def verify_low_degree_proof(merkle_root, root_of_unity, proof, maxdeg_plus_1, modulus, exclude_multiples_of=0): f = PrimeField(modulus) # Calculate which root of unity we're working with testval = root_of_unity roudeg = 1 while testval != 1: roudeg *= 2 testval = (testval * testval) % modulus # Powers of the given root of unity 1, p, p**2, p**3 such that p**4 = 1 quartic_roots_of_unity = [1, f.exp(root_of_unity, roudeg // 4), f.exp(root_of_unity, roudeg // 2), f.exp(root_of_unity, roudeg * 3 // 4)] # Verify the recursive components of the proof for prf in proof[:-1]: root2, branches = prf print('Verifying degree <= %d' % maxdeg_plus_1) # Calculate the pseudo-random x coordinate special_x = int.from_bytes(merkle_root, 'big') % modulus # Calculate the pseudo-randomly sampled y indices ys = get_pseudorandom_indices(root2, roudeg // 4, 40, exclude_multiples_of=exclude_multiples_of) # For each y coordinate, get the x coordinates on the row, the values on # the row, and the value at that y from the column xcoords = [] rows = [] columnvals = [] for i, y in enumerate(ys): # The x coordinates from the polynomial x1 = f.exp(root_of_unity, y) xcoords.append([(quartic_roots_of_unity[j] * x1) % modulus for j in range(4)]) # The values from the original polynomial row = [verify_branch(merkle_root, y + (roudeg // 4) * j, prf) for j, prf in zip(range(4), branches[i][1:])] rows.append(row) columnvals.append(verify_branch(root2, y, branches[i][0])) # Verify for each selected y coordinate that the four points from the # polynomial and the one point from the column that are on that y # coordinate are on the same deg < 4 polynomial polys = f.multi_interp_4(xcoords, rows) for p, c in zip(polys, columnvals): assert f.eval_quartic(p, special_x) == c # Update constants to check the next proof merkle_root = root2 root_of_unity = f.exp(root_of_unity, 4) maxdeg_plus_1 //= 4 roudeg //= 4 # Verify the direct components of the proof data = [int.from_bytes(x, 'big') for x in proof[-1]] print('Verifying degree <= %d' % maxdeg_plus_1) assert maxdeg_plus_1 <= 16 # Check the Merkle root matches up mtree = merkelize(data) assert mtree[1] == merkle_root # Check the degree of the data powers = get_power_cycle(root_of_unity, modulus) if exclude_multiples_of: pts = [x for x in range(len(data)) if x % exclude_multiples_of] else: pts = range(len(data)) poly = f.lagrange_interp([powers[x] for x in pts[:maxdeg_plus_1]], [data[x] for x in pts[:maxdeg_plus_1]]) for x in pts[maxdeg_plus_1:]: assert f.eval_poly_at(poly, powers[x]) == data[x] print('FRI proof verified') return True
def prove_low_degree(values, root_of_unity, maxdeg_plus_1, modulus, exclude_multiples_of=0): f = PrimeField(modulus) print('Proving %d values are degree <= %d' % (len(values), maxdeg_plus_1)) # If the degree we are checking for is less than or equal to 32, # use the polynomial directly as a proof if maxdeg_plus_1 <= 16: print('Produced FRI proof') return [[x.to_bytes(32, 'big') for x in values]] # Calculate the set of x coordinates xs = get_power_cycle(root_of_unity, modulus) assert len(values) == len(xs) # Put the values into a Merkle tree. This is the root that the # proof will be checked against m = merkelize(values) # Select a pseudo-random x coordinate special_x = int.from_bytes(m[1], 'big') % modulus # Calculate the "column" at that x coordinate # (see https://vitalik.ca/general/2017/11/22/starks_part_2.html) # We calculate the column by Lagrange-interpolating the row, and not # directly from the polynomial, as this is more efficient column = [] for i in range(len(xs) // 4): x_poly = f.lagrange_interp_4( [xs[i + len(xs) * j // 4] for j in range(4)], [values[i + len(values) * j // 4] for j in range(4)], ) column.append(f.eval_poly_at(x_poly, special_x)) m2 = merkelize(column) # Pseudo-randomly select y indices to sample ys = get_pseudorandom_indices(m2[1], len(column), 40, exclude_multiples_of=exclude_multiples_of) # Compute the Merkle branches for the values in the polynomial and the column branches = [] for y in ys: branches.append( [mk_branch(m2, y)] + [mk_branch(m, y + (len(xs) // 4) * j) for j in range(4)]) # This component of the proof o = [m2[1], branches] # Interpolate the polynomial for the column # sub_xs = [xs[i] for i in range(0, len(xs), 4)] # ypoly = fft(column[:len(sub_xs)], modulus, # f.exp(root_of_unity, 4), inv=True) # Recurse... return [o] + prove_low_degree(column, f.exp(root_of_unity, 4), maxdeg_plus_1 // 4, modulus, exclude_multiples_of=exclude_multiples_of)