def plot_header(fname, ff, iod_line): # ppgplot arrays heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Plot ppg.pgopen(fname) ppg.pgpap(0.0, 1.0) ppg.pgsvp(0.1, 0.95, 0.1, 0.8) ppg.pgsch(0.8) ppg.pgmtxt("T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if is_calibrated(ff): ppg.pgsci(1) else: ppg.pgsci(2) ppg.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppg.pgsci(1) ppg.pgmtxt("T", 3.6, 0.0, 0.0, ("FoV: %.2f\\(2218)x%.2f\\(2218) " "Scale: %.2f''x%.2f'' pix\\u-1\\d") % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppg.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.zmaxmin, ff.zmaxmax)) ppg.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppg.pgsch(1.0) ppg.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppg.pglab("x (pix)", "y (pix)", " ") ppg.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)
def startPlotter(self): if self.plotDeviceIsOpened: raise ValueError("You already started a plot!") devId = pgplot.pgopen(self.deviceName) self.plotDeviceIsOpened = True if not self.widthInches is None: pgplot.pgpap(self.widthInches, self.yOnXRatio) # For devices /xs, /xw, /png etc, should make the paper white and the ink black. Only for /ps does pgplot default to that. # deviceWithoutFile = self.deviceName.split('/')[-1] if deviceWithoutFile == 'xs' or deviceWithoutFile == 'xw' or deviceWithoutFile == 'png': pgplot.pgscr(0, 1.0, 1.0, 1.0) pgplot.pgscr(1, 0.0, 0.0, 0.0) pgplot.pgsvp(self._vXLo, self._vXHi, self._vYLo, self._vYHi) if self.fixAspect: pgplot.pgwnad(self.worldXLo, self.worldXHi, self.worldYLo, self.worldYHi) else: pgplot.pgswin(self.worldXLo, self.worldXHi, self.worldYLo, self.worldYHi) pgplot.pgsfs(2) pgplot.pgslw(1) pgplot.pgsch(self._charHeight) self._setColourRepresentations() # Set up things so calling pgplot.pggray() won't overwrite the CR of any of the colours in self.colours. # (minCI, maxCI) = pgplot.pgqcir() if minCI <= self.maxCI: pgplot.pgscir(self.maxCI + 1, maxCI) (xLoPixels, xHiPixels, yLoPixels, yHiPixels) = pgplot.pgqvsz(3) (xLoInches, xHiInches, yLoInches, yHiInches) = pgplot.pgqvsz(1) self.xPixelWorld = (xHiInches - xLoInches) / (xHiPixels - xLoPixels) self.yPixelWorld = (yHiInches - yLoInches) / (yHiPixels - yLoPixels)
ppgplot.pgslw(2) ppgplot.pgpap(0.0, 0.75) # For ever loop redraw = True while True: # Redraw if redraw == True: # Update m.update() # Initialize window ppgplot.pgscr(0, 0., 0., 0.) ppgplot.pgeras() ppgplot.pgsvp(0.01, 0.99, 0.01, 0.99) ppgplot.pgwnad(-1.5 * m.w, 1.5 * m.w, -m.w, m.w) # Set background depending on solar altitude if m.sunalt > 0.0: ppgplot.pgscr(0, 0.0, 0.0, 0.4) elif m.sunalt > -6.0: ppgplot.pgscr(0, 0.0, 0.0, 0.3) elif m.sunalt > -12.0: ppgplot.pgscr(0, 0.0, 0.0, 0.2) elif m.sunalt > -18.0: ppgplot.pgscr(0, 0.0, 0.0, 0.1) else: ppgplot.pgscr(0, 0.0, 0.0, 0.0) ppgplot.pgsci(0) # Plot box
def plot(self, vlo=2., vhi=98., nc=-1, method='p', mpl=False, cmap=CMDEF, \ close=True, x1=None, x2=None, y1=None, y2=None, sepmin=1.): """ Plots an MCCD using pgplot or matplotlib if preferred. :Parameters: vlo : float number specifying the lowest level to plot (default as a percentile) vhi : float number specifying the lowest level to plot (default as a percentile) nc : int CCD number (starting from 0, -1 for all) method : string how vlo and vhi are to be interpreted. 'p' = percentile, 'a' = automatic (min to max, vlo and vhi are irrelevant), 'd' = direct, i.e. just take the values given. mpl : bool True to prefer matplotlib over pgplot (which may not even be an option) cmap : matplotlib.cm.binary colour map if using matplotlib close : bool close (pgplot) or 'show' (matplotlib) the plot at the end (or not, to allow you to plot something else, use a cursor etc). In the case of pgplot, this also implies opening the plot at the start, i.e. a self-contained quick plot. x1 : float left-hand plot limit. Defaults to 0.5 x2 : float right-hand plot limit. Defaults to nxmax+0.5 y1 : float lower plot limit. Defaults to 0.5 y2 : float upper plot limit. Defaults to nymax+0.5 sepmin : float minimum separation between intensity limits (> 0 to stop PGPLOT complaining) :Returns: range(s) : tuple or list the plot range(s) used either as a single 2-element tuple, or a list of them, one per CCD plotted. """ if nc == -1: nc1 = 0 nc2 = len(self) else: nc1 = nc nc2 = nc+1 if not mpl: if close: pg.pgopen('/xs') if nc2-nc1 > 1: pg.pgsubp(nc2-nc1,1) prange = [] for nc, ccd in enumerate(self._data[nc1:nc2]): # Determine intensity range to display if method == 'p': vmin, vmax = ccd.centile((vlo,vhi)) elif method == 'a': vmin, vmax = ccd.min(), ccd.max() elif method == 'd': vmin, vmax = vlo, vhi else: raise UltracamError('MCCD.plot: method must be one of p, a or d.') if vmin == vmax: vmin -= sepmin/2. vmax += sepmin/2. prange.append((vmin, vmax)) # start nxmax, nymax = ccd.nxmax, ccd.nymax x1 = 0.5 if x1 is None else x1 x2 = nxmax+0.5 if x2 is None else x2 y1 = 0.5 if y1 is None else y1 y2 = nymax+0.5 if y2 is None else y2 if mpl: if nc2-nc1 > 1: plt.subplot(1,nc2-nc1,nc+1) plt.axis('equal') else: if nc2-nc1 > 1: pg.pgpanl(nc-nc1+1,1) pg.pgwnad(x1,x2,y1,y2) # plot CCD ccd.plot(vmin,vmax,mpl,cmap) # per-frame finishing-off if mpl: plt.xlim(x1,x2) plt.ylim(y1,y2) else: pg.pgbox('bcnst',0,0,'bcnst',0,0) pg.pglab('X','Y','') if close: if mpl: plt.show() else: pg.pgclos() # return intensity range(s) used if len(prange) == 1: return prange[0] else: return tuple(prange)
