def train(train_loader, model, criterion, optimizer, debug=False, flip=True):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()

    gt_win, pred_win = None, None
    bar = Bar('Processing', max=len(train_loader))
    for i, (inputs, target, meta) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        input_var = torch.autograd.Variable(inputs.cuda())
        target_var = torch.autograd.Variable(target.cuda(async=True))

        # compute output
        output = model(input_var)
        score_map = output[-1].data.cpu()

        loss = criterion(output[0], target_var)
        for j in range(1, len(output)):
            loss += criterion(output[j], target_var)
        acc = accuracy(score_map, target, idx)

        if debug:  # visualize groundtruth and predictions
            gt_batch_img = batch_with_heatmap(inputs, target)
            pred_batch_img = batch_with_heatmap(inputs, score_map)
            if not gt_win or not pred_win:
                ax1 = plt.subplot(121)
                ax1.title.set_text('Groundtruth')
                gt_win = plt.imshow(gt_batch_img)
                ax2 = plt.subplot(122)
                ax2.title.set_text('Prediction')
                pred_win = plt.imshow(pred_batch_img)
            else:
                gt_win.set_data(gt_batch_img)
                pred_win.set_data(pred_batch_img)
            plt.pause(.05)
            plt.draw()

        # measure accuracy and record loss
        losses.update(loss.item(), inputs.size(0))
        acces.update(acc[0], inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
            batch=i + 1,
            size=len(train_loader),
            data=data_time.val,
            bt=batch_time.val,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            acc=acces.avg)
        bar.next()

    bar.finish()
    return losses.avg, acces.avg
def validate(val_loader,
             model,
             criterion,
             num_classes,
             out_res,
             debug=False,
             flip=True):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Processing', max=len(val_loader))
    for i, (inputs, target, meta) in enumerate(val_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        target = target.cuda(async=True)

        input_var = torch.autograd.Variable(inputs.cuda(), volatile=True)
        target_var = torch.autograd.Variable(target, volatile=True)

        # compute output
        output = model(input_var)
        score_map = output[-1].data.cpu()
        if flip:
            flip_input_var = torch.autograd.Variable(torch.from_numpy(
                fliplr(inputs.clone().numpy())).float().cuda(),
                                                     volatile=True)
            flip_output_var = model(flip_input_var)
            flip_output = flip_back(flip_output_var[-1].data.cpu())
            score_map += flip_output

        loss = 0
        for o in output:
            loss += criterion(o, target_var)
        acc = accuracy(score_map, target.cpu(), idx)

        # generate predictions
        preds = final_preds(score_map, meta['center'], meta['scale'],
                            [out_res, out_res])
        for n in range(score_map.size(0)):
            predictions[meta['index'][n], :, :] = preds[n, :, :]

        if debug:
            gt_batch_img = batch_with_heatmap(inputs, target)
            pred_batch_img = batch_with_heatmap(inputs, score_map)
            if not gt_win or not pred_win:
                plt.subplot(121)
                gt_win = plt.imshow(gt_batch_img)
                plt.subplot(122)
                pred_win = plt.imshow(pred_batch_img)
            else:
                gt_win.set_data(gt_batch_img)
                pred_win.set_data(pred_batch_img)
            plt.pause(.05)
            plt.draw()

        # measure accuracy and record loss
        losses.update(loss.item(), inputs.size(0))
        acces.update(acc[0], inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
            batch=i + 1,
            size=len(val_loader),
            data=data_time.val,
            bt=batch_time.avg,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            acc=acces.avg)
        bar.next()

    bar.finish()
    return losses.avg, acces.avg, predictions
Esempio n. 3
0
def train(train_loader,
          model,
          criterion,
          optimizer,
          debug=False,
          flip=True,
          train_iters=0):
    print("Train iters: {}".format(train_iters))
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # switch to train mode
    model.train()
    debug_count = 0
    end = time.time()
    gt_win, pred_win = None, None

