Esempio n. 1
0
def _sort_nodes(graph):
    """
    NetworkX does not preserve any node order for edges in MultiDiGraphs.  Given a graph (component) where all nodes are
    of degree 1 or 2, this calculates the sequence of nodes from one node to the next.  If the component has any nodes
    with degree 1, it must have exactly two nodes of degree 1 by this constraint (long road, strung out like a line).
    One of the 1-degree nodes are chosen as the start-node. If all nodes have degree 2, we have a loop and the start/end
    node is chosen arbitrarily.
    Args:
        graph (networkx graph):
    Returns:
        list of node ids that constitute a direct path (tour) through each node.
    """

    edge_type = is_graph_line_or_circle(graph)
    degree1_nodes = [n[0] for n in graph.degree() if n[1] == 1]

    if edge_type == 'line':
        start_node, end_node = degree1_nodes
        nodes = spm.dijkstra_path(graph, start_node, end_node)
    elif edge_type == 'circle':
        nodes = [n[0] for n in list(nx.eulerian_circuit(graph))]
    else:
        raise RuntimeError('Unrecognized edge_type')

    assert len(nodes) == len(graph.nodes())

    return nodes
Esempio n. 2
0
def create_rpp_edgelist(g_strongly_connected, graph_full, edge_weight='distance', max_distance=1600):
    """
    Create the edgelist for the RPP algorithm.  This includes:
     - Required state edges (deduped)
     - Required non-state roads that connect state roads into one connected component with minimum additional distance
     - Optional roads that connect the nodes of the contracted state edges (these distances are calculated here using
       first haversine distance to filter the candidate set down using `max_distance` as a threshold, then calculating
       the true shortest path distance)
    Args:
        g_strongly_connected (networkx MultiDiGraph): of strongly connected roads
        graph_full (networkx Graph): full graph with all granular edges
        edge_weight (str): edge attribute for distance in `g_strongly_connected` and `graph_full`
        max_distance (int): max haversine distance used to add candidate optional edges for.
    Returns:
        Dataframe of edgelist described above.
    """

    dfrpp_list = []
    for e in g_strongly_connected.edges(data=True):
        if 'granular' not in e[2]:
            dfrpp_list.append({
                'start_node': e[0],
                'end_node': e[1],
                'distance_haversine': e[2]['distance'],
                'required': 1,
                'distance': e[2]['distance'],
                'path': e[2]['path'],
                'length': e[2]['length']
            })

    for n1, n2 in [comb for comb in itertools.combinations(g_strongly_connected.nodes(), 2)]:
        if n1 == n2:
            continue

        if not g_strongly_connected.has_edge(n1, n2):
            distance_haversine = haversine(g_strongly_connected.nodes[n1]['x'], g_strongly_connected.nodes[n1]['y'],
                                           g_strongly_connected.nodes[n2]['x'], g_strongly_connected.nodes[n2]['y'])

            # only add optional edges whose haversine distance is less than `max_distance`
            if distance_haversine > max_distance:
                continue

            dfrpp_list.append({
                'start_node': n1,
                'end_node': n2,
                'distance_haversine': distance_haversine,
                'required': 0,
                'distance': spm.dijkstra_path_length(graph_full, n1, n2, edge_weight),
                'path': spm.dijkstra_path(graph_full, n1, n2, edge_weight),
                'length': nx.dijkstra_path_length(graph_full, n1, n2, 'length')
            })

    # create dataframe
    dfrpp = pd.DataFrame(dfrpp_list)

    # create order
    dfrpp = dfrpp[['start_node', 'end_node', 'distance_haversine', 'distance', 'required', 'path', 'length']]

    return dfrpp
Esempio n. 3
0
def create_eulerian_circuit(graph_augmented,
                            graph_original,
                            start_node=None,
                            edge_weight_name='distance'):
    """
    networkx.eulerian_circuit only returns the order in which we hit each node.  It does not return the attributes of the
    edges needed to complete the circuit.  This is necessary for the postman problem where we need to keep track of which
    edges have been covered already when multiple edges exist between two nodes.
    We also need to annotate the edges added to make the eulerian to follow the actual shortest path trails (not
    the direct shortest path pairings between the odd nodes for which there might not be a direct trail)
    Args:
        graph_augmented (networkx graph): graph w links between odd degree nodes created from `add_augmenting_path_to_graph`.
        graph_original (networkx graph): orginal graph created from `create_networkx_graph_from_edgelist`
        start_node (str): name of starting (and ending) node for CPP solution.
    Returns:
        networkx graph (`graph_original`) augmented with edges directly between the odd nodes
    """

