Esempio n. 1
0
def main():
    args = parse_args()
    update_config(cfg, args)

    # cudnn related setting
    cudnn.benchmark = cfg.CUDNN.BENCHMARK
    torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
    torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED

    ########## 加载human detecotor model
    from lib.detector.mmdetection.high_api import load_model
    human_model = load_model()
    from lib.detector.mmdetection.high_api import human_boxes_get as mmd_detector
    bboxs, scores = mmd_detector(human_model, args.img_input) # bboxes (N, 4) [x0, y0, x1, y1]
    # bbox is coordinate location
    inputs, origin_img, center, scale = PreProcess(args.img_input, bboxs, scores, cfg)

    # load HRNET MODEL
    model = model_load(cfg)
    with torch.no_grad():
        # compute output heatmap
        #  inputs = inputs[:,[2,1,0]]
        #  inputs = cv2.cvtColor(inputs, cv2.COLOR_BGR2RGB)
        output = model(inputs)
        # compute coordinate
        preds, maxvals = get_final_preds(
            cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale))

    image = plot_keypoint(origin_img, preds, maxvals, 0.3)
    cv2.imwrite(args.img_output, image)
    if args.display:
        cv2.namedWindow("enhanced", cv2.WINDOW_GUI_NORMAL);
        cv2.resizeWindow("enhanced", 960, 480);
        cv2.imshow('enhanced', image)
        cv2.waitKey(5000)
Esempio n. 2
0
def main():
    args = parse_args()
    update_config(cfg, args)

    if not args.camera:
        # handle video
        cam = cv2.VideoCapture(args.video_input)
        video_length = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
    else:
        cam = cv2.VideoCapture(0)
        video_length = 30000

    ret_val, input_image = cam.read()
    # Video writer
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    input_fps = cam.get(cv2.CAP_PROP_FPS)
    out = cv2.VideoWriter(args.video_output, fourcc, input_fps,
                          (input_image.shape[1], input_image.shape[0]))

    #### load pose-hrnet MODEL
    pose_model = model_load(cfg)
    #  pose_model = torch.nn.DataParallel(pose_model, device_ids=[0,1]).cuda()
    pose_model.cuda()

    item = 0
    for i in tqdm(range(video_length - 1)):

        x0 = ckpt_time()
        ret_val, input_image = cam.read()

        #  if args.camera:
        #  #  为取得实时速度,每两帧取一帧预测
        #  if item == 0:
        #  item = 1
        #  continue

        item = 0
        try:
            bboxs, scores = mm_det(human_model, input_image)
            # bbox is coordinate location
            inputs, origin_img, center, scale = PreProcess(
                input_image, bboxs, scores, cfg)
        except:
            out.write(input_image)
            cv2.namedWindow("enhanced", 0)
            cv2.resizeWindow("enhanced", 960, 480)
            cv2.imshow('enhanced', input_image)
            cv2.waitKey(2)
            continue

        with torch.no_grad():
            # compute output heatmap
            inputs = inputs[:, [2, 1, 0]]
            output = pose_model(inputs.cuda())
            # compute coordinate
            preds, maxvals = get_final_preds(cfg,
                                             output.clone().cpu().numpy(),
                                             np.asarray(center),
                                             np.asarray(scale))

        image = plot_keypoint(origin_img, preds, maxvals, 0.1)
        out.write(image)
        if args.display:
            ######### 全屏
            #  out_win = "output_style_full_screen"
            #  cv2.namedWindow(out_win, cv2.WINDOW_NORMAL)
            #  cv2.setWindowProperty(out_win, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
            #  cv2.imshow(out_win, image)

            ########### 指定屏幕大小
            cv2.namedWindow("enhanced", cv2.WINDOW_GUI_NORMAL)
            cv2.resizeWindow("enhanced", 960, 480)
            cv2.imshow('enhanced', image)
            cv2.waitKey(1)
Esempio n. 3
0
def main():
    json_data = {}
    args = parse_args()
    update_config(cfg, args)

    if not args.camera:
        # handle video
        cam = cv2.VideoCapture(args.video_input)
        video_length = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
    else:
        cam = cv2.VideoCapture(1)
        video_length = 30

    ret_val, input_image = cam.read()
    # Video writer
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    input_fps = cam.get(cv2.CAP_PROP_FPS)
    out = cv2.VideoWriter(args.video_output, fourcc, input_fps,
                          (input_image.shape[1], input_image.shape[0]))