    bar_len = [train_iters if train_iters != 0 else len(train_loader)][0]
    train_iters = [train_iters if train_iters != 0 else len(train_loader)][0]
    bar = Bar('Train', max=bar_len)

    curr_iter = 0
    while curr_iter < train_iters:
        for i, (input, target, meta) in enumerate(train_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input, target = input.to(device), target.to(device,
                                                        non_blocking=True)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output = model(input)
            if type(output) == list:  # multiple output
                loss = 0
                for o in output:
                    loss += criterion(o, target, target_weight)
                output = output[-1]
            else:  # single output
                loss = criterion(output, target, target_weight)
            acc = accuracy(output, target, idx)

            if debug:  # visualize groundtruth and predictions
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, output)
                fig = plt.figure()
                ax1 = fig.add_subplot(121)
                ax1.title.set_text('Groundtruth')
                gt_win = plt.imshow(gt_batch_img)
                ax2 = fig.add_subplot(122)
                ax2.title.set_text('Prediction')
                pred_win = plt.imshow(pred_batch_img)
                plt.pause(.05)
                plt.draw()
                fig.savefig('debug/debug_{}.png'.format(str(debug_count)),
                            dpi=500)

            debug_count += 1

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            # compute gradient and do SGD step
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
                batch=i + 1,
                size=[len(train_loader) if train_iters == 0 else train_iters
                      ][0],
                data=data_time.val,
                bt=batch_time.val,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss=losses.avg,
                acc=acces.avg)
            bar.next()

            curr_iter += 1
            if curr_iter >= train_iters - 1:
                break

    bar.finish()
    return losses.avg, acces.avg
Esempio n. 4
0
def train(inqueues,
          outqueues,
          train_loader,
          model,
          criterion,
          optimizer,
          debug=False,
          flip=True,
          clip=1,
          _logger=None):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()
    sum_losses = AverageMeter()
    # switch to train mode
    model.train()
    criterion.valid = False
    end = time.time()
    gt_win, pred_win = None, None
    bar = Bar('Processing', max=len(train_loader))
    for i, (inputs, target, meta) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        if True:
            input_var = torch.autograd.Variable(inputs.cuda())
            target_var = torch.autograd.Variable(target.cuda(async=True))
            # compute output
            output = model(input_var)
            if len(inqueues) > 0:
                loss = []
                acc = []
                sum_loss = []
                for j in range(len(output)):
                    grad = []
                    for ii in range(output[0].size(0)):
                        data = {}
                        data['output'] = output[j][ii]
                        data['meta'] = {}
                        data['meta']['bi_target'] = meta['bi_target'][ii]
                        data['meta']['pck'] = meta['pck'][ii]
                        data['meta']['points'] = meta['points'][ii]
                        data['meta']['tpts'] = meta['tpts'][ii]
                        inqueues[ii].send(data)
                    for ii in range(output[0].size(0)):
                        _loss, _acc, _sum_loss, _grad = outqueues[ii].recv()
                        loss.append(_loss)
                        grad.append(_grad)
                        if j == len(output) - 1:
                            acc.append(_acc)
                            sum_loss.append(_sum_loss)
                    optimizer.zero_grad()
                    output[0].backward(torch.stack(grad, 0))
                    torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
                    optimizer.step()
                loss = sum(loss) / output[0].size(0)
                acc = sum(acc) / output[0].size(0)
                sum_loss = sum(sum_loss) / output[0].size(0)
            else:
                optimizer.zero_grad()
                loss, acc, sum_loss = criterion(output[0], meta)
                for j in range(1, len(output)):
                    _loss, acc, sum_loss = criterion(output[j], meta)
                    loss += _loss
                loss.backward()
                optimizer.step()