def plot(self, vlo=2., vhi=98., nc=-1, method='p', mpl=False, cmap=CMDEF, \ close=True, x1=None, x2=None, y1=None, y2=None, sepmin=1.): """ Plots an MCCD using pgplot or matplotlib if preferred. :Parameters: vlo : float number specifying the lowest level to plot (default as a percentile) vhi : float number specifying the lowest level to plot (default as a percentile) nc : int CCD number (starting from 0, -1 for all) method : string how vlo and vhi are to be interpreted. 'p' = percentile, 'a' = automatic (min to max, vlo and vhi are irrelevant), 'd' = direct, i.e. just take the values given. mpl : bool True to prefer matplotlib over pgplot (which may not even be an option) cmap : matplotlib.cm.binary colour map if using matplotlib close : bool close (pgplot) or 'show' (matplotlib) the plot at the end (or not, to allow you to plot something else, use a cursor etc). In the case of pgplot, this also implies opening the plot at the start, i.e. a self-contained quick plot. x1 : float left-hand plot limit. Defaults to 0.5 x2 : float right-hand plot limit. Defaults to nxmax+0.5 y1 : float lower plot limit. Defaults to 0.5 y2 : float upper plot limit. Defaults to nymax+0.5 sepmin : float minimum separation between intensity limits (> 0 to stop PGPLOT complaining) :Returns: range(s) : tuple or list the plot range(s) used either as a single 2-element tuple, or a list of them, one per CCD plotted. """ if nc == -1: nc1 = 0 nc2 = len(self) else: nc1 = nc nc2 = nc + 1 if not mpl: if close: pg.pgopen('/xs') if nc2 - nc1 > 1: pg.pgsubp(nc2 - nc1, 1) prange = [] for nc, ccd in enumerate(self._data[nc1:nc2]): # Determine intensity range to display if method == 'p': vmin, vmax = ccd.centile((vlo, vhi)) elif method == 'a': vmin, vmax = ccd.min(), ccd.max() elif method == 'd': vmin, vmax = vlo, vhi else: raise UltracamError( 'MCCD.plot: method must be one of p, a or d.') if vmin == vmax: vmin -= sepmin / 2. vmax += sepmin / 2. prange.append((vmin, vmax)) # start nxmax, nymax = ccd.nxmax, ccd.nymax x1 = 0.5 if x1 is None else x1 x2 = nxmax + 0.5 if x2 is None else x2 y1 = 0.5 if y1 is None else y1 y2 = nymax + 0.5 if y2 is None else y2 if mpl: if nc2 - nc1 > 1: plt.subplot(1, nc2 - nc1, nc + 1) plt.axis('equal') else: if nc2 - nc1 > 1: pg.pgpanl(nc - nc1 + 1, 1) pg.pgwnad(x1, x2, y1, y2) # plot CCD ccd.plot(vmin, vmax, mpl, cmap) # per-frame finishing-off if mpl: plt.xlim(x1, x2) plt.ylim(y1, y2) else: pg.pgbox('bcnst', 0, 0, 'bcnst', 0, 0) pg.pglab('X', 'Y', '') if close: if mpl: plt.show() else: pg.pgclos() # return intensity range(s) used if len(prange) == 1: return prange[0] else: return tuple(prange)
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() # ppgplot arrays tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Loop over identifications for line in lines: # Decode id = satid(line) # Skip slow moving objects drdt = np.sqrt(id.dxdt**2 + id.dydt**2) if drdt < drdtmin: continue # Extract significant pixels x, y, t, sig = ff.significant(trksig, id.x0, id.y0, id.dxdt, id.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) #ppgplot.pgopen("/xs") ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if (3600.0 * ff.crres[0] < 1e-3 ) | (3600.0 * ff.crres[1] < 1e-3) | ( ff.crres[0] / ff.sx > 2.0) | (ff.crres[1] / ff.sy > 2.0): ppgplot.pgsci(2) else: ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.vmax, ff.vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgmove(xmin, ymin) ppgplot.pgdraw(xmax, ymax) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([x0]), np.array([y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend() elif id.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = id.x0 + id.dxdt * t, id.y0 + id.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = id.x0 + id.dxdt * tmid ymid = id.y0 + id.dydt * tmid ztrk = ndimage.gaussian_filter(ff.track(id.dxdt, id.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: continue # Skip if point is outside selection area if inside_selection(id, xmid, ymid, x0, y0) == False: continue # Format IOD line cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) plot_selection(id, xmid, ymid) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([id.x0]), np.array([id.y0]), 17) ppgplot.pgmove(id.x0, id.y0) ppgplot.pgdraw(id.x1, id.y1) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([id.x0]), np.array([id.y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend()