], exdata_N_Doa[:,idx2], pdata_M_Doa[:,idx1], pdata_M_Doa[:,idx2]] # log.write_plot(plot, i) # if args.mode == 'sga' and args.plot_freq != 0 and i % args.plot_freq == 0: # print ('%i/%i iters is done. Save plot.' %(i, args.max_iter)) # exdata_N_Doa = np.concatenate([exobs_Bstacked_Do, exa_Bstacked_Da], axis=1) # # reshape: (B, T, ...) => (B*T, ...) ## B, T, Df = opt.last_sampbatch.obs.stacked.shape ## obs_flatten = np.reshape(opt.last_sampbatch.obs.stacked, (B*T, opt.last_sampbatch.obs.stacked.shape[2])) ## a_flatten = np.reshape(opt.last_sampbatch.a.stacked, (B*T, opt.last_sampbatch.a.stacked.shape[2])) ### pdata_M_Doa = np.concatenate([opt.last_sampbatch.obs.stacked, opt.last_sampbatch.a.stacked], axis=1) # pdata_M_Doa = np.concatenate([opt.last_sampbatch.obs.stacked, opt.last_sampbatch.a.stacked], axis=1) # # convert dtype to follow theano config # exdata_N_Doa = exdata_N_Doa.astype(theano.config.floatX) # pdata_M_Doa = pdata_M_Doa.astype(theano.config.floatX) ## print 'Debug: exobs_Bstacked_Do dtype:', exobs_Bstacked_Do.dtype # float32 ## print 'Debug: exa_Bstacked_Da dtype:', exa_Bstacked_Da.dtype # int64 ## print 'Debug: opt.last_sampbatch.obs.stacked dtype:', opt.last_sampbatch.obs.stacked.dtype # float32 ## print 'Debug: opt.last_sampbatch.a.stacked dtype:', opt.last_sampbatch.a.stacked.dtype # int64 ## print 'Debug: exdata_N_Doa dtype:', exdata_N_Doa.dtype # float32 ## print 'Debug: pdata_M_Doa dtype:', pdata_M_Doa.dtype # float32 # # Plot reward ## import matplotlib ## matplotlib.use('Agg') ## import matplotlib.pyplot as plt # _, ax = plt.subplots() # idx1, idx2 = 0,1 # range1 = (min(exdata_N_Doa[:,idx1].min(), pdata_M_Doa[:,idx1].min()), max(exdata_N_Doa[:,idx1].max(), pdata_M_Doa[:,idx1].max())) # range2 = (min(exdata_N_Doa[:,idx2].min(), pdata_M_Doa[:,idx2].min()), max(exdata_N_Doa[:,idx2].max(), pdata_M_Doa[:,idx2].max())) ## print 'Debug: range1 types:', type(range1[0]), type(range1[1]) # float32, float32 ## print 'Debug: range2 types:', type(range2[0]), type(range2[1]) # float32, float32 # # for sequential model, input the length of sequence # # XXX take care of the usage of memory !! # x, y, z = reward.plot(ax, idx1, idx2, range1, range2, args.time_step, n=100) # plot = [x, y, z, exdata_N_Doa[:,idx1], exdata_N_Doa[:,idx2], pdata_M_Doa[:,idx1], pdata_M_Doa[:,idx2]] # log.write_plot(plot, i) # # Plot expert data ## ax.scatter(exdata_N_Doa[:,idx1], exdata_N_Doa[:,idx2], color='blue', s=1, label='expert') # # Plot policy samples ## ax.scatter(pdata_M_Doa[:,idx1], pdata_M_Doa[:,idx2], color='red', s=1, label='apprentice') ## ax.legend() ## plt.show() ## plt.savefig() ## plot = [x, y, z, exdata_N_Doa[:,idx1], exdata_N_Doa[:,idx2], pdata_M_Doa[:,idx1], pdata_M_Doa[:,idx2]] ## log.write_plot(plot, i) # write log print('Training is done. Save log.') log.write_log() log.close()
def main(): """ NOTE! Don't forget that these are effectively called directly from the yaml files. They call imitate_mj.py with their own arguments, so check there if some of the values differ from the default ones. """ np.set_printoptions(suppress=True, precision=5, linewidth=1000) parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=MODES, required=True) # Expert dataset parser.add_argument('--data', type=str, required=True) parser.add_argument('--limit_trajs', type=int, required=True) parser.add_argument('--data_subsamp_freq', type=int, required=True) # MDP options parser.add_argument('--env_name', type=str, required=True) parser.add_argument('--max_traj_len', type=int, default=None) # Policy architecture parser.add_argument('--policy_hidden_spec', type=str, default=SIMPLE_ARCHITECTURE) parser.add_argument('--tiny_policy', action='store_true') parser.add_argument('--obsnorm_mode', choices=OBSNORM_MODES, default='expertdata') # Behavioral cloning optimizer (ok ... 128 and 0.7 settings are in the paper). parser.add_argument('--bclone_lr', type=float, default=1e-3) parser.add_argument('--bclone_batch_size', type=int, default=128) # parser.add_argument('--bclone_eval_nsa', type=int, default=128*100) parser.add_argument('--bclone_eval_ntrajs', type=int, default=20) parser.add_argument('--bclone_eval_freq', type=int, default=1000) parser.add_argument('--bclone_train_frac', type=float, default=.7) # Imitation optimizer parser.add_argument('--discount', type=float, default=.995) parser.add_argument('--lam', type=float, default=.97) parser.add_argument('--max_iter', type=int, default=1000000) parser.add_argument('--policy_max_kl', type=float, default=.01) parser.add_argument('--policy_cg_damping', type=float, default=.1) parser.add_argument('--no_vf', type=int, default=0) parser.add_argument('--vf_max_kl', type=float, default=.01) parser.add_argument('--vf_cg_damping', type=float, default=.1) parser.add_argument('--policy_ent_reg', type=float, default=0.) parser.add_argument('--reward_type', type=str, default='nn') # parser.add_argument('--linear_reward_bin_features', type=int, default=0) parser.add_argument('--reward_max_kl', type=float, default=.01) parser.add_argument('--reward_lr', type=float, default=.01) parser.add_argument('--reward_steps', type=int, default=1) parser.add_argument('--reward_ent_reg_weight', type=float, default=.001) parser.add_argument('--reward_include_time', type=int, default=0) parser.add_argument('--sim_batch_size', type=int, default=None) parser.add_argument('--min_total_sa', type=int, default=50000) parser.add_argument('--favor_zero_expert_reward', type=int, default=0) # Saving stuff parser.add_argument('--print_freq', type=int, default=1) parser.add_argument('--save_freq', type=int, default=20) parser.add_argument('--plot_freq', type=int, default=0) parser.add_argument('--log', type=str, required=False) args = parser.parse_args() # Initialize the MDP if args.tiny_policy: assert args.policy_hidden_spec == SIMPLE_ARCHITECTURE, 'policy_hidden_spec must remain unspecified if --tiny_policy is set' args.policy_hidden_spec = TINY_ARCHITECTURE argstr = json.dumps(vars(args), separators=(',', ':'), indent=2) print(argstr) mdp = rlgymenv.RLGymMDP(args.env_name) util.header('MDP observation space, action space sizes: %d, %d\n' % (mdp.obs_space.dim, mdp.action_space.storage_size)) # Initialize the policy print("\n\tNow initializing the policy:") enable_obsnorm = args.obsnorm_mode != 'none' if isinstance(mdp.action_space, policyopt.ContinuousSpace): policy_cfg = rl.GaussianPolicyConfig( hidden_spec=args.policy_hidden_spec, min_stdev=0., init_logstdev=0., enable_obsnorm=enable_obsnorm) policy = rl.GaussianPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GaussianPolicy') else: policy_cfg = rl.GibbsPolicyConfig(hidden_spec=args.policy_hidden_spec, enable_obsnorm=enable_obsnorm) policy = rl.GibbsPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GibbsPolicy') util.header('Policy architecture') for v in policy.get_trainable_variables(): util.header('- %s (%d parameters)' % (v.name, v.get_value().size)) util.header('Total: %d parameters' % (policy.get_num_params(), )) print("\tFinished initializing the policy.\n") # Load expert data exobs_Bstacked_Do, exa_Bstacked_Da, ext_Bstacked = load_dataset( args.data, args.limit_trajs, args.data_subsamp_freq) assert exobs_Bstacked_Do.shape[1] == mdp.obs_space.storage_size assert exa_Bstacked_Da.shape[1] == mdp.action_space.storage_size assert ext_Bstacked.ndim == 1 # Start optimization max_traj_len = args.max_traj_len if args.max_traj_len is not None else mdp.env_spec.timestep_limit print 'Max traj len:', max_traj_len if args.mode == 'bclone': # For behavioral cloning, only print output when evaluating args.print_freq = args.bclone_eval_freq args.save_freq = args.bclone_eval_freq reward, vf = None, None opt = imitation.BehavioralCloningOptimizer( mdp, policy, lr=args.bclone_lr, batch_size=args.bclone_batch_size, obsfeat_fn=lambda o: o, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, eval_sim_cfg=policyopt.SimConfig( min_num_trajs=args.bclone_eval_ntrajs, min_total_sa=-1, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), eval_freq=args.bclone_eval_freq, train_frac=args.bclone_train_frac) elif args.mode == 'ga': if args.reward_type == 'nn': # FYI: this is the GAIL case. Note that it doesn't take in any of # the raw expert data, unlike the other reward types. And we call # them `reward types` since the optimize can use their output in # some way to impove itself. reward = imitation.TransitionClassifier( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, action_space=mdp.action_space, max_kl=args.reward_max_kl, adam_lr=args.reward_lr, adam_steps=args.reward_steps, ent_reg_weight=args.reward_ent_reg_weight, enable_inputnorm=True, include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), varscope_name='TransitionClassifier') elif args.reward_type in ['l2ball', 'simplex']: # FEM or game-theoretic apprenticeship learning, respectively. reward = imitation.LinearReward( obsfeat_space=mdp.obs_space, action_space=mdp.action_space, mode=args.reward_type, enable_inputnorm=True, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, exobs_Bex_Do=exobs_Bstacked_Do, exa_Bex_Da=exa_Bstacked_Da, ext_Bex=ext_Bstacked) else: raise NotImplementedError(args.reward_type) # All three of these 'advanced' IL algorithms use neural network value # functions to reduce variance for policy gradient estimates. print("\n\tThe **VALUE** function (may have action concatenated):") vf = None if bool(args.no_vf) else rl.ValueFunc( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, enable_obsnorm=args.obsnorm_mode != 'none', enable_vnorm=True, max_kl=args.vf_max_kl, damping=args.vf_cg_damping, time_scale=1. / mdp.env_spec.timestep_limit, varscope_name='ValueFunc') opt = imitation.ImitationOptimizer( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig(min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping), reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked) # Set observation normalization if args.obsnorm_mode == 'expertdata': policy.update_obsnorm(exobs_Bstacked_Do) if reward is not None: reward.update_inputnorm(opt.reward_obsfeat_fn(exobs_Bstacked_Do), exa_Bstacked_Da) if vf is not None: vf.update_obsnorm(opt.policy_obsfeat_fn(exobs_Bstacked_Do)) # Run optimizer, i.e. {BehavioralCloning,Imitation}Optimizer. log = nn.TrainingLog(args.log, [('args', argstr)]) for i in xrange(args.max_iter): iter_info = opt.step() log.write(iter_info, print_header=i % (20 * args.print_freq) == 0, display=i % args.print_freq == 0) if args.save_freq != 0 and i % args.save_freq == 0 and args.log is not None: log.write_snapshot(policy, i) if args.plot_freq != 0 and i % args.plot_freq == 0: exdata_N_Doa = np.concatenate([exobs_Bstacked_Do, exa_Bstacked_Da], axis=1) pdata_M_Doa = np.concatenate( [opt.last_sampbatch.obs.stacked, opt.last_sampbatch.a.stacked], axis=1) # Plot reward import matplotlib.pyplot as plt _, ax = plt.subplots() idx1, idx2 = 0, 1 range1 = (min(exdata_N_Doa[:, idx1].min(), pdata_M_Doa[:, idx1].min()), max(exdata_N_Doa[:, idx1].max(), pdata_M_Doa[:, idx1].max())) range2 = (min(exdata_N_Doa[:, idx2].min(), pdata_M_Doa[:, idx2].min()), max(exdata_N_Doa[:, idx2].max(), pdata_M_Doa[:, idx2].max())) reward.plot(ax, idx1, idx2, range1, range2, n=100) # Plot expert data ax.scatter(exdata_N_Doa[:, idx1], exdata_N_Doa[:, idx2], color='blue', s=1, label='expert') # Plot policy samples ax.scatter(pdata_M_Doa[:, idx1], pdata_M_Doa[:, idx2], color='red', s=1, label='apprentice') ax.legend() plt.show()
def main(): np.set_printoptions(suppress=True, precision=5, linewidth=1000) parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=MODES, required=True) parser.add_argument('--seed', type=int, default=0) # Expert dataset parser.add_argument('--data', type=str, required=True) parser.add_argument('--limit_trajs', type=int, required=True) parser.add_argument('--data_subsamp_freq', type=int, required=True) # MDP options parser.add_argument('--env_name', type=str, required=True) parser.add_argument('--max_traj_len', type=int, default=None) # Policy architecture parser.add_argument('--policy_hidden_spec', type=str, default=SIMPLE_ARCHITECTURE) parser.add_argument('--tiny_policy', action='store_true') parser.add_argument('--obsnorm_mode', choices=OBSNORM_MODES, default='expertdata') # Behavioral cloning optimizer parser.add_argument('--bclone_lr', type=float, default=1e-3) parser.add_argument('--bclone_batch_size', type=int, default=128) # parser.add_argument('--bclone_eval_nsa', type=int, default=128*100) parser.add_argument('--bclone_eval_ntrajs', type=int, default=20) parser.add_argument('--bclone_eval_freq', type=int, default=1000) parser.add_argument('--bclone_train_frac', type=float, default=.7) # Imitation optimizer parser.add_argument('--discount', type=float, default=.995) parser.add_argument('--lam', type=float, default=.97) parser.add_argument('--max_iter', type=int, default=1000000) parser.add_argument('--policy_max_kl', type=float, default=.01) parser.add_argument('--policy_cg_damping', type=float, default=.1) parser.add_argument('--no_vf', type=int, default=0) parser.add_argument('--vf_max_kl', type=float, default=.01) parser.add_argument('--vf_cg_damping', type=float, default=.1) parser.add_argument('--policy_ent_reg', type=float, default=0.) parser.add_argument('--reward_type', type=str, default='nn') # parser.add_argument('--linear_reward_bin_features', type=int, default=0) parser.add_argument('--reward_max_kl', type=float, default=.01) parser.add_argument('--reward_lr', type=float, default=.01) parser.add_argument('--reward_steps', type=int, default=1) parser.add_argument('--reward_ent_reg_weight', type=float, default=.001) parser.add_argument('--reward_include_time', type=int, default=0) parser.add_argument('--sim_batch_size', type=int, default=None) parser.add_argument('--min_total_sa', type=int, default=50000) parser.add_argument('--favor_zero_expert_reward', type=int, default=0) parser.add_argument('--use_shared_std_network', type=int, default=0) # Generative Moment matching parser.add_argument('--kernel_batchsize', type=int, default=1000) parser.add_argument('--kernel_reg_weight', type=float, default=0.) parser.add_argument('--use_median_heuristic', type=int, default=1) parser.add_argument('--use_logscale_reward', type=int) parser.add_argument('--reward_epsilon', type=float, default=0.0001) # Auto-Encoder Information # Saving