            if debug:  # visualize groundtruth and predictions
                gt_batch_img = batch_with_heatmap(inputs, target)
                pred_batch_img = batch_with_heatmap(inputs, score_map)
                if not gt_win or not pred_win:
                    ax1 = plt.subplot(121)
                    ax1.title.set_text('Groundtruth')
                    gt_win = plt.imshow(gt_batch_img)
                    ax2 = plt.subplot(122)
                    ax2.title.set_text('Prediction')
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses.update(loss.data.item(), inputs.size(0))
            acces.update(acc.item(), inputs.size(0))
            sum_losses.update(sum_loss)
        loss = None
        torch.cuda.empty_cache()
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | Loss: {loss:.4f} | Sum_Loss: {sum_loss:.4f} | Acc: {acc: .4f}'.format(
            batch=i + 1,
            size=len(train_loader),
            data=data_time.val,
            bt=batch_time.val,
            total=bar.elapsed_td,
            loss=losses.avg * 100,
            sum_loss=sum_losses.avg * 100,
            acc=acces.avg * 100)
        _logger.info(bar.suffix)
    bar.finish()
    return losses.avg * 100, acces.avg * 100
Esempio n. 5
0
def validate(val_loader,
             model,
             criterion,
             num_classes,
             debug=False,
             flip=True):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), num_classes, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))
    batch_loss = []
    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            #target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()
            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output) == list:  # multiple output
                loss = 0
                for o in output:
                    loss += criterion(o, target)
                output = output[-1]
            else:  # single output
                loss = criterion(output, target)

            acc = accuracy(score_map, target.cpu(), idx)
            batch_loss += [loss.item()]
            # generate predictions
            #preds = final_preds(score_map, meta['center'], meta['scale'], [64, 64])
            #for n in range(score_map.size(0)):
            #    predictions[meta['index'][n], :, :] = preds[n, :, :]

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss=losses.avg,
                acc=acces.avg)
            bar.next()

        bar.finish()
    return losses.avg, acces.avg, predictions, np.mean(batch_loss)
def validate(val_loader,
             model,
             criterion,
             flip=True,
             test_batch=6,
             njoints=18):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), njoints, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            if global_animal == 'horse':
                target = target.to(device, non_blocking=True)
                target_weight = meta['target_weight'].to(device,
                                                         non_blocking=True)
            elif global_animal == 'tiger':
                target = target.to(device, non_blocking=True)
                target_weight = meta['target_weight'].to(device,
                                                         non_blocking=True)
                target = target[:,
                                np.array([
                                    1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 13,
                                    14, 9, 10, 11, 12
                                ]) - 1, :, :]
                target_weight = target_weight[:,
                                              np.array([
                                                  1, 2, 3, 4, 5, 6, 7, 8, 15,
                                                  16, 17, 18, 13, 14, 9, 10,
                                                  11, 12
                                              ]) - 1, :]
            else:
                raise Exception('please add new animal category')

            # compute output
            output = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()
            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output) == list:  # multiple output
                loss = 0
                for o in output:
                    loss += criterion(o, target, target_weight, len(idx))
                output = output[-1]
            else:  # single output
                loss = criterion(output, target, target_weight, len(idx))

            acc, _ = accuracy(score_map, target.cpu(), idx)

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])
            #for n in range(score_map.size(0)):
            #    predictions[meta['index'][n], :, :] = preds[n, :, :]

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.8f} | Acc: {acc: .8f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss=losses.avg,
                acc=acces.avg)
            bar.next()

        bar.finish()
    return losses.avg, acces.avg
Esempio n. 7
0
def validate(val_loader,
             model,
             criterion,
             criterion_seg,
             debug=False,
             flip=True,
             test_batch=6,
             njoints=68):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses_kpt = AverageMeter()
    losses_seg = AverageMeter()
    acces = AverageMeter()
    inter_meter = AverageMeter()
    union_meter = AverageMeter()

    # predictions
    predictions = torch.Tensor(val_loader.dataset.__len__(), njoints, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    interocular_dists = torch.zeros((njoints, val_loader.dataset.__len__()))

    with torch.no_grad():
        for i, (input, target, target_seg, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input, target, target_seg = input.to(device), target.to(
                device, non_blocking=True), target_seg.to(device)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output_kpt, output_seg = model(input)
            score_map = output_kpt[-1].cpu() if type(
                output_kpt) == list else output_kpt.cpu()

