Esempio n. 1
0
    def load(self, datadir="../data/", start=None, end=None):
        """
        Tries to load from csv first, then pulls from Yahoo!
        """
        filepath = "{0}{1}.csv".format(datadir, self.ticker)
        print("Checking {}".format(filepath))

        if start is None:
            start = self.start
        else:
            start = standard_date_format(last_trading_day(start))
        if end is None:
            end = self.end
        else:
            end = standard_date_format(last_trading_day(end))

        if path.isfile(filepath):
            self.data = read_yahoo_csv(path=filepath)
            csv_start = standard_date_format(self.data.index.min())
            csv_end = standard_date_format(self.data.index.max())
            if (pd.to_datetime(csv_end) < pd.to_datetime(end)) | (
                pd.to_datetime(csv_start) > pd.to_datetime(start)
            ):
                _refresh_success = self.refresh(
                    datadir=datadir, start=min(start, csv_start), end=max(end, csv_end)
                )
            else:
                _refresh_success = 1
            if _refresh_success:
                self.data = read_yahoo_csv(path=filepath, startdate=start, enddate=end)
        else:
            self.data = retrieve_yahoo_data(
                ticker=self.ticker, startdate=start, enddate=end
            )
            self.save(filename="{}.csv".format(self.ticker), datadir=datadir)
Esempio n. 2
0
 def __init__(self, name, start=None, end=None):
     super().__init__(name)
     if start is None:
         self.start = standard_date_format(last_trading_day("2000-01-01"))
     else:
         self.start = standard_date_format(last_trading_day(start))
     if end is None:
         self.end = standard_date_format(last_trading_day(todays_date()))
     else:
         self.end = standard_date_format(last_trading_day(end))
     self.ticker = name
     self.set_name(name)
     self.load(start=self.start, end=self.end)
     self.get_last_price()
     self.get_max_price()
     self.get_min_price()
     self.get_median_price()
     self.get_mean_price()
     self.get_std_price()
     self.dividends = 0.0
     self.benchmark_ticker = "sp500"
     self.benchmark = None
Esempio n. 3
0
    def refresh(self, datadir="../data/", start=None, end=None):
        """
        Tries to load from csv first, then pulls from Yahoo!
        """

        if start is None:
            start = self.start
        else:
            start = standard_date_format(last_trading_day(start))
        if end is None:
            end = self.end
        else:
            end = standard_date_format(last_trading_day(end))

        try:
            self.data = retrieve_yahoo_data(
                ticker=self.ticker, startdate=start, enddate=end
            )
            self.save(filename="{}.csv".format(self.ticker), datadir=datadir)
            return 1
        except:
            print("Refresh failed")
            return 0
Esempio n. 4
0
 def modify_quantity(self, date, quantity):
     date = last_trading_day(date)
     try:
         return quantity * self.data.loc[self.data.index == date, "Modifier"].values[0]
     except:
         return quantity
Esempio n. 5
0
 def get_price_at(self, date, column="Close"):
     date = last_trading_day(date)
     return self.data.loc[self.data.index == date, column].values[0]
Esempio n. 6
0
def parse_portfolio(df=None, p=None):
    """
    Takes a dataframe with transactions and performs those
    on a given portfolio

    Parameters
    ==========
    df : input dataframe
    p : portfolio (Portfolio class object) 

    Returns
    =======
    p : modified portfolio (Portfolio class object)

    """

    # use a lower bound on the minimum number of days pulled
    minimum_date_for_data = last_trading_day() - timedelta(weeks=1)

    # put input dataframe(s) in list
    dfs = []
    if type(df) == pd.core.frame.DataFrame:
        dfs.append(df)
    else:
        dfs.extend(df)

    # loop through list of dataframes
    Tickers_all = []
    for df in dfs:
        Tickers_all = Tickers_all + list(df.Ticker.values)