    #### load pose-hrnet MODEL
    pose_model = model_load(cfg)
    #  pose_model = torch.nn.DataParallel(pose_model, device_ids=[0,1]).cuda()
    pose_model.to(device)

    item = 0
    index = 0
    for i in tqdm(range(video_length - 1)):

        x0 = ckpt_time()
        ret_val, input_image = cam.read()

        #  if args.camera:
        #  #  为取得实时速度,每两帧取一帧预测
        #  if item == 0:
        #  item = 1
        #  continue

        item = 0
        try:
            detections = yolov5_model(input_image)
            # print(detections)
            scores = []
            bboxs = []

            if detections is not None:
                for i, det in enumerate(detections.pred):
                    inputs = inputs[:, [2, 1, 0]]
                    output = pose_model(inputs.to(device))
                    for bbox in complete_bbox:
                        if bbox[4] > 0.25 and bbox[5] == 0:
                            # print("detections", complete_bbox[:4])
                            bboxs.append(bbox[:4])
                            # print("Our scores", bbox[4])
                            scores.append(bbox[4])
                            #print("Our scores", complete_bbox[4])
                            # bbox is coordinate location
            # print("boxes", bboxs)
            # print("scores", scores)
            inputs, origin_img, center, scale = PreProcess(
                input_image, bboxs, scores, cfg)

        except:
            out.write(input_image)
            cv2.namedWindow("enhanced", 0)
            cv2.resizeWindow("enhanced", 960, 480)
            cv2.imshow('enhanced', input_image)
            cv2.waitKey(2)
            continue

        with torch.no_grad():
            # compute output heatmap
            print("We here babby ")
            inputs = inputs[:, [2, 1, 0]]
            output = pose_model(inputs.to(device))
            # print("Output from pose mode", output)
            # compute coordinate
            preds, maxvals = get_final_preds(cfg,
                                             output.clone().cpu().numpy(),
                                             np.asarray(center),
                                             np.asarray(scale))
            json_data[index] = list()
            json_data[index].append(preds.tolist())

            print("Key points", preds)
            index += 1

        image = plot_keypoint(origin_img, preds, maxvals, 0.25)
        out.write(image)
        if args.display:
            ######### 全屏
            #  out_win = "output_style_full_screen"
            #  cv2.namedWindow(out_win, cv2.WINDOW_NORMAL)
            #  cv2.setWindowProperty(out_win, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
            #  cv2.imshow(out_win, image)

            ########### 指定屏幕大小
            cv2.namedWindow("enhanced", cv2.WINDOW_GUI_NORMAL)
            cv2.resizeWindow("enhanced", 960, 480)
            cv2.imshow('enhanced', image)
            cv2.waitKey(1)
            with open('outputs/output.json', 'w') as json_file:
                print(json_data)
                json.dump(json_data, json_file)
Esempio n. 4
0
def main():
    args = parse_args()
    update_config(cfg, args)

    if not args.camera:
        # handle video
        cam = cv2.VideoCapture(args.video_input)
        video_length = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
    else:
        cam = cv2.VideoCapture(0)
        video_length = 30000

    ret_val, input_image = cam.read()
    # 保持长宽都是64的倍数
    resize_W = int(input_image.shape[1] / 64) * 64
    resize_H = int((input_image.shape[0] / input_image.shape[1] * resize_W) / 64 ) * 64
    print(resize_W, resize_H)
    input_image = cv2.resize(input_image, (resize_W, resize_H))
    # Video writer
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    input_fps = cam.get(cv2.CAP_PROP_FPS)
    out = cv2.VideoWriter(args.video_output,fourcc, input_fps, (input_image.shape[1],input_image.shape[0]))

    #### load optical flow model
    flow_model = load_model()

    #### load pose-hrnet MODEL
    pose_model = model_load(cfg)
    pose_model.cuda()

    first_frame = 1

    flow_boxs = 0
    flow_kpts = 0

    item = 0
    for i in tqdm(range(video_length-1)):

        x0 = ckpt_time()
        ret_val, input_image = cam.read()
        input_image = cv2.resize(input_image, (resize_W, resize_H))

        if first_frame == 0:
            try:
                t0 = ckpt_time()
                flow_result = flow_net(pre_image, input_image, flow_model)
                flow_boxs, flow_kpts = flow_propagation(keypoints, flow_result)
                print('每次flownet耗时:{:0.3f}'.format(time.time()- t0))
            except Exception as e:
                print(e)
                continue

        pre_image = input_image
        first_frame = 0


        try:
            bboxs, scores = yolo_det(input_image, human_model)

            # 第一帧
            if i == 0:
                inputs, origin_img, center, scale = PreProcess(input_image, bboxs, scores, cfg)
            else:
                # 本帧、上一帧 边框置信度NMS
                if not (flow_bbox_scores>scores).tolist()[0][0]:
                    flow_boxs = bboxs
                inputs, origin_img, center, scale = PreProcess(input_image, flow_boxs, scores, cfg)

        except:
            out.write(input_image)
            cv2.namedWindow("enhanced",0);
            cv2.resizeWindow("enhanced", 960, 480);
            cv2.imshow('enhanced', input_image)
            cv2.waitKey(2)
            continue

        with torch.no_grad():
            # compute output heatmap
            inputs = inputs[:,[2,1,0]]
            output = pose_model(inputs.cuda())
            # compute coordinate
            preds, maxvals = get_final_preds(
                cfg, output.clone().cpu().numpy(), np.asarray(center), np.asarray(scale))

        # 当前帧边框置信度, 作为下一帧流边框的置信度
        flow_bbox_scores = scores.copy()

        if i != 1:
            preds = (preds + flow_kpts) / 2

        image = plot_keypoint(origin_img, preds, maxvals, 0.1)
        out.write(image)
        keypoints = np.concatenate((preds, maxvals), 2)


        if args.display:
            ########### 指定屏幕大小
            cv2.namedWindow("enhanced", cv2.WINDOW_GUI_NORMAL);
            cv2.resizeWindow("enhanced", 960, 480);
            cv2.imshow('enhanced', image)
            cv2.waitKey(1)
Esempio n. 5
0
def main():
    tick = 0
    args = parse_args()
    update_config(cfg, args)

    if not args.camera:
        # handle video
        cam = cv2.VideoCapture(args.video_input)
        video_length = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
    else:
        cam = cv2.VideoCapture(0)
        video_length = 30000

    ret_val, input_image = cam.read()
    # Video writer
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    input_fps = cam.get(cv2.CAP_PROP_FPS)
    out = cv2.VideoWriter(args.video_output, fourcc, input_fps,
                          (input_image.shape[1], input_image.shape[0]))

    #### load pose-hrnet MODEL
    pose_model = model_load(cfg)
    pose_model.cuda()

    item = 0
    for i in tqdm(range(video_length - 1)):

        x0 = ckpt_time()
        ret_val, input_image = cam.read()

        if args.camera:
            # 为取得实时速度,每两帧取一帧预测
            if item == 0:
                item = 1
                continue

        item = 0
        try:
            bboxs, scores = yolo_det(input_image, human_model)
            # bbox is coordinate location
            inputs, origin_img, center, scale = PreProcess(
                input_image, bboxs, scores, cfg)
        except:
            out.write(input_image)
            cv2.namedWindow("enhanced", 0)
            cv2.resizeWindow("enhanced", 960, 480)
            cv2.imshow('enhanced', input_image)
            cv2.waitKey(2)
            continue

        with torch.no_grad():
            # compute output heatmap
            inputs = inputs[:, [2, 1, 0]]
            output = pose_model(inputs.cuda())
            # compute coordinate
            preds, maxvals = get_final_preds(cfg,
                                             output.clone().cpu().numpy(),
                                             np.asarray(center),
                                             np.asarray(scale))

        # 平滑点
        preds = smooth_filter(preds)
        image = plot_keypoint(origin_img, preds, maxvals, 0.3)
        if i >= 9:
            out.write(image)
        if args.display:
            ########### 指定屏幕大小
            cv2.namedWindow("enhanced", cv2.WINDOW_GUI_NORMAL)
            cv2.resizeWindow("enhanced", 960, 480)
            cv2.imshow('enhanced', image)
            cv2.waitKey(1)