            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output = flip_back(flip_output)
                score_map += flip_output

            if type(output_kpt) == list:  # multiple output
                loss_kpt = 0
                loss_seg = 0
                for (o, o_seg) in zip(output_kpt, output_seg):
                    loss_kpt += criterion(o, target, target_weight, len(idx))
                    loss_seg += criterion_seg(o_seg, target_seg)
                output = output_kpt[-1]
                output_seg = output_seg[-1]
            else:  # single output
                loss_kpt = criterion(output_kpt, target, target_weight,
                                     len(idx))
                loss_seg = criterion(output_seg, target_seg)

            acc, batch_interocular_dists = accuracy(score_map, target.cpu(),
                                                    idx)
            _, pred_seg = torch.max(output_seg, 1)

            # generate predictions
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])
            for n in range(score_map.size(0)):
                predictions[meta['index'][n], :, :] = preds[n, :, :]

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses_kpt.update(loss_kpt.item(), input.size(0))
            losses_seg.update(loss_seg.item(), input.size(0))
            acces.update(acc[0], input.size(0))

            inter, union = inter_and_union(
                pred_seg.data.cpu().numpy().astype(np.uint8),
                target_seg.data.cpu().numpy().astype(np.uint8))
            inter_meter.update(inter)
            union_meter.update(union)

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            iou = inter_meter.sum / (union_meter.sum + 1e-10)

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss_kpt: {loss_kpt:.8f} | Loss_seg: {loss_seg:.8f} | Acc: {acc: .8f} | IOU: {iou:.2f}'.format(
                batch=i + 1,
                size=len(val_loader),
                data=data_time.val,
                bt=batch_time.avg,
                total=bar.elapsed_td,
                eta=bar.eta_td,
                loss_kpt=losses_kpt.avg,
                loss_seg=losses_seg.avg,
                acc=acces.avg,
                iou=iou.mean() * 100)
            bar.next()

        bar.finish()
        print(iou)
    return losses_kpt.avg, acces.avg, predictions, iou.mean() * 100
Esempio n. 8
0
def train(train_loader, model, criterion, optimizer, debug=False, flip=True):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()

    gt_win, pred_win = None, None
    bar = Bar('Train', max=len(train_loader))
    batch_loss = []
    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        input, target = input.to(device), target.to(device, non_blocking=True)
        #target_weight = meta['target_weight'].to(device, non_blocking=True)

        # compute output
        output = model(input)
        if type(output) == list:  # multiple output
            loss = 0
            for o in output:
                #print(o.size(), target.size()); exit(1)
                loss += criterion(o, target)
            output = output[-1]
        else:  # single output
            loss = criterion(output, target)
        acc = accuracy(output, target, idx)
        batch_loss += [loss.item()]
        if debug:  # visualize groundtruth and predictions
            gt_batch_img = batch_with_heatmap(input, target)
            pred_batch_img = batch_with_heatmap(input, output)
            if not gt_win or not pred_win:
                ax1 = plt.subplot(121)
                ax1.title.set_text('Groundtruth')
                gt_win = plt.imshow(gt_batch_img)
                ax2 = plt.subplot(122)
                ax2.title.set_text('Prediction')
                pred_win = plt.imshow(pred_batch_img)
            else:
                gt_win.set_data(gt_batch_img)
                pred_win.set_data(pred_batch_img)
            plt.pause(.05)
            plt.draw()