stuff parser.add_argument('--print_freq', type=int, default=1) parser.add_argument('--save_freq', type=int, default=20) parser.add_argument('--plot_freq', type=int, default=0) parser.add_argument('--log', type=str, required=False) parser.add_argument('--save_reward', type=int, default=0) args = parser.parse_args() # Initialize the MDP if args.tiny_policy: assert args.policy_hidden_spec == SIMPLE_ARCHITECTURE, 'policy_hidden_spec must remain unspecified if --tiny_policy is set' args.policy_hidden_spec = TINY_ARCHITECTURE argstr = json.dumps(vars(args), separators=(',', ':'), indent=2) print(argstr) mdp = rlgymenv.RLGymMDP(args.env_name) util.header('MDP observation space, action space sizes: %d, %d\n' % (mdp.obs_space.dim, mdp.action_space.storage_size)) # Initialize the policy enable_obsnorm = args.obsnorm_mode != 'none' if isinstance(mdp.action_space, policyopt.ContinuousSpace): policy_cfg = rl.GaussianPolicyConfig( hidden_spec=args.policy_hidden_spec, min_stdev=0., init_logstdev=0., enable_obsnorm=enable_obsnorm) policy = rl.GaussianPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GaussianPolicy', bool(args.use_shared_std_network)) else: policy_cfg = rl.GibbsPolicyConfig(hidden_spec=args.policy_hidden_spec, enable_obsnorm=enable_obsnorm) policy = rl.GibbsPolicy(policy_cfg, mdp.obs_space, mdp.action_space, 'GibbsPolicy', bool(args.use_shared_std_network)) util.header('Policy architecture') for v in policy.get_trainable_variables(): util.header('- %s (%d parameters)' % (v.name, v.get_value().size)) util.header('Total: %d parameters' % (policy.get_num_params(), )) # Load expert data exobs_Bstacked_Do, exa_Bstacked_Da, ext_Bstacked = load_dataset( args.data, args.limit_trajs, args.data_subsamp_freq, args.seed) assert exobs_Bstacked_Do.shape[1] == mdp.obs_space.storage_size assert exa_Bstacked_Da.shape[1] == mdp.action_space.storage_size assert ext_Bstacked.ndim == 1 # Start optimization max_traj_len = args.max_traj_len if args.max_traj_len is not None else mdp.env_spec.timestep_limit print 'Max traj len:', max_traj_len if args.mode == 'bclone': # For behavioral cloning, only print output when evaluating args.print_freq = args.bclone_eval_freq args.save_freq = args.bclone_eval_freq reward, vf = None, None opt = imitation.BehavioralCloningOptimizer( mdp, policy, lr=args.bclone_lr, batch_size=args.bclone_batch_size, obsfeat_fn=lambda o: o, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, eval_sim_cfg=policyopt.SimConfig( min_num_trajs=args.bclone_eval_ntrajs, min_total_sa=-1, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), eval_freq=args.bclone_eval_freq, train_frac=args.bclone_train_frac) elif args.mode == 'ga': if args.reward_type == 'nn': reward = imitation.TransitionClassifier( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, action_space=mdp.action_space, max_kl=args.reward_max_kl, adam_lr=args.reward_lr, adam_steps=args.reward_steps, ent_reg_weight=args.reward_ent_reg_weight, enable_inputnorm=True, include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), varscope_name='TransitionClassifier') elif args.reward_type in ['l2ball', 'simplex']: reward = imitation.LinearReward( obsfeat_space=mdp.obs_space, action_space=mdp.action_space, mode=args.reward_type, enable_inputnorm=True, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, exobs_Bex_Do=exobs_Bstacked_Do, exa_Bex_Da=exa_Bstacked_Da, ext_Bex=ext_Bstacked) else: raise NotImplementedError(args.reward_type) vf = None if bool(args.no_vf) else rl.ValueFunc( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, enable_obsnorm=args.obsnorm_mode != 