Esempio n. 1
0
def error_majorant_distribution_nd(mesh, dim, ed_var, md_var, mf_var, V_exact):

    cell_num = mesh.num_cells()
    ed_distr = allocate_array_1d(cell_num)
    md_distr = allocate_array_1d(cell_num)
    maj_distr = allocate_array_1d(cell_num)

    md = project(md_var, V_exact)
    mf = project(mf_var, V_exact)
    ed = project(ed_var, V_exact)

    scheme_order = 4
    gauss = integrators.SpaceIntegrator(scheme_order, dim)
    for c in cells(mesh):

        # Obtaining the coordinates of the vertices in the cell
        verts = c.get_vertex_coordinates().reshape(dim + 1, dim)
        x_n_transpose = verts.T

        # Calculating the area of the cell
        matrix = postprocess.allocate_array_2d(dim + 1, dim + 1)
        matrix[0:dim, 0:dim + 1] = x_n_transpose
        matrix[dim, 0:dim + 1] = numpy.array([1.0 for i in range(dim + 1)])

        meas = float(1.0 / math.factorial(dim)) * abs(numpy.linalg.det(matrix))

        ed_distr[c.index()] = gauss.integrate(ed, meas, x_n_transpose)
        md_distr[c.index()] = gauss.integrate(md, meas, x_n_transpose)
        maj_distr[c.index()] = gauss.integrate(mf, meas, x_n_transpose)

    print "ed_distr  int total = %8.2e" % numpy.sum(ed_distr)
    print "md_distr  int total = %8.2e" % numpy.sum(md_distr)
    print "maj_distr int total = %8.2e\n" % numpy.sum(maj_distr)

    return ed_distr, md_distr, maj_distr, ed, md, mf
Esempio n. 2
0
def error_majorant_distribution_nd(mesh, domain, dim, u_e, grad_u_e, u,
                                   V_exact, y, f, lmbd, beta):

    cell_num = mesh.num_cells()
    #e_distr = postprocess.allocate_array(cell_num)
    #m_distr = postprocess.allocate_array(cell_num)
    ed_distr = postprocess.allocate_array(cell_num)
    md_distr = postprocess.allocate_array(cell_num)

    # Define error and residuals
    r_d = abs(Grad(u, dim) - y)
    r_f = abs(f + Div(y, dim) - lmbd * u)

    #C_FD = calculate_CF_of_domain(domain, dim)

    u_ve = interpolate(u, V_exact)
    u_exact_ve = interpolate(u_e, V_exact)
    e = u_ve - u_exact_ve

    #w_opt = (C_FD ** 2) * (1 + beta) / (beta + (C_FD ** 2) * (1 + beta) * lmbd)

    # Project UFL forms on the high-order functional space to obtain functions
    #ed = project(sqrt(inner(Grad(e, dim), Grad(e, dim))), V_exact)
    #md = project(sqrt(inner(r_d, r_d)), V_exact)
    ed = project(inner(Grad(e, dim), Grad(e, dim)), V_exact)
    md = project(inner(r_d, r_d), V_exact)

    #ed_test = assemble(sqrt(inner(Grad(e, dim), Grad(e, dim))) * dx)
    #md_test = assemble(sqrt(inner(r_d, r_d)) * dx)
    #e = project(sqrt(inner(Grad(e, dim), Grad(e, dim)) + lmbd * inner(e, e)), V_exact)
    #m = project(sqrt((1 + beta) * inner(r_d, r_d) + w_opt * inner(r_f, r_f)), V_exact)

    dofmap = V_exact.dofmap()

    scheme_order = 4
    gauss = integration.SpaceIntegrator(scheme_order, dim)

    for c in cells(mesh):
        verts = dofmap.tabulate_coordinates(c)
        x_n = verts[0:dim + 1, :]
        x_n_transpose = x_n.transpose()

        matrix = postprocess.allocate_array_2d(dim + 1, dim + 1)
        matrix[0:dim, 0:dim + 1] = x_n_transpose
        matrix[dim, 0:dim + 1] = numpy.array([1.0 for i in range(dim + 1)])
        meas = abs(numpy.linalg.det(matrix))

        ed_distr[c.index()] = gauss.integrate(ed, meas, x_n_transpose)
        md_distr[c.index()] = gauss.integrate(md, meas, x_n_transpose)

        #e_distr[c.index()] = gauss.integrate(e, meas, x_n_transpose)
        #m_distr[c.index()] = gauss.integrate(m, meas, x_n_transpose)

    print 'sum of m_cells', numpy.sum(md_distr)
    print 'sum of e_cells', numpy.sum(ed_distr)

    return ed_distr, md_distr
Esempio n. 3
0
def error_majorant_distribution_nd(mesh, dim, V_exact, var_grad_e, var_delta_e,
                                   var_m_d, var_m_f_w_opt, beta, C_FD):
    cell_num = mesh.num_cells()
    ed_distr = postprocess.allocate_array(cell_num)
    delta_e_distr = postprocess.allocate_array(cell_num)
    md_distr = postprocess.allocate_array(cell_num)
    maj_distr = postprocess.allocate_array(cell_num)

    # Project UFL forms on the high-order functional space to obtain functions
    ed = project((var_grad_e), V_exact)
    delta_e = project(var_delta_e, V_exact)
    md = project((var_m_d), V_exact)
    mf_wopt = project(var_m_f_w_opt, V_exact)

    scheme_order = 4
    gauss = integration.SpaceIntegrator(scheme_order, dim)

    for c in cells(mesh):
        # Obtaining the coordinates of the vertices in the cell
        verts = c.get_vertex_coordinates().reshape(dim + 1, dim)
        x_n_transpose = verts.T

        # Calculating the area of the cell
        matrix = postprocess.allocate_array_2d(dim + 1, dim + 1)
        matrix[0:dim, 0:dim + 1] = x_n_transpose
        matrix[dim, 0:dim + 1] = numpy.array([1.0 for i in range(dim + 1)])
        # print "matrix = ", matrix
        meas = abs(numpy.linalg.det(matrix))

        # Integrating over the cell
        ed_distr[c.index()] = gauss.integrate(ed, meas, x_n_transpose)
        delta_e_distr[c.index()] = gauss.integrate(delta_e, meas,
                                                   x_n_transpose)
        md_distr[c.index()] = gauss.integrate(md, meas, x_n_transpose)
        #maj_distr[c.index()] = gauss.integrate(mdf, meas, x_n_transpose)

    #print 'num md_cells', md_distr
    #print 'ed_cells', ed_distr
    #print 'delta_e_cells', delta_e_distr

    #print 'maj_cells', maj_distr
    #print 'e_cells', e_distr

    print '\nmd = Sum_K md_K = %8.2e' % sum(md_distr)
    print 'ed = Sum_K ed_K = %8.2e' % sum(ed_distr)

    return ed_distr, md_distr, maj_distr
Esempio n. 4
0
def error_majorant_distribution_nd(mesh, dim, V_exact, var_grad_e, var_delta_e,
                                   var_m_d, var_m_f_w_opt, beta):

    # Allocate arrays for error and majorant distributions
    cell_num = mesh.num_cells()
    ed_distr = postprocess.allocate_array(cell_num)
    delta_e_distr = postprocess.allocate_array(cell_num)
    md_distr = postprocess.allocate_array(cell_num)
    mf_distr = postprocess.allocate_array(cell_num)

    # Project UFL forms on the high-order functional space to obtain functions
    ed = project(var_grad_e, V_exact)
    delta_e = project(var_delta_e, V_exact)
    md = project(var_m_d, V_exact)
    mf_wopt = project(var_m_f_w_opt, V_exact)

    # Obtained the mapping
    #dofmap = V_exact
    #mesh_coordimates = dofmap.
    # Define integration scheme order and assign the integrator
    scheme_order = 4
    gauss = integration.SpaceIntegrator(scheme_order, dim)

    # Iterate over cells of the mesh and obtain local value of the majorant
    for c in cells(mesh):

        # Obtaining the coordinates of the vertices in the cell
        verts = c.get_vertex_coordinates().reshape(dim + 1, dim)
        x_n_transpose = verts.T

        # Calculating the area of the cell
        matrix = postprocess.allocate_array_2d(dim + 1, dim + 1)
        matrix[0:dim, 0:dim + 1] = x_n_transpose
        matrix[dim, 0:dim + 1] = numpy.array([1.0 for i in range(dim + 1)])
        #print "matrix = ", matrix
        meas = abs(numpy.linalg.det(matrix))

        # Integrating over the cell
        ed_distr[c.index()] = gauss.integrate(ed, meas, x_n_transpose)
        delta_e_distr[c.index()] = gauss.integrate(delta_e, meas,
                                                   x_n_transpose)
        md_distr[c.index()] = gauss.integrate(md, meas, x_n_transpose)
        mf_distr[c.index()] = gauss.integrate(mf_wopt, meas, x_n_transpose)

    # Calculate majorant based on the parameter value
    if sum(mf_distr) <= DOLFIN_EPS:
        maj_distr = md_distr
    else:
        if sum(md_distr) <= DOLFIN_EPS:
            maj_distr = mf_distr
        else:
            maj_distr = (
                1.0 + beta
            ) * md_distr + mf_distr  # here (1 + 1/beta) weight is ommited since it is included into the optimal mf_wopt

    e_distr = ed_distr + delta_e_distr

    #print 'md_cells', md_distr
    #print 'ed_cells', ed_distr

    print 'sum md_cells', sum(md_distr)
    print 'sum maj_cells', sum(maj_distr)
    print 'sum e_cells', sum(e_distr)

    return ed_distr, delta_e_distr, e_distr, md_distr, mf_distr, maj_distr, ed, md