    euler_circuit = list(
        nx.eulerian_circuit(graph_augmented, source=start_node, keys=True))
    assert len(graph_augmented.edges()) == len(
        euler_circuit
    ), 'graph and euler_circuit do not have equal number of edges.'

    for edge in euler_circuit:
        #JC changed from nx.shortest_path to spm.dijkstra_path
        aug_path = spm.dijkstra_path(graph_original,
                                     edge[0],
                                     edge[1],
                                     weight=edge_weight_name)
        edge_attr = graph_augmented[edge[0]][edge[1]][edge[2]]
        if not edge_attr.get('augmented'):
            yield edge + (edge_attr, )
        else:
            for edge_aug in list(zip(aug_path[:-1], aug_path[1:])):
                # find edge with shortest distance (if there are two parallel edges between the same nodes)
                edge_aug_dict = graph_original[edge_aug[0]][edge_aug[1]]
                edge_key = min(edge_aug_dict.keys(),
                               key=(lambda k: edge_aug_dict[k]['distance']
                                    ))  # index with min distance
                edge_aug_shortest = edge_aug_dict[edge_key]
                edge_aug_shortest['augmented'] = True
                edge_aug_shortest['id'] = edge_aug_dict[edge_key]['id']
                yield edge_aug + (
                    edge_key,
                    edge_aug_shortest,
                )
Esempio n. 4
0
def add_augmenting_path_to_graph(g_req,
                                 g_full,
                                 min_weight_pairs,
                                 edge_weight_name='distance'):
    """
    Add the min weight matching edges to the original graph
    Note the resulting graph could (and likely will) have edges that didn't exist on the original graph.  To get the
    true circuit, we must breakdown these augmented edges into the shortest path through the edges that do exist.  This
    is done with `create_eulerian_circuit`.
    Args:
        graph (networkx graph):
        min_weight_pairs (list[2tuples): output of `dedupe_matching` specifying the odd degree nodes to link together
        edge_weight_name (str): edge attribute used for distance calculation
    Returns:
        networkx graph: `graph` augmented with edges between the odd nodes specified in `min_weight_pairs`
    """
    graph_aug = g_req.copy()  # so we don't mess with the original graph
    for pair in min_weight_pairs:
        path = spm.dijkstra_path(g_full,
                                 pair[0],
                                 pair[1],
                                 weight=edge_weight_name)
        turn_length = g_full[path[0]][path[1]][0]['turn_length']
        graph_aug.add_edge(
            pair[0], pair[1], **{
                'distance':
                spm.dijkstra_path_length(g_full,
                                         pair[0],
                                         pair[1],
                                         weight=edge_weight_name),
                'augmented':
                True,
                'turn_length':
                turn_length,
                'length':
                nx.dijkstra_path_length(g_full,
                                        pair[0],
                                        pair[1],
                                        weight='length')
            })
    return graph_aug
Esempio n. 5
0
def find_minimum_weight_edges_to_connect_components(dfsp, graph, edge_weight='distance', top=10):
    """
    Given a dataframe of haversine distances between many pairs of nodes, calculate the min weight way to connect all
    the components in `graph`.  At each iteration, the true shortest path (dijkstra_path_length) is calculated for the
     top `top` closest node pairs using haversine distance.  This heuristic improves efficiency at the cost of
     potentially not finding the true min weight connectors.  If this is a concern, increase `top`.
    Args:
        dfsp (dataframe): calculated with `shortest_paths_between_components` with haversine distance between all node
                          candidate node pairs
        graph (networkx graph): used for the true shortest path calculation
        edge_weight (str): edge attribute used shortest path calculation in `graph`
        top (int): number of pairs for which shortest path calculation is performed at each iteration
    Returns:
        list[tuple3] containing just the connectors needed to connect all the components in `graph`.
    """