    # load data for all securities
    for ticker in list(set(Tickers_all)):
        if ticker:
            if ticker not in p.securities_archive:
                if str(ticker).isalnum() & (str(ticker) != "nan"):
                    print("Adding ", ticker)
                    min_date = minimum_date_for_data
                    for df in dfs:
                        if ticker in list(set(df.Ticker)):
                            first_date = min(df.loc[df.Ticker == ticker,
                                                    "Date"].values)
                            min_date = min(first_date, min_date)
                    p.add_security_archive(ticker, min_date)

    for df in dfs:
        # define a priority for transaction types so ordering makes sense
        df.loc[df.Transaction == "deposit", "Priority"] = 1
        df.loc[df.Transaction == "Contribution", "Priority"] = 1
        df.loc[df.Transaction == "Funds Received", "Priority"] = 1
        df.loc[df.Transaction == "Conversion (incoming)", "Priority"] = 1
        df.loc[df.Transaction == "buy", "Priority"] = 2
        df.loc[df.Transaction == "Buy", "Priority"] = 2
        df.loc[df.Transaction == "Reinvestment", "Priority"] = 2
        df.loc[df.Transaction == "dividend", "Priority"] = 3
        df.loc[df.Transaction == "Dividend", "Priority"] = 3
        df.loc[df.Transaction == "sell", "Priority"] = 4
        df.loc[df.Transaction == "Sell", "Priority"] = 4
        df.loc[df.Transaction == "withdraw", "Priority"] = 5
        df.loc[df.Transaction == "Distribution", "Priority"] = 5

        df.sort_values(by=["Date", "Priority"], inplace=True)

        for index, row in df.iterrows():
            if row.notnull()["Date"]:
                # print(row['Date'], row['Transaction'], row['Ticker'], row['Currency'], row['Price'], row['Quantity'])
                if str.lower(row["Transaction"]) == "buy":
                    p.buy_security(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=row["Price"],
                        quantity=row["Quantity"],
                    )

                elif str.lower(row["Transaction"]) == "sell":
                    p.sell_security(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=row["Price"],
                        quantity=row["Quantity"],
                    )

                    # FINRA fee of $.000119 per share up to $5.95
                    #_FINRAfee = min(
                    #    max(ceil(0.0119 * row["Quantity"]), 1.0) / 100.0, 5.95
                    #)

                    # SEC fee of $.000013 per trade of up to $1M
                    #if not np.isnan(row["Price"]):
                    #    _SECfee = max(ceil(row["Quantity"] * row["Price"] / 800.0), 1.0) / 100.0
                    #else:
                    #    _SECfee = 0.000013 # need to find a better place to put this fee where price is known

                    #p.wallet = p.wallet.append(
                    #    {"Date": row["Date"], "Change": -_FINRAfee - _SECfee},
                    #    ignore_index=True,
                    #)

                elif str.lower(row["Transaction"]) == "deposit":
                    p.deposit_cash(
                        date=row["Date"],
                        currency=row["Currency"],
                        price=row["Price"],
                        quantity=row["Quantity"],
                    )

                elif str.lower(row["Transaction"]) == "withdraw":
                    p.withdraw_cash(
                        date=row["Date"],
                        currency=row["Currency"],
                        price=row["Price"],
                        quantity=row["Quantity"],
                    )

                elif row["Transaction"] == "Dividend":
                    p.dividend(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=1.0,
                        quantity=row["Dollars"],
                    )

                elif row["Transaction"] == "dividend":
                    p.dividend(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=1.0,
                        quantity=row["Quantity"],
                    )

                else:
                    pass
            else:
                pass

    return p
Esempio n. 7
0
def parse_portfolio_vanguard(df=None, p=None):
    """
    Takes a dataframe with transactions in Vanguard format
    and performs those on a given portfolio

    Parameters
    ==========
    df : input dataframe
    p : portfolio (Portfolio class object) 

    Returns
    =======
    p : modified portfolio (Portfolio class object)

    """

    # use a lower bound on the minimum number of days pulled
    minimum_date_for_data = last_trading_day() - timedelta(weeks=1)

    # put input dataframe(s) in list
    dfs = []
    if type(df) == pd.core.frame.DataFrame:
        dfs.append(df)
    else:
        dfs.extend(df)

    # loop through list of dataframes
    Tickers_all = []
    for df in dfs:
        Tickers_all = Tickers_all + list(df.Ticker.values)