        # measure accuracy and record loss
        losses.update(loss.item(), input.size(0))
        acces.update(acc[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
            batch=i + 1,
            size=len(train_loader),
            data=data_time.val,
            bt=batch_time.val,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            acc=acces.avg)
        bar.next()

    bar.finish()
    return losses.avg, acces.avg, np.mean(batch_loss)
Esempio n. 9
0
def train(train_loader,
          model,
          criterion,
          criterion_seg,
          optimizer,
          debug=False,
          flip=True,
          train_batch=6,
          epoch=0,
          njoints=68):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses_kpt = AverageMeter()
    losses_seg = AverageMeter()
    acces = AverageMeter()
    inter_meter = AverageMeter()
    union_meter = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()

    gt_win, pred_win = None, None
    bar = Bar('Train', max=len(train_loader))

    for i, (input, target, target_seg, meta) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        input, target, target_seg = input.to(device), target.to(
            device, non_blocking=True), target_seg.to(device)
        target_weight = meta['target_weight'].to(device, non_blocking=True)

        # compute output
        output_kpt, output_seg = model(input)
        if type(output_kpt) == list:  # multiple output
            loss_kpt = 0
            loss_seg = 0
            for (o, o_seg) in zip(output_kpt, output_seg):
                loss_kpt += criterion(o, target, target_weight, len(idx))
                loss_seg += criterion_seg(o_seg, target_seg)
            output_kpt = output_kpt[-1]
            output_seg = output_seg[-1]
        else:  # single output
            loss_kpt = criterion(output_kpt, target, target_weight, len(idx))
            loss_seg = criterion_seg(output_seg, target_seg)
        acc, batch_interocular_dists = accuracy(output_kpt, target, idx)
        _, pred_seg = torch.max(output_seg, 1)

        if debug:  # visualize groundtruth and predictions
            gt_batch_img = batch_with_heatmap(input, target)
            pred_batch_img = batch_with_heatmap(input, output)
            if not gt_win or not pred_win:
                ax1 = plt.subplot(121)
                ax1.title.set_text('Groundtruth')
                gt_win = plt.imshow(gt_batch_img)
                ax2 = plt.subplot(122)
                ax2.title.set_text('Prediction')
                pred_win = plt.imshow(pred_batch_img)
            else:
                gt_win.set_data(gt_batch_img)
                pred_win.set_data(pred_batch_img)
            plt.pause(.05)
            plt.draw()

        loss = loss_kpt + (0.01 / (epoch + 1)) * loss_seg

        # measure accuracy and record loss
        losses_kpt.update(loss_kpt.item(), input.size(0))
        losses_seg.update(loss_seg.item(), input.size(0))
        acces.update(acc[0], input.size(0))

        inter, union = inter_and_union(
            pred_seg.data.cpu().numpy().astype(np.uint8),
            target_seg.data.cpu().numpy().astype(np.uint8))
        inter_meter.update(inter)
        union_meter.update(union)
        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        iou = inter_meter.sum / (union_meter.sum + 1e-10)

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss_kpt: {loss_kpt:.8f} | Loss_seg: {loss_seg:.8f} | Acc: {acc: .4f} | IOU: {iou: .2f}'.format(
            batch=i + 1,
            size=len(train_loader),
            data=data_time.val,
            bt=batch_time.val,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss_kpt=losses_kpt.avg,
            loss_seg=losses_seg.avg,
            acc=acces.avg,
            iou=iou.mean() * 100)
        bar.next()

    bar.finish()
    print(iou)
    return losses_kpt.avg, acces.avg
Esempio n. 10
0
def validate(val_loader,
             model,
             criterion,
             num_classes,
             idx,
             save_result_dir,
             meta_dir,
             anno_type,
             flip=True,
             evaluate=False,
             scales=[0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6],
             multi_scale=False,
             save_heatmap=False):

    anno_type = anno_type[0].lower()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    num_scales = len(scales)

    # switch to evaluate mode
    model.eval()

    meanstd_file = '../datasets/arm/mean.pth.tar'
    meanstd = torch.load(meanstd_file)
    mean = meanstd['mean']