'none', enable_vnorm=True, max_kl=args.vf_max_kl, damping=args.vf_cg_damping, time_scale=1. / mdp.env_spec.timestep_limit, varscope_name='ValueFunc') opt = imitation.ImitationOptimizer( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig(min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping), reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked) elif args.mode == 'gmmil': if args.use_median_heuristic == 0: bandwidth_params = [ 1.0, 1.0 / 2.0, 1.0 / 5.0, 1.0 / 10.0, 1.0 / 40.0, 1.0 / 80.0 ] else: bandwidth_params = [] if args.reward_type == 'mmd': reward = gmmil.MMDReward( obsfeat_space=mdp.obs_space, action_space=mdp.action_space, enable_inputnorm=True, favor_zero_expert_reward=bool(args.favor_zero_expert_reward), include_time=bool(args.reward_include_time), time_scale=1. / mdp.env_spec.timestep_limit, exobs_Bex_Do=exobs_Bstacked_Do, exa_Bex_Da=exa_Bstacked_Da, ext_Bex=ext_Bstacked, kernel_bandwidth_params=bandwidth_params, kernel_reg_weight=args.kernel_reg_weight, kernel_batchsize=args.kernel_batchsize, use_median_heuristic=args.use_median_heuristic, use_logscale_reward=bool(args.use_logscale_reward), save_reward=bool(args.save_reward), epsilon=args.reward_epsilon) else: raise NotImplementedError(args.reward_type) vf = None if bool(args.no_vf) else rl.ValueFunc( hidden_spec=args.policy_hidden_spec, obsfeat_space=mdp.obs_space, enable_obsnorm=args.obsnorm_mode != 'none', enable_vnorm=True, max_kl=args.vf_max_kl, damping=args.vf_cg_damping, time_scale=1. / mdp.env_spec.timestep_limit, varscope_name='ValueFunc') opt = imitation.ImitationOptimizer( mdp=mdp, discount=args.discount, lam=args.lam, policy=policy, sim_cfg=policyopt.SimConfig(min_num_trajs=-1, min_total_sa=args.min_total_sa, batch_size=args.sim_batch_size, max_traj_len=max_traj_len), step_func=rl.TRPO(max_kl=args.policy_max_kl, damping=args.policy_cg_damping), reward_func=reward, value_func=vf, policy_obsfeat_fn=lambda obs: obs, reward_obsfeat_fn=lambda obs: obs, policy_ent_reg=args.policy_ent_reg, ex_obs=exobs_Bstacked_Do, ex_a=exa_Bstacked_Da, ex_t=ext_Bstacked) # Set observation normalization if args.obsnorm_mode == 'expertdata': policy.update_obsnorm(exobs_Bstacked_Do) if reward is not None: reward.update_inputnorm(opt.reward_obsfeat_fn(exobs_Bstacked_Do), exa_Bstacked_Da) if vf is not None: vf.update_obsnorm(opt.policy_obsfeat_fn(exobs_Bstacked_Do)) # Run optimizer log = nn.TrainingLog(args.log, [('args', argstr)]) for i in xrange(args.max_iter): iter_info = opt.step() log.write(iter_info, print_header=i % (20 * args.print_freq) == 0, display=i % args.print_freq == 0) if args.save_freq != 0 and i % args.save_freq == 0 and args.log is not None: log.write_snapshot(policy, i) if args.plot_freq != 0 and i % args.plot_freq == 0: exdata_N_Doa = np.concatenate([exobs_Bstacked_Do, exa_Bstacked_Da], axis=1) pdata_M_Doa = np.concatenate( [opt.last_sampbatch.obs.stacked, opt.last_sampbatch.a.stacked], axis=1) # Plot reward import matplotlib.pyplot as plt _, ax = plt.subplots() idx1, idx2 = 0, 1 range1 = (min(exdata_N_Doa[:, idx1].min(), pdata_M_Doa[:, idx1].min()), max(exdata_N_Doa[:, idx1].max(), pdata_M_Doa[:, idx1].max())) range2 = (min(exdata_N_Doa[:, idx2].min(), pdata_M_Doa[:, idx2].min()), max(exdata_N_Doa[:, idx2].max(), pdata_M_Doa[:, idx2].max())) reward.plot(ax, idx1, idx2, range1, range2, n=100) # Plot expert data ax.scatter(exdata_N_Doa[:, idx1], exdata_N_Doa[:, idx2], color='blue', s=1, label='expert') # Plot policy samples ax.scatter(pdata_M_Doa[:, idx1], pdata_M_Doa[:, idx2], color='red', s=1, label='apprentice') ax.legend() plt.show()