    # find shortest edges to add to make one big connected component
    dfsp = dfsp.copy()
    new_required_edges = []
    while sum(dfsp.index[dfsp['start_comp'] != dfsp['end_comp']]) > 0:

        # calculate path distance for top 10 shortest
        dfsp['path_distance'] = None
        dfsp['path'] = dfsp['path2'] = [[]] * len(dfsp)

        for i in dfsp.index[dfsp['start_comp'] != dfsp['end_comp']][0:top]:
            if dfsp.loc[i]['path_distance'] is None:
                dfsp.loc[i, 'path_distance'] = spm.dijkstra_path_length(graph,
                                                                       dfsp.loc[i, 'start_node'],
                                                                       dfsp.loc[i, 'end_node'],
                                                                       edge_weight)
                dfsp.at[i, 'path'] = spm.dijkstra_path(graph,
                                                      dfsp.loc[i, 'start_node'],
                                                      dfsp.loc[i, 'end_node'],
                                                      edge_weight)
                dfsp.at[i, 'length'] = nx.dijkstra_path_length(graph,
                                                      dfsp.loc[i, 'start_node'],
                                                      dfsp.loc[i, 'end_node'],
                                                      'length')

        dfsp.sort_values('path_distance', inplace=True)

        # The first index where start and end comps are different is the index containing the shortest connecting path between start comp and end comp
        first_index = dfsp.index[dfsp['start_comp'] != dfsp['end_comp']][0]
        start_comp = dfsp.loc[first_index]['start_comp']
        end_comp = dfsp.loc[first_index]['end_comp']
        start_node = dfsp.loc[first_index]['start_node']
        end_node = dfsp.loc[first_index]['end_node']
        path_distance = dfsp.loc[first_index]['path_distance']
        path = dfsp.loc[first_index]['path']
        length = dfsp.loc[first_index]['length']
        
        dfsp_rev_pair = dfsp[dfsp['start_comp'] == end_comp] 
        dfsp_rev_pair = dfsp_rev_pair[dfsp_rev_pair['end_comp'] == start_comp]
        for i in dfsp_rev_pair.index[0:top]: 
             if dfsp_rev_pair.loc[i]['path_distance'] is None:
                dfsp_rev_pair.loc[i, 'path_distance'] = spm.dijkstra_path_length(graph,
                                                                       dfsp_rev_pair.loc[i, 'start_node'],
                                                                       dfsp_rev_pair.loc[i, 'end_node'],
                                                                       edge_weight)
                dfsp_rev_pair.at[i, 'path'] = spm.dijkstra_path(graph,
                                                      dfsp_rev_pair.loc[i, 'start_node'],
                                                      dfsp_rev_pair.loc[i, 'end_node'],
                                                      edge_weight)
                dfsp_rev_pair.at[i, 'length'] = nx.dijkstra_path_length(graph,
                                                      dfsp.loc[i, 'start_node'],
                                                      dfsp.loc[i, 'end_node'],
                                                      'length')

        dfsp_rev_pair.sort_values('path_distance', inplace=True)

        first_index_rev = dfsp_rev_pair.index[0]
        start_node_rev = dfsp_rev_pair.loc[first_index_rev]['start_node']
        end_node_rev = dfsp_rev_pair.loc[first_index_rev]['end_node']
        path_distance_rev = dfsp_rev_pair.loc[first_index_rev]['path_distance']
        path_rev = dfsp_rev_pair.loc[first_index_rev]['path']
        length_rev = dfsp_rev_pair.loc[first_index_rev]['length']
           
        dfsp.loc[dfsp['end_comp'] == end_comp, 'end_comp'] = start_comp
        dfsp.loc[dfsp['start_comp'] == end_comp, 'start_comp'] = start_comp
        dfsp.sort_values('haversine_distance', inplace=True)
        new_required_edges.append((start_node, end_node, {'distance': path_distance, 'path': path, 'length': length, 'start_comp': start_comp, 'end_comp': end_comp}))
        new_required_edges.append((start_node_rev, end_node_rev, {'distance': path_distance_rev, 'length': length_rev, 'path': path_rev, 'start_comp': end_comp, 'end_comp': start_comp}))

    return new_required_edges