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Processing', max=len(val_loader))
    for i, (inputs, target, meta) in enumerate(val_loader):
        #print(inputs.shape)
        # measure data loading time
        data_time.update(time.time() - end)

        if anno_type != 'none':

            target = target.cuda(non_blocking=True)
            target_var = torch.autograd.Variable(target)

        input_var = torch.autograd.Variable(inputs.cuda())

        with torch.no_grad():
            # compute output
            output = model(input_var)

            score_map = output[-1].data.cpu()
            if flip:
                flip_input_var = torch.autograd.Variable(
                    torch.from_numpy(fliplr(
                        inputs.clone().numpy())).float().cuda(), )
                flip_output_var = model(flip_input_var)
                flip_output = flip_back(flip_output_var[-1].data.cpu(),
                                        meta_dir=meta_dir[0])
                score_map += flip_output
                score_map /= 2

            if anno_type != 'none':

                loss = 0
                for o in output:
                    loss += criterion(o, target_var)
                acc = accuracy(score_map, target.cpu(), idx, pck_threshold)

        if multi_scale:
            new_scales = []
            new_res = []
            new_score_map = []
            new_inp = []
            new_meta = []
            img_name = []
            confidence = []
            new_center = []

            num_imgs = score_map.size(0) // num_scales
            for n in range(num_imgs):
                score_map_merged, res, conf = multi_scale_merge(
                    score_map[num_scales * n:num_scales * (n + 1)].numpy(),
                    meta['scale'][num_scales * n:num_scales * (n + 1)])
                inp_merged, _, _ = multi_scale_merge(
                    inputs[num_scales * n:num_scales * (n + 1)].numpy(),
                    meta['scale'][num_scales * n:num_scales * (n + 1)])
                new_score_map.append(score_map_merged)
                new_scales.append(meta['scale'][num_scales * (n + 1) - 1])
                new_center.append(meta['center'][num_scales * n])
                new_res.append(res)
                new_inp.append(inp_merged)
                img_name.append(meta['img_name'][num_scales * n])
                confidence.append(conf)

            if len(new_score_map) > 1:
                score_map = torch.tensor(
                    np.stack(new_score_map))  #stack back to 4-dim
                inputs = torch.tensor(np.stack(new_inp))
            else:
                score_map = torch.tensor(
                    np.expand_dims(new_score_map[0], axis=0))
                inputs = torch.tensor(np.expand_dims(new_inp[0], axis=0))

        else:
            img_name = []
            confidence = []
            for n in range(score_map.size(0)):
                img_name.append(meta['img_name'][n])
                confidence.append(
                    np.amax(score_map[n].numpy(), axis=(1, 2)).tolist())

        # generate predictions
        if multi_scale:
            preds = final_preds(score_map, new_center, new_scales, new_res[0])
        else:
            preds = final_preds(score_map, meta['center'], meta['scale'],
                                [64, 64])

        for n in range(score_map.size(0)):
            if evaluate:
                with open(
                        os.path.join(save_result_dir, 'preds',
                                     img_name[n] + '.json'), 'w') as f:
                    obj = {
                        'd2_key': preds[n].numpy().tolist(),
                        'score': confidence[n]
                    }
                    json.dump(obj, f)

        if evaluate:
            for n in range(score_map.size(0)):
                inp = inputs[n]
                pred = score_map[n]
                for t, m in zip(inp, mean):
                    t.add_(m)
                scipy.misc.imsave(
                    os.path.join(save_result_dir, 'visualization',
                                 '{}.jpg'.format(img_name[n])),
                    sample_with_heatmap(inp, pred))

                if save_heatmap:
                    score_map_original_size = align_back(
                        score_map[n], meta['center'][n],
                        meta['scale'][len(scales) * n - 1],
                        meta['original_size'][n])
                    np.save(
                        os.path.join(save_result_dir, 'heatmaps',
                                     '{}.npy'.format(img_name[n])),
                        score_map_original_size)

        if anno_type != 'none':

            # measure accuracy and record loss
            losses.update(loss.item(), inputs.size(0))
            acces.update(acc[0], inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
            batch=i + 1,
            size=len(val_loader),
            data=data_time.val,
            bt=batch_time.avg,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=losses.avg,
            acc=acces.avg)
        bar.next()

    bar.finish()

    if anno_type != 'none':
        return losses.avg, acces.avg
    else:
        return 0, 0
Esempio n. 11
0
def myvalidate( model, criterion, num_classes, debug=False, flip=True):