    # load data for all securities
    for ticker in list(set(Tickers_all)):
        if ticker:
            if ticker not in p.securities_archive:
                if str(ticker).isalnum() & (str(ticker) != "nan"):
                    print("Adding ", ticker)
                    min_date = minimum_date_for_data
                    for df in dfs:
                        if ticker in list(set(df.Ticker)):
                            first_date = min(df.loc[df.Ticker == ticker,
                                                    "Date"].values)
                            min_date = min(first_date, min_date)
                    p.add_security_archive(ticker, min_date)

    for df in dfs:
        # define a priority for transaction types so ordering makes sense
        df.loc[df.Transaction == "deposit", "Priority"] = 1
        df.loc[df.Transaction == "Contribution", "Priority"] = 1
        df.loc[df.Transaction == "Funds Received", "Priority"] = 1
        df.loc[df.Transaction == "Conversion (incoming)", "Priority"] = 1
        df.loc[df.Transaction == "buy", "Priority"] = 2
        df.loc[df.Transaction == "Buy", "Priority"] = 2
        df.loc[df.Transaction == "Reinvestment", "Priority"] = 2
        df.loc[df.Transaction == "Reinvestment (LT)", "Priority"] = 2
        df.loc[df.Transaction == "Reinvestment (ST)", "Priority"] = 2
        df.loc[df.Transaction == "dividend", "Priority"] = 3
        df.loc[df.Transaction == "Dividend", "Priority"] = 3
        df.loc[df.Transaction == "Capital gain (LT)", "Priority"] = 3
        df.loc[df.Transaction == "Capital gain (ST)", "Priority"] = 3
        df.loc[df.Transaction == "sell", "Priority"] = 4
        df.loc[df.Transaction == "Sell", "Priority"] = 4
        df.loc[df.Transaction == "Withdrawal", "Priority"] = 5
        df.loc[df.Transaction == "withdraw", "Priority"] = 5
        df.loc[df.Transaction == "Distribution", "Priority"] = 5

        df.sort_values(by=["Date", "Priority"], inplace=True)

        for index, row in df.iterrows():
            if row.notnull()["Date"]:
                # print(row['Date'], row['Transaction'], row['Ticker'], row['Currency'], row['Price'], row['Quantity'], row['Dollars'])

                if (row["Transaction"] == "Buy"
                        or row["Transaction"] == "buy"):
                    p.buy_security(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=row["Price"],
                        quantity=row["Quantity"],
                    )

                elif (row["Transaction"] == "Sell"
                      or row["Transaction"] == "sell"):
                    p.sell_security(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=row["Price"],
                        quantity=-row["Quantity"],
                    )  # note the minus sign

                elif (row["Transaction"] == "Contribution"
                      or row["Transaction"] == "Funds Received"
                      or row["Transaction"] == "Conversion (incoming)"
                      or row["Transaction"] == "deposit"):
                    p.deposit_cash(
                        date=row["Date"],
                        currency=row["Currency"],
                        price=1.0,
                        quantity=row["Dollars"],
                    )

                elif (row["Transaction"] == "Distribution"
                      or row["Transaction"] == "Withdrawal"
                      or row["Transaction"] == "withdraw"):
                    p.withdraw_cash(
                        date=row["Date"],
                        currency=row["Currency"],
                        price=1.0,
                        quantity=-1.0 * row["Dollars"],
                    )

                elif (row["Transaction"] == "Dividend"
                      or row["Transaction"] == "Capital gain (LT)"
                      or row["Transaction"] == "Capital gain (ST)"):
                    p.dividend(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=1.0,
                        quantity=row["Dollars"],
                    )

                elif (row["Transaction"] == "Reinvestment"
                      or row["Transaction"] == "Reinvestment (LT)"
                      or row["Transaction"]
                      == "Reinvestment (ST)") and row["Quantity"] != 0:
                    p.buy_security(
                        date=row["Date"],
                        ticker=row["Ticker"],
                        currency=row["Currency"],
                        price=row["Price"],
                        quantity=row["Quantity"],
                    )

                else:
                    pass

            else:
                pass

    return p