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces = AverageMeter()

    img_folder = '/data3/wzwu/dataset/my'
    img_num = 1
    r = 0
    center1 = torch.Tensor([1281,2169])
    center2 = torch.Tensor([[1281,2169]])
    scale = torch.Tensor([10.0])
    inp_res = 256
    meanstd_file = './data/mpii/mean.pth.tar'
    if isfile(meanstd_file):
        meanstd = torch.load(meanstd_file)
        mean = meanstd['mean']
        std = meanstd['std']

    input_list = []
    for i in range(img_num):
        img_name = str(i)+'.jpg'
        img_path = os.path.join(img_folder,img_name)
        print('img_path')
        print(img_path)
        set_trace()
        img = load_image(img_path)
        inp = crop(img, center1, scale, [inp_res, inp_res], rot=r)
        inp = color_normalize(inp, mean, std)
        input_list.append(inp)



    # predictions
    predictions = torch.Tensor(img_num, num_classes, 2)

    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=img_num)
    with torch.no_grad():
        for i, input in enumerate(input_list):
            # measure data loading time
            s0, s1, s2 = input.size()
            input = input.view(1, s0, s1, s2)
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)

            # compute output
            output = model(input)
            score_map = output[-1].cpu() if type(output) == list else output.cpu()
            #if flip:
            #    flip_input = torch.from_numpy(fliplr(input.clone().numpy())).float().to(device)
            #    flip_output = model(flip_input)
            #    flip_output = flip_output[-1].cpu() if type(flip_output) == list else flip_output.cpu()
            #    flip_output = flip_back(flip_output)
            #    score_map += flip_output

            # generate predictions
            set_trace()
            preds = final_preds(score_map, center2, scale, [64, 64])
            set_trace()
            print('preds')
            print(preds)
            print('predictions')
            print(predictions)
            for n in range(score_map.size(0)):
                predictions[i, :, :] = preds[n, :, :]


            if debug:
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    #plt.subplot(121)
                    #plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()
                plt.savefig('/data3/wzwu/test/'+str(i)+'.png')


            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix  = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Acc: {acc: .4f}'.format(
                        batch=i + 1,
                        size=img_num,
                        data=data_time.val,
                        bt=batch_time.avg,
                        total=bar.elapsed_td,
                        eta=bar.eta_td,
                        loss=losses.avg,
                        acc=acces.avg
                        )
            bar.next()

        bar.finish()
    return predictions
def validate(val_loader,
             model,
             criterion,
             debug=False,
             flip=True,
             test_batch=6,
             njoints=68):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces_re = AverageMeter()
    # switch to evaluate mode
    model.eval()

    gt_win, pred_win = None, None
    end = time.time()
    bar = Bar('Eval ', max=len(val_loader))

    with torch.no_grad():
        for i, (input, target, meta) in enumerate(val_loader):
            # measure data loading time
            data_time.update(time.time() - end)

            input = input.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            target_weight = meta['target_weight'].to(device, non_blocking=True)

            # compute output
            output, output_refine = model(input)
            score_map = output[-1].cpu() if type(
                output) == list else output.cpu()
            score_map_refine = output_refine[-1].cpu() if type(
                output_refine) == list else output_refine.cpu()
            if flip:
                flip_input = torch.from_numpy(fliplr(
                    input.clone().numpy())).float().to(device)
                flip_output, flip_output_re = model(flip_input)
                flip_output = flip_output[-1].cpu() if type(
                    flip_output) == list else flip_output.cpu()
                flip_output_re = flip_output_re[-1].cpu() if type(
                    flip_output_re) == list else flip_output_re.cpu()
                flip_output = flip_back(flip_output, 'real_animal')
                flip_output_re = flip_back(flip_output_re, 'real_animal')
                score_map += flip_output
                score_map_refine += flip_output_re

            if type(output) == list:  # multiple output
                loss = 0
                for (o, o_re) in (output, output_refine):
                    loss = loss + criterion(
                        o, target, target_weight, len(idx)) + criterion(
                            o_re, target, target_weight, len(idx))
            else:  # single output
                loss = criterion(
                    output, target, target_weight, len(idx)) + criterion(
                        output_refine, target, target_weight, len(idx))

            acc_re, _ = accuracy(score_map_refine, target.cpu(), idx)

            if debug:
                gt_batch_img = batch_with_heatmap(input, target)
                pred_batch_img = batch_with_heatmap(input, score_map)
                if not gt_win or not pred_win:
                    plt.subplot(121)
                    gt_win = plt.imshow(gt_batch_img)
                    plt.subplot(122)
                    pred_win = plt.imshow(pred_batch_img)
                else:
                    gt_win.set_data(gt_batch_img)
                    pred_win.set_data(pred_batch_img)
                plt.pause(.05)
                plt.draw()

            # measure accuracy and record loss
            losses.update(loss.item(), input.size(0))
            acces_re.update(acc_re[0], input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            # plot progress
            bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} ' \
                          '| Loss: {loss:.8f} | Acc_re: {acc_re: .8f}'.format(
                            batch=i + 1,
                            size=len(val_loader),
                            data=data_time.val,
                            bt=batch_time.avg,
                            total=bar.elapsed_td,
                            eta=bar.eta_td,
                            loss=losses.avg,
                            acc_re=acces_re.avg
                            )
            bar.next()

        bar.finish()

    return losses.avg, acces_re.avg
def train(train_loader,
          model,
          criterion,
          optimizer,
          args,
          debug=False,
          flip=True,
          train_batch=6,
          epoch=0,
          njoints=18):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    acces_re = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()

    gt_win, pred_win = None, None
    bar = Bar('Train', max=len(train_loader))

    for i, (input, target, meta) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        input, target = input.to(device), target.to(device, non_blocking=True)
        target_weight = meta['target_weight'].to(device, non_blocking=True)

        # compute output

        output, output_re = model(input)

        if type(output) == list:  # multiple output
            loss = 0
            for (o, o_re) in zip(output, output_re):
                loss = loss + criterion(
                    o, target, target_weight, len(idx)) + criterion(
                        o_re, target, target_weight, len(idx))
                if args.self_kd:
                    soft_label = o_re.clone().detach().requires_grad_(False)
                    loss = loss + args.soft_weight * criterion(o, soft_label)
            output = output[-1]
            output_re = output_re[-1]
        else:  # single output
            loss = criterion(output, target,
                             target_weight, len(idx)) + criterion(
                                 output_re, target, target_weight, len(idx))

        acc_re, _ = accuracy(output_re, target, idx)
        if debug:  # visualize groundtruth and predictions
            gt_batch_img = batch_with_heatmap(input, target)
            pred_batch_img = batch_with_heatmap(input, output)
            if not gt_win or not pred_win:
                ax1 = plt.subplot(121)
                ax1.title.set_text('Groundtruth')
                gt_win = plt.imshow(gt_batch_img)
                ax2 = plt.subplot(122)
                ax2.title.set_text('Prediction')
                pred_win = plt.imshow(pred_batch_img)
            else:
                gt_win.set_data(gt_batch_img)
                pred_win.set_data(pred_batch_img)
            plt.pause(.05)
            plt.draw()

        # measure accuracy and record loss
        losses.update(loss.item(), input.size(0))
        acces_re.update(acc_re[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.8f} ' \
                      '| Acc_re: {acc_re: .8f}'.format(
                        batch=i + 1,
                        size=len(train_loader),
                        data=data_time.val,
                        bt=batch_time.val,
                        total=bar.elapsed_td,
                        eta=bar.eta_td,
                        loss=losses.avg,
                        acc_re=acces_re.avg
                        )
        bar.next()

    bar.finish()

    return losses.avg, acces_re.avg